1
|
Guercio D, Boon E. The histidine kinase NahK regulates denitrification and nitric oxide accumulation through RsmA in Pseudomonas aeruginosa. J Bacteriol 2024:e0040824. [PMID: 39660891 DOI: 10.1128/jb.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Pseudomonas aeruginosa have a versatile metabolism; they can adapt to many stressors, including limited oxygen and nutrient availability. This versatility is especially important within a biofilm where multiple microenvironments are present. As a facultative anaerobe, P. aeruginosa can survive under anaerobic conditions utilizing denitrification. This process produces nitric oxide (NO) which has been shown to result in cell elongation. However, the molecular mechanism underlying this phenotype is poorly understood. Our laboratory has previously shown that NosP is a NO-sensitive hemoprotein that works with the histidine kinase NahK to regulate biofilm formation in P. aeruginosa. In this study, we identify NahK as a novel regulator of denitrification under anaerobic conditions. Under anaerobic conditions, deletion of nahK leads to a reduction of growth coupled with reduced transcriptional expression and activity of the denitrification reductases. Furthermore, during stationary phase under anaerobic conditions, ΔnahK does not exhibit cell elongation, which is characteristic of P. aeruginosa. We determine the loss of cell elongation is due to changes in NO accumulation in ΔnahK. We further provide evidence that NahK may regulate denitrification through modification of RsmA levels. IMPORTANCE Pseudomonas aeruginosa is an opportunistic multi-drug resistance pathogen that is associated with hospital-acquired infections. P. aeruginosa is highly virulent, in part due to its versatile metabolism and ability to form biofilms. Therefore, better understanding of the molecular mechanisms that regulate these processes should lead to new therapeutics to treat P. aeruginosa infections. The histidine kinase NahK has been previously shown to be involved in both nitric oxide (NO) signaling and quorum sensing through RsmA. The data presented here demonstrate that NahK is responsive to NO produced during denitrification to regulate cell morphology. Understanding the role of NahK in metabolism under anaerobic conditions has larger implications in determining its role in a heterogeneous metabolic environment such as a biofilm.
Collapse
Affiliation(s)
- Danielle Guercio
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Boon
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
- Department of Chemistry, Stony Brook University Department of Chemistry, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
2
|
Song CS, Xu QC, Wan CP, Kong DZ, Lin CL, Yu SS. Molecular Variation and Phylogeny of Thymidylate Kinase Genes of Candidatus Phytoplasma ziziphi from Different Resistant and Susceptible Jujube Cultivars in China. BIOLOGY 2024; 13:886. [PMID: 39596841 PMCID: PMC11592322 DOI: 10.3390/biology13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The thymidylate kinase (tmk) gene is indispensable for the proliferation and survival of phytoplasma. To reveal the molecular variation and phylogeny of the tmk genes of Candidatus phytoplasma ziziphi, in this study, the tmk genes of 50 phytoplasma strains infecting different resistant and susceptible jujube cultivars from different regions in China were amplified and analyzed. Two sequence types, tmk-x and tmk-y, were identified using clone-based sequencing. The JWB phytoplasma strains were classified into three types, type-X, type-Y, and type-XY, based on the sequencing chromatograms of the tmk genes. The type-X and type-Y strains contained only tmk-x and tmk-y genes, respectively. The type-XY strain contained both tmk-x and tmk-y genes. The type-X, type-Y, and type-XY strains comprised 42%, 12%, and 46% of all the strains, respectively. The type-X and type-XY strains were identified in both susceptible and resistant jujube cultivars, while type-Y strain was only identified in susceptible cultivars. Phylogenetic analysis indicated that the tmk genes of the phytoplasmas were divided into two categories: phylo-S and phylo-M. The phylo-S tmk gene was single-copied in the genome, with an evolutionary pattern similar to the 16S rRNA gene; the phylo-M tmk gene was multi-copied, related to PMU-mediated within-genome transposition and between-genome transfer. Furthermore, the phylogenetic tree suggested that the tmk genes shuttled between the genomes of the Paulownia witches' broom phytoplasma and JWB phytoplasma. These findings provide insights into the evolutionary and adaptive mechanisms of phytoplasmas.
Collapse
Affiliation(s)
- Chuan-Sheng Song
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - Qi-Cong Xu
- International Nature Farming Research Center, Nagano 390-1401, Japan;
| | - Cui-Ping Wan
- College of Agricultural and Biological Engineering, Heze University, Heze 274015, China; (C.-S.S.); (C.-P.W.)
| | - De-Zhi Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Cai-Li Lin
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shao-Shuai Yu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
3
|
Shi HX, Liu SY, Guo JS, Fang F, Chen YP, Yan P. Potential role of AgNPs within wastewater in deteriorating sludge floc structure and settleability during activated sludge process: Filamentous bacteria and quorum sensing. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119536. [PMID: 37972492 DOI: 10.1016/j.jenvman.2023.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
Excellent sludge floc structure and settleability are essential to maintain the process stability and excellent effluent quality during the activated sludge process. The underlying effect of silver nanoparticles (AgNPs) within wastewater on sludge floc structure and settleability is still unclear. The potential role of AgNPs in promoting filamentous bacterial proliferation and deteriorating sludge floc structure and settleability based on quorum sensing (QS) were investigated in this study. The results indicated that N-acyl homoserine lactose (AHL) concentration sharply increased from 23.56 to 108.41 ng/g VSS in the sequencing batch reactor with 1 mg/L AgNPs. AgNPs strengthened communication between filamentous bacteria, which triggered the filamentous bacterial QS system involving the synthetic gene hdtS and sensing genes traR and lasR. Filamentous bacterial proliferation was promoted by the triggered QS via positively regulating its cell cycle progression including chromosomal replication and divisome formation. In addition, extracellular protein production was obviously increased from 43.56 to 97.91 mg/g VSS through QS by regulating arginine and tyrosine secretion during filamentous bacterial proliferation under 1 mg/L AgNPs condition, which led to an increase in the negative charge and hydrophily at the cell surface. AgNPs resulted in an obvious increase in the surface energy barrier (WT) between bacteria. The change in the physicochemical properties of extracellular polymeric substance (EPS) induced by QS among filamentous bacteria obviously inhibited bacterial aggregation between filamentous bacteria and floc-forming bacteria under AgNPs condition, thus resulting in serious deterioration of the sludge floc structure and settleability. This study provided new insights into the microcosmic mechanism for the effect of AgNPs on sludge floc structure and settleability.
Collapse
Affiliation(s)
- Hong-Xin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Shao-Yang Liu
- Department of Chemistry and Physics, Troy University, Troy, AL, 36082, USA
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Anantharaman S, Guercio D, Mendoza AG, Withorn JM, Boon EM. Negative regulation of biofilm formation by nitric oxide sensing proteins. Biochem Soc Trans 2023; 51:1447-1458. [PMID: 37610010 PMCID: PMC10625800 DOI: 10.1042/bst20220845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Biofilm-based infections pose a serious threat to public health. Biofilms are surface-attached communities of microorganisms, most commonly bacteria and yeast, residing in an extracellular polymeric substance (EPS). The EPS is composed of several secreted biomolecules that shield the microorganisms from harsh environmental stressors and promote antibiotic resistance. Due to the increasing prominence of multidrug-resistant microorganisms and a decreased development of bactericidal agents in clinical production, there is an increasing need to discover alternative targets and treatment regimens for biofilm-based infections. One promising strategy to combat antibiotic resistance in biofilm-forming bacteria is to trigger biofilm dispersal, which is a natural part of the bacterial biofilm life cycle. One signal for biofilm dispersal is the diatomic gas nitric oxide (NO). Low intracellular levels of NO have been well documented to rapidly disperse biofilm macrostructures and are sensed by a widely conserved NO-sensory protein, NosP, in many pathogenic bacteria. When bound to heme and ligated to NO, NosP inhibits the autophosphorylation of NosP's associated histidine kinase, NahK, reducing overall biofilm formation. This reduction in biofilm formation is regulated by the decrease in secondary metabolite bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). The NosP/NahK signaling pathway is also associated with other major regulatory systems in the maturation of bacterial biofilms, including virulence and quorum sensing. In this review, we will focus on recent discoveries investigating NosP, NahK and NO-mediated biofilm dispersal in pathogenic bacteria.
Collapse
Affiliation(s)
- Sweta Anantharaman
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Danielle Guercio
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Alicia G Mendoza
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Jason M Withorn
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, U.S.A
| |
Collapse
|
5
|
Šovljanski O, Tomić A, Markov S. Relationship between Bacterial Contribution and Self-Healing Effect of Cement-Based Materials. Microorganisms 2022; 10:microorganisms10071399. [PMID: 35889117 PMCID: PMC9322135 DOI: 10.3390/microorganisms10071399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023] Open
Abstract
The civil research community has been attracted to self-healing bacterial-based concrete as a potential solution in the economy 4.0 era. This concept provides more sustainable material with a longer lifetime due to the reduction of crack appearance and the need for anthropogenic impact. Regardless of the achievements in this field, the gap in the understanding of the importance of the bacterial role in self-healing concrete remains. Therefore, understanding the bacterial life cycle in the self-healing effect of cement-based materials and selecting the most important relationship between bacterial contribution, self-healing effect, and material characteristics through the process of microbiologically (bacterially) induced carbonate precipitation is just the initial phase for potential applications in real environmental conditions. The concept of this study offers the possibility to recognize the importance of the bacterial life cycle in terms of application in extreme conditions of cement-based materials and maintaining bacterial roles during the self-healing effect.
Collapse
|
6
|
Felletti M, Romilly C, Wagner EGH, Jonas K. A nascent polypeptide sequence modulates DnaA translation elongation in response to nutrient availability. eLife 2021; 10:71611. [PMID: 34524083 PMCID: PMC8443254 DOI: 10.7554/elife.71611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/15/2021] [Indexed: 01/01/2023] Open
Abstract
The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Cédric Romilly
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - E Gerhart H Wagner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Seeger J, Michelet R, Kloft C. Quantification of persister formation of Escherichia coli leveraging electronic cell counting and semi-mechanistic pharmacokinetic/pharmacodynamic modelling. J Antimicrob Chemother 2021; 76:2088-2096. [PMID: 33997902 DOI: 10.1093/jac/dkab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Persister formation of Escherichia coli under fluoroquinolone exposure causes treatment failure and promotes emergence of resistant strains. Semi-mechanistic pharmacokinetic/pharmacodynamic modelling of data obtained from in vitro infection model experiments comprehensively characterizes exposure-effect relationships, providing mechanistic insights. OBJECTIVES To quantify persister formation of E. coli under levofloxacin exposure and to explain the observed growth-kill behaviour, leveraging electronic cell counting and pharmacokinetic/pharmacodynamic modelling. METHODS Three fluoroquinolone-resistant clinical E. coli isolates were exposed to levofloxacin in static and dynamic in vitro infection model experiments. Complementary to plate counting, bacterial concentrations over time were quantified by electronic cell counting and amalgamated in a semi-mechanistic pharmacokinetic/pharmacodynamic model (1281 bacterial and 394 levofloxacin observations). RESULTS Bacterial regrowth was observed under exposure to clinically relevant dosing regimens in the dynamic in vitro infection model. Electronic cell counting facilitated identification of three bacterial subpopulations: persisters, viable cells and dead cells. Two strain-specific manifestations of the levofloxacin effect were identified: a killing effect, characterized as a sigmoidal Emax model, and an additive increase in persister formation under levofloxacin exposure. Significantly different EC50 values quantitatively discerned levofloxacin potency for two isolates displaying the same MIC value: 8 mg/L [EC50 = 17.2 (95% CI = 12.6-23.8) mg/L and 8.46 (95% CI = 6.86-10.3) mg/L, respectively]. Persister formation was most pronounced for the isolate with the lowest MIC value (2 mg/L). CONCLUSIONS The developed pharmacokinetic/pharmacodynamic model adequately characterized growth-kill behaviour of three E. coli isolates and unveiled strain-specific levofloxacin potencies and persister formation. The mimicked dosing regimens did not eradicate the resistant isolates and enhanced persister formation to a strain-specific extent.
Collapse
Affiliation(s)
- Johanna Seeger
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| |
Collapse
|
8
|
Influence of Lactic Acid on Cell Cycle Progressions in Lactobacillus bulgaricus During Batch Culture. Appl Biochem Biotechnol 2020; 193:912-924. [PMID: 33206317 DOI: 10.1007/s12010-020-03459-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/08/2020] [Indexed: 02/02/2023]
Abstract
Lactic acid has been proved to inhibit the proliferation of lactic acid bacteria in the fermentation process. To shed light on the cell cycle alterations in acidic conditions, the cell division of Lactobacillus bulgaricus sp1.1 in batch culture was analyzed directly by implementing of the intracellular fluorescent tracking assay in different pH adjusted by lactic acid. Cell proliferation and cell division were investigated to be negatively controlled by the decrease of pH, and pH 4.1 was the critical condition of downregulating cell division but retains cell culturability. The cell area and cell length in pH 4.1 were examined by using fluorescent labeling, and they reduced to about 29.18-34.89% and 32.67-40% of cells cultured in the unacidified medium, respectively. The DNA replication initiation was undergoing prompted by the low extent of DNA condensation and higher expression of the dnaA gene in this critical pH. The results indicated that the cell cycle progressions of Lactobacillus bulgaricus sp1.1 in acidic conditions were arrested at intracellular biomass accumulation and cell division stage. These findings provide fundamental insight into cell cycle control of the acidic environment in Lactobacillus bulgaricus sp1.1.
Collapse
|
9
|
The Invasion of Bacterial Biofilms into the Dentinal Tubules of Extracted Teeth Retrofilled with Fluorescently Labeled Retrograde Filling Materials. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we evaluated the invasion of bacteria into the dentinal tubules of retrofilled extracted human teeth, and the influence of different fluorescently labeled retrograde filling materials on the bacterial invasion and viability, by means of confocal laser scanning microscopy (CLSM). The root apices of extracted teeth were cut, prepared, and filled retrogradely using either intermediate restorative material (IRM), mineral trioxide aggregate (MTA), or Biodentine. The roots were filled with Enterococcus faecalis bacteria from their coronal part for 21 days. Then, 3-mm-long apical segments were cut to get root axial slices, and the bacteria were fluorescently stained and evaluated by CLSM. Bacterial penetration into the dentinal tubules favored the bucco-lingual directions. The filling materials penetrated up to 957 µm into the tubuli, and the bacteria, up to 1480 µm (means: 130 and 167 μm, respectively). Biodentine fillings penetrated less and the associated bacteria penetrated deeper into the tubuli compared to MTA or IRM (p = 0.004). Deeper filling penetration was associated with shallower penetration of both dead and live, or live alone, bacteria (p = 0.015). In conclusion, the current study enables better understanding of the microbiological–pathological course after endodontic surgical procedures. It was found that even with retrograde fillings, bacteria invade deep into the dental tubules, where deeper filling penetration prevents deeper penetration of the bacteria and adversely affects the viability of the bacteria.
Collapse
|
10
|
Proteomic Study of the Survival and Resuscitation Mechanisms of Filamentous Persisters in an Evolved Escherichia coli Population from Cyclic Ampicillin Treatment. mSystems 2020; 5:5/4/e00462-20. [PMID: 32723793 PMCID: PMC7394356 DOI: 10.1128/msystems.00462-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Through adaptive laboratory evolution (ALE) experiments, it was recently found that when a bacterial population was repetitively treated with antibiotics, they will adapt to the treatment conditions and become tolerant to the drug. In this study, we utilized an ampicillin-tolerant Escherichia coli population isolated from an ALE experiment to study the mechanisms of persistence during ampicillin treatment and resuscitation. Interestingly, the persisters of this population exhibit filamentous morphology upon ampicillin treatment, and the filaments are getting longer over time. Proteomics analysis showed that proteins involved in carbohydrate metabolism are upregulated during antibiotic treatment, in addition to those involved in the oxidative stress response. Bacterial SOS response, which is associated with filamentation, was found to be induced on account of the increasing expression of RecA. Measurement of endogenous reactive oxygen species (ROS) revealed that the population have ∼100-fold less ROS generation under ampicillin treatment than the wild type, leading to a lower mutagenesis rate. Single-cell observations through time-lapse microscopy show that resuscitation of the filaments is stochastic. During resuscitation, proteins involved in the tricarboxylic acid (TCA) cycle, glyoxylate cycle and glycolytic processes, and ATP generation are downregulated, while ribosomal proteins and porins are upregulated in the filaments. One particular protein, ElaB, was upregulated by over 7-fold in the filaments after 3 h of resuspension in fresh medium, but its expression went down after the filaments divided. Knockout of elaB increased persistence on wild-type E. coli, and upon resumption of growth, mutants lacking elaB have a higher fraction of small colony variants (SCVs) than the wild type.IMPORTANCE Persisters are a subpopulation of cells with enhanced survival toward antibiotic treatment and have the ability to resume normal growth when the antibiotic stress is lifted. Although proteomics is the most suitable tool to study them from a system-level perspective, the number of persisters that present naturally is too few for proteomics analysis, and thus the complex mechanisms through which they are able to survive antibiotic stresses and resuscitate in fresh medium remain poorly understood. To overcome that challenge, we studied an evolved Escherichia coli population with elevated persister fraction under ampicillin treatment and obtained its proteome profiles during antibiotic treatment and resuscitation. We discovered that during treatment with ampicillin, this tolerant population employs an active oxidative stress response and exhibits lower ROS levels than the wild type. Moreover, an inner membrane protein which has implications in various stress responses, ElaB, was found to be highly upregulated in the persisters during resuscitation, and its knockout caused increased formation of small colony variants after ampicillin treatment, suggesting that ElaB is important for persisters to resume normal growth.
Collapse
|
11
|
Pióro M, Jakimowicz D. Chromosome Segregation Proteins as Coordinators of Cell Cycle in Response to Environmental Conditions. Front Microbiol 2020; 11:588. [PMID: 32351468 PMCID: PMC7174722 DOI: 10.3389/fmicb.2020.00588] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.
Collapse
Affiliation(s)
- Monika Pióro
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
12
|
Abstract
Many bacteria drastically change their cell size and morphology in response to changing environmental conditions. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus and related species transform into filamentous cells in response to conditions that commonly occur in their natural habitat as a result of algal blooms during the warm summer months. These filamentous cells may be better able to scavenge nutrients when they grow in biofilms and to escape from protist predation during planktonic growth. Our findings suggest that seasonal changes and variations in the microbial composition of the natural habitat can have profound impact on the cell biology of individual organisms. Furthermore, our work highlights that bacteria exist in morphological and physiological states in nature that can strongly differ from those commonly studied in the laboratory. All living cells are characterized by certain cell shapes and sizes. Many bacteria can change these properties depending on the growth conditions. The underlying mechanisms and the ecological relevance of changing cell shape and size remain unclear in most cases. One bacterium that undergoes extensive shape-shifting in response to changing growth conditions is the freshwater bacterium Caulobacter crescentus. When incubated for an extended time in stationary phase, a subpopulation of C. crescentus forms viable filamentous cells with a helical shape. Here, we demonstrated that this stationary-phase-induced filamentation results from downregulation of most critical cell cycle regulators and a consequent block of DNA replication and cell division while cell growth and metabolism continue. Our data indicate that this response is triggered by a combination of three stresses caused by prolonged growth in complex medium, namely, the depletion of phosphate, alkaline pH, and an excess of ammonium. We found that these conditions are experienced in the summer months during algal blooms near the surface in freshwater lakes, a natural habitat of C. crescentus, suggesting that filamentous growth is a common response of C. crescentus to its environment. Finally, we demonstrate that when grown in a biofilm, the filamentous cells can reach beyond the surface of the biofilm and potentially access nutrients or release progeny. Altogether, our work highlights the ability of bacteria to alter their morphology and suggests how this behavior might enable adaptation to changing environments.
Collapse
|
13
|
Adaptive Responses of Shewanella decolorationis to Toxic Organic Extracellular Electron Acceptor Azo Dyes in Anaerobic Respiration. Appl Environ Microbiol 2019; 85:AEM.00550-19. [PMID: 31175185 DOI: 10.1128/aem.00550-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial anaerobic respiration using an extracellular electron acceptor plays a predominant role in global biogeochemical cycles. However, the mechanisms of bacterial adaptation to the toxic organic pollutant as the extracellular electron acceptor during anaerobic respiration are not clear, which limits our ability to optimize the strategies for the bioremediation of a contaminated environment. Here, we report the physiological characteristics and the global gene expression of an ecologically successful bacterium, Shewanella decolorationis S12, when using a typical toxic organic pollutant, amaranth, as the extracellular electron acceptor. Our results revealed that filamentous shift (the cells stretched to fiber-like shapes as long as 18 μm) occurred under amaranth stress. Persistent stress led to a higher filamentous cell rate and decolorization ability in subcultural cells compared to parental strains. In addition, the expression of genes involved in cell division, the chemotaxis system, energy conservation, damage repair, and material transport in filamentous cells was significantly stimulated. The detailed roles of some genes with significantly elevated expressions in filamentous cells, such as the outer membrane porin genes ompA and ompW, the cytochrome c genes arpC and arpD, the global regulatory factor gene rpoS, and the methyl-accepting chemotaxis proteins genes SHD_2793 and SHD_0015, were identified by site-directed mutagenesis. Finally, a conceptual model was proposed to help deepen our insights into both the bacterial survival strategy when toxic organics were present and the mechanisms by which these toxic organics were biodegraded as the extracellular electron acceptors.IMPORTANCE Keeping toxic organic pollutants (TOPs) in tolerable levels is a huge challenge for bacteria in extremely unfavorable environments since TOPs could serve as energy substitutes but also as survival stresses when they are beyond some thresholds. This study focused on the underlying adaptive mechanisms of ecologically successful bacterium Shewanella decolorationis S12 when exposed to amaranth, a typical toxic organic pollutant, as the extracellular electron acceptor. Our results suggest that filamentous shift is a flexible and valid way to solve the dilemma between the energy resource and toxic stress. Filamentous cells regulate gene expression to enhance their degradation and detoxification capabilities, resulting in a strong viability. These novel adaptive responses to TOPs are believed to be an evolutionary achievement to succeed in harsh habitats and thus have great potential to be applied to environment engineering or synthetic biology if we could picture every unknown node in this pathway.
Collapse
|
14
|
Ginovyan M, Trchounian A. Novel approach to combat antibiotic resistance: evaluation of some Armenian herb crude extracts for their antibiotic modulatory and antiviral properties. J Appl Microbiol 2019; 127:472-480. [PMID: 31136046 DOI: 10.1111/jam.14335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
AIMS One of the strategies to combat antibiotic resistance can be the use of plant materials in combination with antibiotics, taking into account that phytochemicals can act as antibiotic resistance-modifying agents. This can give a second life to the traditional antibiotics. The aim was to evaluate antibiotic modulatory effect of crude extracts from Agrimonia eupatoria, Hypericum alpestre, Rumex obtusifolius and Sanguisorba officinalis herbs towards several commercial antibiotics using some Gram-positive and Gram-negative bacteria. METHODS The antibiotic modulatory activity was tested by determining MICs of antibiotics in the absence and presence of plant crude extracts at subinhibitory concentrations. Antiviral potential of different extracts of tested plant materials was also explored by double overlay plaque assay. RESULTS The tested plant crude extracts exhibited high modulatory activity towards used antibiotics. Particularly, high modulatory activity was observed with extracts of H. alpestre and R. obtusifolius. Many plant-antibiotic combinations induced the decrease in MICs of antibiotics up to ~fourfold indicating synergy. Moreover, the similar change was observed at both subinhibitory concentrations (MIC/2 and MIC/4) of the same plant crude extract. High anti-phage activity of plants with the exception of Lilium armenum against T4 phage of Escherichia coli C-T4 was also shown. CONCLUSIONS Plant crude extract or commercial antibiotic combinations significantly increased the efficiency of antibiotics. Tested plant materials with exception of L. armenum have antiviral property. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time, antibiotic modulatory activity of tested herb extracts was shown, which could have potential in practical applications. Tested plant materials with exception of L. armenum could have prospective, as a source of new antiviral compounds.
Collapse
Affiliation(s)
- M Ginovyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - A Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
15
|
Effect of Cellulose Nanocrystals from Different Lignocellulosic Residues to Chitosan/Glycerol Films. Polymers (Basel) 2019; 11:polym11040658. [PMID: 30974908 PMCID: PMC6523815 DOI: 10.3390/polym11040658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
Interest in nanocellulose obtained from natural resources has grown, mainly due to the characteristics that these materials provide when incorporated in biodegradable films as an alternative for the improvement of the properties of nanocomposites. The main purpose of this work was to investigate the effect of the incorporation of nanocellulose obtained from different fibers (corncob, corn husk, coconut shell, and wheat bran) into the chitosan/glycerol films. The nanocellulose were obtained through acid hydrolysis. The properties of the different nanobiocomposites were comparatively evaluated, including their barrier and mechanical properties. The nanocrystals obtained for coconut shell (CS), corn husk (CH), and corncob (CC) presented a length/diameter ratio of 40.18, 40.86, and 32.19, respectively. Wheat bran (WB) was not considered an interesting source of nanocrystals, which may be justified due to the low percentage of cellulose. Significant differences were observed in the properties of the films studied. The water activity varied from 0.601 (WB Film) to 0.658 (CH Film) and the moisture content from 15.13 (CS Film) to 20.86 (WB Film). The highest values for tensile strength were presented for CC (11.43 MPa) and CS (11.38 MPa) films, and this propriety was significantly increased by nanocellulose addition. The results showed that the source of the nanocrystal determined the properties of the chitosan/glycerol films.
Collapse
|
16
|
Pawlik A, Mazur A, Wielbo J, Koper P, Żebracki K, Kubik-Komar A, Janusz G. RNA Sequencing Reveals Differential Gene Expression of Cerrena Unicolor in Response to Variable Lighting Conditions. Int J Mol Sci 2019; 20:ijms20020290. [PMID: 30642073 PMCID: PMC6358801 DOI: 10.3390/ijms20020290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 11/16/2022] Open
Abstract
To elucidate the light-dependent gene expression in Cerrena unicolor FCL139, the transcriptomes of the fungus growing in white, blue, green, and red lighting conditions and darkness were analysed. Among 10,413 all-unigenes detected in C. unicolor, 7762 were found to be expressed in all tested conditions. Transcripts encoding putative fungal photoreceptors in the C. unicolor transcriptome were identified. The number of transcripts uniquely produced by fungus ranged from 20 during its growth in darkness to 112 in the green lighting conditions. We identified numerous genes whose expression differed substantially between the darkness (control) and each of the light variants tested, with the greatest number of differentially expressed genes (DEGs) (454 up- and 457 down-regulated) observed for the white lighting conditions. The DEGs comprised those involved in primary carbohydrate metabolism, amino acid metabolism, autophagy, nucleotide repair systems, signalling pathways, and carotenoid metabolism as defined using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The analysis of the expression profile of genes coding for lignocellulose-degrading enzymes suggests that the wood-degradation properties of C. unicolor may be independent of the lighting conditions and may result from the overall stimulation of fungal metabolism by daylight.
Collapse
Affiliation(s)
- Anna Pawlik
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Piotr Koper
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Kamil Żebracki
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Agnieszka Kubik-Komar
- Chair of Applied Mathematics and Informatics, Lublin University of Life Sciences, Akademicka 13 St., 20-950 Lublin, Poland.
| | - Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
17
|
Multilayered control of chromosome replication in Caulobacter crescentus. Biochem Soc Trans 2019; 47:187-196. [PMID: 30626709 PMCID: PMC6393856 DOI: 10.1042/bst20180460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
The environmental Alphaproteobacterium Caulobacter crescentus is a classical model to study the regulation of the bacterial cell cycle. It divides asymmetrically, giving a stalked cell that immediately enters S phase and a swarmer cell that stays in the G1 phase until it differentiates into a stalked cell. Its genome consists in a single circular chromosome whose replication is tightly regulated so that it happens only in stalked cells and only once per cell cycle. Imbalances in chromosomal copy numbers are the most often highly deleterious, if not lethal. This review highlights recent discoveries on pathways that control chromosome replication when Caulobacter is exposed to optimal or less optimal growth conditions. Most of these pathways target two proteins that bind directly onto the chromosomal origin: the highly conserved DnaA initiator of DNA replication and the CtrA response regulator that is found in most Alphaproteobacteria The concerted inactivation and proteolysis of CtrA during the swarmer-to-stalked cell transition license cells to enter S phase, while a replisome-associated Regulated Inactivation and proteolysis of DnaA (RIDA) process ensures that initiation starts only once per cell cycle. When Caulobacter is stressed, it turns on control systems that delay the G1-to-S phase transition or the elongation of DNA replication, most probably increasing its fitness and adaptation capacities.
Collapse
|
18
|
Mukherjee I, Ghosh A, Bhadury P, De P. Matrix-Assisted Regulation of Antimicrobial Properties: Mechanistic Elucidation with Ciprofloxacin-Based Polymeric Hydrogel Against Vibrio Species. Bioconjug Chem 2018; 30:218-230. [DOI: 10.1021/acs.bioconjchem.8b00846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Felletti M, Omnus DJ, Jonas K. Regulation of the replication initiator DnaA in Caulobacter crescentus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:697-705. [PMID: 29382570 DOI: 10.1016/j.bbagrm.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/10/2018] [Indexed: 11/18/2022]
Abstract
The decision to initiate DNA replication is a critical step in the cell cycle of all organisms. In nearly all bacteria, replication initiation requires the activity of the conserved replication initiation protein DnaA. Due to its central role in cell cycle progression, DnaA activity must be precisely regulated. This review summarizes the current state of DnaA regulation in the asymmetrically dividing α-proteobacterium Caulobacter crescentus, an important model for bacterial cell cycle studies. Mechanisms will be discussed that regulate DnaA activity and abundance under optimal conditions and in coordination with the asymmetric Caulobacter cell cycle. Furthermore, we highlight recent findings of how regulated DnaA synthesis and degradation collaborate to adjust DnaA abundance under stress conditions. The mechanisms described provide important examples of how DNA replication is regulated in an α-proteobacterium and thus represent an important starting point for the study of DNA replication in many other bacteria. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Michele Felletti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Deike J Omnus
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
20
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
21
|
Heinrich K, Sobetzko P, Jonas K. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit. PLoS Genet 2016; 12:e1006522. [PMID: 27941972 PMCID: PMC5189948 DOI: 10.1371/journal.pgen.1006522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/27/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. Free-living bacteria are frequently exposed to various environmental stress conditions. To survive under such adverse conditions, cells must induce pathways that prevent and alleviate cellular damages, but they must also adjust their cell cycle to guarantee cellular integrity. It has long been observed that various bacteria transform into filamentous cells under certain conditions in nature, indicating that they dynamically modulate cell division and the cell cycle in response to environmental cues. The molecular bases that allow bacteria to regulate cell division in response to fluctuating environmental conditions remain poorly understood. Here, we describe a new mechanism by which Caulobacter crescentus blocks division and transforms into filamentous cells under stress. We find that the observed cell division block depends on precise regulation of the key cell cycle regulator CtrA. Under optimal conditions, the membrane-bound cell cycle kinase CckA activates CtrA in response to spatiotemporal cues to induce expression of genes required for cell division. Our data suggest that external stress triggers CckA to dephosphorylate and inactivate CtrA, thus ensuring the downregulation of CtrA-regulated functions, including cell division. Given that CckA and CtrA are highly conserved among alphaproteobacteria, the mechanism found here, might operate in diverse bacteria, including those that are medically and agriculturally relevant.
Collapse
Affiliation(s)
- Kristina Heinrich
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Abstract
![]()
Phenotypic memory can predispose
cells to physiological outcomes,
contribute to heterogeneity in cellular populations, and allow computation
of environmental features, such as nutrient gradients. In bacteria
and synthetic circuits in general, memory can often be set by protein
concentrations: because of the relative stability of proteins, the
degradation rate is often dominated by the growth rate, and inheritance
is a significant factor. Cells can then be primed to respond to events
that recur with frequencies faster than the time to eliminate proteins.
Protein memory can be extended if cells reach extremely low growth
rates or no growth. Here we characterize the necessary time scales
for different quantities of protein memory, measured as relative entropy
(Kullback–Leibler divergence), for a variety of cellular growth
arrest transition dynamics. We identify a critical manifold in relative
protein degradation/growth arrest time scales where information is,
in principle, preserved indefinitely because proteins are trapped
at a concentration determined by the competing time scales as long
as nongrowth-mediated protein degradation is negligible. We next asked
what characteristics of growth arrest dynamics and initial protein
distributions best preserve or eliminate information about previous
environments. We identified that sharp growth arrest transitions with
skewed initial protein distributions optimize flexibility, with information
preservation and minimal cost of residual protein. As a result, a
nearly memoryless regime, corresponding to a form of bet-hedging,
may be an optimal strategy for storage of information by protein concentrations
in growth-arrested cells.
Collapse
Affiliation(s)
- J. Christian J. Ray
- Center for Computational
Biology Department of Molecular Biosciences, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|