1
|
Lazarova HI, Rusew RI, Tsvetanova LV, Barbov BZ, Tacheva ES, Shivachev BL. Elaboration and Characterization of Different Zirconium Modified ETS Photocatalysts for the Degradation of Crystal Violet and Methylene Blue. ChemistryOpen 2024:e202400348. [PMID: 39538980 DOI: 10.1002/open.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, Zirconium-modified Engelhard Titanium Silicate 4 (Na-K-ETS-4/xZr) catalysts were synthesized and evaluated for their photocatalytic efficiency in degrading crystal violet (CV) and methylene blue (MB) in aqueous solutions. The catalysts were characterized using XRD, FTIR, SEM, WDXRF, and nitrogen adsorption/desorption isotherms. The results confirmed the successful incorporation of Zr into the ETS-4 framework, with the highest Zr content reaching 9.2 wt %. The photocatalytic performance under visible light irradiation was studied at varying pH levels. The Na-K-ETS-4/6.3Zr catalyst exhibited the highest photodegradation efficiency for CV (76.6 %), while Na-K-ETS-4/8.9Zr achieved 86.6 % efficiency for MB. A combination of Engelhard Titanium Silicate 10, Na-K-ETS-10/6.3Zr and Na-K-ETS-4/8.9Zr significantly enhanced dye degradation, achieving up to 96.5 % efficiency for MB. Kinetic studies indicated that the degradation process follows a non-linear pseudo-first-order model. The catalysts also demonstrated excellent reusability, with minimal efficiency loss after five cycles, and full recovery after an ethanol wash. These findings suggest that Na-K-ETS-4/xZr is a promising candidate for environmental water treatment applications due to its efficient photodegradation performance and stability.
Collapse
Affiliation(s)
- Hristina I Lazarova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Rusi I Rusew
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Liliya V Tsvetanova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Borislav Z Barbov
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Elena S Tacheva
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| | - Boris L Shivachev
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov" -, Bulgarian Academy of Sciences (IMC-BAS), Acad. G. Bonchev Str., Bl. 107, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Zhang X, Gong X, Abou-Hamad E, Zhou H, You X, Gascon J, Dutta Chowdhury A. Selectivity Descriptors of Methanol-to-Aromatics Process over 3-Dimensional Zeolites. Angew Chem Int Ed Engl 2024; 63:e202411197. [PMID: 38935406 DOI: 10.1002/anie.202411197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
The zeolite-catalyzed methanol-to-aromatics (MTA) process is a promising avenue for industrial decarbonization. This process predominantly utilizes 3-dimensional 10-member ring (10-MR) zeolites like ZSM-5 and ZSM-11, chosen for their confinement effect essential for aromatization. Current research mainly focuses on enhancing selectivity and mitigating catalyst deactivation by modulating zeolites' physicochemical properties. Despite the potential, the MTA technology is at a low Technology Readiness Level, hindered by mechanistic complexities in achieving the desired selectivity towards liquid aromatics. To bridge this knowledge gap, this study proposes a roadmap for MTA catalysis by strategically combining controlled catalytic experiments with advanced characterization methods (including operando conditions and "mobility-dependent" solid-state NMR spectroscopy). It identifies the descriptor-role of Koch-carbonylated intermediates, longer-chain hydrocarbons, and the zeolites' intersectional cavities in yielding preferential liquid aromatics selectivity. Understanding these selectivity descriptors and architectural impacts is vital, potentially advancing other zeolite-catalyzed emerging technologies.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Department, KAUST Core Labs, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Hexun Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Xinyu You
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, Hubei, P. R., China
| |
Collapse
|
3
|
Vogt ETC, Weckhuysen BM. The refinery of the future. Nature 2024; 629:295-306. [PMID: 38720037 DOI: 10.1038/s41586-024-07322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.
Collapse
Affiliation(s)
- Eelco T C Vogt
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Nikolopoulos N, Parker LA, Wickramasinghe A, van Veenhuizen O, Whiting G, Weckhuysen BM. Addition of Pore-Forming Agents and Their Effect on the Pore Architecture and Catalytic Behavior of Shaped Zeolite-Based Catalyst Bodies. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:40-48. [PMID: 37122831 PMCID: PMC10131264 DOI: 10.1021/cbmi.2c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 05/02/2023]
Abstract
Porous materials, such as solid catalysts, are used in various chemical reactions in industry to produce chemicals, materials, and fuels. Understanding the interplay between pore architecture and catalytic behavior is of great importance for synthesizing a better industrial-grade catalyst material. In this study, we have investigated the modification of the pore architecture of zeolite-based alumina-bound shaped catalyst bodies via the addition of different starches as pore-forming agents. A combination of microscopy techniques allowed us to visualize the morphological changes induced and make a link between pore architecture, molecular transport, and catalytic performance. As for the catalytic performance in the methanol-to-hydrocarbons (MTH) reaction, pore-forming agents resulted in up to ∼12% higher conversion, an increase of 74% and 77% in yield (14% and 13% compared to 8.6% and 7.7% of the reference sample in absolute yields) toward ethylene and propylene, respectively, and an improved lifetime of the catalyst materials.
Collapse
|
5
|
Karpova TR, Lavrenov AV, Buluchevskii EA, Leontieva NN. Polyfunctional catalysis in conversion of light alkenes. Russ Chem Bull 2023; 72:379-392. [PMID: 37073400 PMCID: PMC10092927 DOI: 10.1007/s11172-023-3806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 04/20/2023]
Abstract
Light alkenes are among the main petrochemical intermediate products, the consumption of which is steadily growing. Using ethylene as an example, the possibilities of using polyfunctional heterogeneous catalysts for carrying out practically important reactions of its oligomerization, alkylation, and metathesis were considered. Particular attention was paid to catalysts for the conversion of ethylene to propylene.
Collapse
Affiliation(s)
- T. R. Karpova
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - A. V. Lavrenov
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - E. A. Buluchevskii
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - N. N. Leontieva
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| |
Collapse
|
6
|
A Comprehensive Review on Zeolite Chemistry for Catalytic Conversion of Biomass/Waste into Green Fuels. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238578. [PMID: 36500669 PMCID: PMC9739862 DOI: 10.3390/molecules27238578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Numerous attempts have been made to produce new materials and technology for renewable energy and environmental improvements in response to global sustainable solutions stemming from fast industrial expansion and population growth. Zeolites are a group of crystalline materials having molecularly ordered micropore arrangements. Over the past few years, progress in zeolites has been observed in transforming biomass and waste into fuels. To ensure effective transition of fossil energy carriers into chemicals and fuels, zeolite catalysts play a key role; however, their function in biomass usage is more obscure. Herein, the effectiveness of zeolites has been discussed in the context of biomass transformation into valuable products. Established zeolites emphasise conversion of lignocellulosic materials into green fuels. Lewis acidic zeolites employ transition of carbohydrates into significant chemical production. Zeolites utilise several procedures, such as catalytic pyrolysis, hydrothermal liquefaction, and hydro-pyrolysis, to convert biomass and lignocelluloses. Zeolites exhibit distinctive features and encounter significant obstacles, such as mesoporosity, pore interconnectivity, and stability of zeolites in the liquid phase. In order to complete these transformations successfully, it is necessary to have a thorough understanding of the chemistry of zeolites. Hence, further examination of the technical difficulties associated with catalytic transformation in zeolites will be required. This review article highlights the reaction pathways for biomass conversion using zeolites, their challenges, and their potential utilisation. Future recommendations for zeolite-based biomass conversion are also presented.
Collapse
|
7
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
8
|
Gong X, Çağlayan M, Ye Y, Liu K, Gascon J, Dutta Chowdhury A. First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chem Rev 2022; 122:14275-14345. [PMID: 35947790 DOI: 10.1021/acs.chemrev.2c00076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zeolite chemistry and catalysis are expected to play a decisive role in the next decade(s) to build a more decentralized renewable feedstock-dependent sustainable society owing to the increased scrutiny over carbon emissions. Therefore, the lack of fundamental and mechanistic understanding of these processes is a critical "technical bottleneck" that must be eliminated to maximize economic value and minimize waste. We have identified, considering this objective, that the chemistry related to the first-generation reaction intermediates (i.e., carbocations, radicals, carbenes, ketenes, and carbanions) in zeolite chemistry and catalysis is highly underdeveloped or undervalued compared to other catalysis streams (e.g., homogeneous catalysis). This limitation can often be attributed to the technological restrictions to detect such "short-lived and highly reactive" intermediates at the interface (gas-solid/solid-liquid); however, the recent rise of sophisticated spectroscopic/analytical techniques (including under in situ/operando conditions) and modern data analysis methods collectively compete to unravel the impact of these organic intermediates. This comprehensive review summarizes the state-of-the-art first-generation organic reaction intermediates in zeolite chemistry and catalysis and evaluates their existing challenges and future prospects, to contribute significantly to the "circular carbon economy" initiatives.
Collapse
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Mustafa Çağlayan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Kun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | | |
Collapse
|
9
|
Continuous flow nitration of 3-[2-chloro-4-(trifluoromethyl) phenoxy] benzoic acid and its chemical kinetics within droplet-based microreactors. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Parmar D, Cha SH, Salavati-Fard T, Agarwal A, Chiang H, Washburn SM, Palmer JC, Grabow LC, Rimer JD. Spatiotemporal Coke Coupling Enhances para-Xylene Selectivity in Highly Stable MCM-22 Catalysts. J Am Chem Soc 2022; 144:7861-7870. [PMID: 35442020 DOI: 10.1021/jacs.2c01975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Identifying zeolite catalysts that can simultaneously optimize p-xylene selectivity and feed utilization is critical to toluene alkylation with methanol (TAM). Here, we show that zeolite MCM-22 (MWW) has an exceptional catalyst lifetime in the TAM reaction at high operating pressure, conversion, and selectivity. We systematically probe the catalytic behavior of active sites in distinct topological features of MCM-22, revealing that high p-xylene yield and catalyst stability are predominantly attributed to sinusoidal channels and supercages, respectively. Using a combination of catalyst design and testing, density functional theory, and molecular dynamics simulations, we propose a spatiotemporal coke coupling phenomenon to explain a multistage p-xylene selectivity profile wherein the formation of light coke in supercages initiates the deactivation of unselective external surface sites. Our findings indicate that the specific nature of coke is critical to catalyst performance. Moreover, they provide unprecedented insight into the synchronous roles of distinct topological features giving rise to the exceptional stability and selectivity of MCM-22 in the TAM reaction.
Collapse
Affiliation(s)
- Deependra Parmar
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Seung Hyeok Cha
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States.,Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Taha Salavati-Fard
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States.,Texas Center for Superconductivity at the University of Houston, 3369 Cullen Boulevard, Houston, Texas 77204, United States
| | - Ankur Agarwal
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Hsu Chiang
- ExxonMobil Technology and Engineering Company, Research, 4500 Bayway Drive, Baytown, Texas 77520, United States
| | - Seth M Washburn
- ExxonMobil Technology and Engineering Company, Research, 4500 Bayway Drive, Baytown, Texas 77520, United States
| | - Jeremy C Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| | - Lars C Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States.,Texas Center for Superconductivity at the University of Houston, 3369 Cullen Boulevard, Houston, Texas 77204, United States
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204, United States
| |
Collapse
|
11
|
Jain R, Mallette AJ, Rimer JD. Controlling Nucleation Pathways in Zeolite Crystallization: Seeding Conceptual Methodologies for Advanced Materials Design. J Am Chem Soc 2021; 143:21446-21460. [PMID: 34914871 DOI: 10.1021/jacs.1c11014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A core objective of synthesizing zeolites for widespread applications is to produce materials with properties and corresponding performances that exceed conventional counterparts. This places an impetus on elucidating and controlling processes of crystallization where one of the most critical design criteria is the ability to prepare zeolite crystals with ultrasmall dimensions to mitigate the deleterious effects of mass transport limitations. At the most fundamental level, this requires a comprehensive understanding of nucleation to address this ubiquitous materials gap. This Perspective highlights recent methodologies to alter zeolite nucleation by using seed-assisted protocols and the exploitation of interzeolite transformations to design advanced materials. Introduction of crystalline seeds in complex growth media used to synthesize zeolites can have wide-ranging effects on the physicochemical properties of the final product. Here we discuss the diverse pathways of zeolite nucleation, recent breakthroughs in seed-assisted syntheses of nanosized and hierarchical materials, and shortcomings for developing generalized guidelines to predict synthesis outcomes. We offer a critical analysis of state-of-the-art approaches to tailor zeolite crystallization wherein we conceptualize whether parallels between network theory and zeolite synthesis can be instrumental for translating key findings of individual discoveries across a broader set of zeolite crystal structures and/or synthesis conditions.
Collapse
Affiliation(s)
- Rishabh Jain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Adam J Mallette
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Rimer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
12
|
van der Wal LI, Oenema J, Smulders LCJ, Samplonius NJ, Nandpersad KR, Zečević J, de Jong KP. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. ACS Catal 2021; 11:3842-3855. [PMID: 33833901 PMCID: PMC8022326 DOI: 10.1021/acscatal.1c00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Indexed: 11/29/2022]
Abstract
![]()
The preparation of
zeolite-based bifunctional catalysts with low
noble metal loadings while maintaining optimal performance has been
studied. We have deposited 0.03 to 1.0 wt % Pt on zeolite H-USY (Si/Al
∼ 30 at./at.) using either platinum(II) tetraammine nitrate
(PTA, Pt(NH3)4(NO3)2)
or hexachloroplatinic(IV) acid (CPA, H2PtCl6·6H2O) and studied the nanoscale Pt loading heterogeneities
and global hydroconversion performance of the resulting Pt/Y catalysts.
Pt/Y samples prepared with PTA and a global Pt loading as low as 0.3
wt % Pt (nPt/nA = 0.08 mol/mol, where nPt is the number of Pt surface
sites and nA is the number of acid sites)
maintained catalytic performance during n-heptane
(T = 210–350 °C, P =
10 bar) as well as n-hexadecane (T = 170–280 °C, P = 5 bar) hydroisomerization
similar to a 1.0 wt % Pt sample. For Pt/Y catalysts prepared with
CPA, a loading of 0.3 wt % Pt (nPt/nA = 0.08 mol/mol) sufficed for n-heptane hydroisomerization, whereas a detrimental effect on n-hexadecane hydroisomerization was observed, in particular
undesired secondary cracking occurred to a significant extent. The
differences between PTA and CPA are explained by differences in Pt
loading per zeolite Y crystal (size ∼ 500 nm), shown from extensive
transmission electron microscopy energy-dispersive X-ray spectroscopy
experiments, whereby crystal-based nPt/nA ratios could be determined. From
earlier studies, it is known that the Al content per crystal of USY
varied tremendously and that PTA preferentially is deposited on crystals
with higher Al content due to ion-exchange with zeolite protons. Here,
we show that this preferential deposition of PTA on Al-rich crystals
led to a more constant value of nPt/nA ratio from one zeolite crystal to another,
which was beneficial for catalytic performance. Use of CPA led to
a large variation of Pt loading independent of Al content, giving
rise to larger variations of nPt/nA ratio from crystal to crystal that negatively
affected the catalytic performance. This study thus shows the impact
of local metal loading variations at the zeolite crystal scale (nanoscale)
caused by different interactions of metal precursors with the zeolite,
which are essential to design and synthesize optimal catalysts, in
particular at low noble metal loadings.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jogchum Oenema
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Luc C. J. Smulders
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nonne J. Samplonius
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Karan R. Nandpersad
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
13
|
Abstract
AbstractNanoporous solids, including microporous, mesoporous and hierarchically structured porous materials, are of scientific and technological interest because of their high surface-to-volume ratio and ability to impose shape- and size-selectivity on molecules diffusing through them. Enormous efforts have been put in the mechanistic understanding of diffusion–reaction relationships of nanoporous solids, with the ultimate goal of developing materials with improved catalytic performance. Single-molecule localization microscopy can be used to explore the pore space via the trajectories of individual molecules. This ensemble-free perspective directly reveals heterogeneities in diffusion and diffusion-related reactivity of individual molecules, which would have been obscured in bulk measurements. In this article, we review developments in the spatial and temporal characterization of nanoporous solids using single-molecule localization microscopy. We illustrate various aspects of this approach, and showcase how it can be used to follow molecular diffusion and reaction behaviors in nanoporous solids.
Collapse
|
14
|
Pinilla-Herrero I, Borfecchia E, Cordero-Lanzac T, Mentzel UV, Joensen F, Lomachenko KA, Bordiga S, Olsbye U, Beato P, Svelle S. Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2020.10.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gerzeliev IM, Temnikova VA, Saitov ZA, Maximov AL. Features of the Isobutane Alkylation with Butylenes on Zeolite Catalysts. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s107042722010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gerzeliev IM, Temnikova VA, Baskhanova MN, Maksimov AL. Alkylation of Isobutane with Butylenes on Catalysts with Various NaX Zeolites in the CaLaHX Form. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s107042722010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
|
18
|
Velthoen MEZ, Lucini Paioni A, Teune IE, Baldus M, Weckhuysen BM. Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility. Chemistry 2020; 26:11995-12009. [PMID: 32125038 PMCID: PMC7539955 DOI: 10.1002/chem.201905867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 01/07/2023]
Abstract
Matrix effects in a fluid catalytic cracking (FCC) catalyst have been studied in terms of structure, accessibility, and acidity. An extensive characterization study into the structural and acidic properties of a FCC catalyst, its individual components (i.e., zeolite H‐Y, binder (boehmite/silica) and kaolin clay), and two model FCC catalyst samples containing only two components (i.e., zeolite‐binder and binder‐clay) was performed at relevant conditions. This allowed the drawing of conclusions about the role of each individual component, describing their mutual physicochemical interactions, establishing structure‐acidity relationships, and determining matrix effects in FCC catalyst materials. This has been made possible by using a wide variety of characterization techniques, including temperature‐programmed desorption of ammonia, infrared spectroscopy in combination with CO as probe molecule, transmission electron microscopy, X‐ray diffraction, Ar physisorption, and advanced nuclear magnetic resonance. By doing so it was, for example, revealed that a freshly prepared spray‐dried FCC catalyst appears as a physical mixture of its individual components, but under typical riser reactor conditions, the interaction between zeolite H‐Y and binder material is significant and mobile aluminum migrates and inserts from the binder into the defects of the zeolite framework, thereby creating additional Brønsted acid sites and restoring the framework structure.
Collapse
Affiliation(s)
- Marjolein E Z Velthoen
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Alessandra Lucini Paioni
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Iris E Teune
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
19
|
Fernandez S, Ostraat ML, Zhang K. Toward rational design of hierarchical beta zeolites: An overview and beyond. AIChE J 2020. [DOI: 10.1002/aic.16943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sergio Fernandez
- Aramco Research Center—BostonAramco Services Company Cambridge Massachusetts
| | - Michele L. Ostraat
- Aramco Research Center—BostonAramco Services Company Cambridge Massachusetts
| | - Ke Zhang
- Aramco Research Center—BostonAramco Services Company Cambridge Massachusetts
| |
Collapse
|
20
|
Piryutko LV, Parfenov MV, Lysikov AI, Gerasimov EY. Influence of Type of Organic Template on the Properties of Zeolites ZSM-23. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427219120061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. MATERIALS 2020; 13:ma13020357. [PMID: 31940940 PMCID: PMC7014437 DOI: 10.3390/ma13020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/17/2022]
Abstract
The paper aimed at assessing the feasibility of using natural zeolites as a mineral filler substitute for asphalt mixtures produced at around 120 °C temperatures with a water foamed binder and compacted at 100 °C. The tests utilized the AC 16 asphalt concrete mixture intended for the binder and base course with the mineral filler fraction amounting to 4% by wt. comprising limestone dust and zeolites (when added). A reference hot mix and warm mix with foamed bitumen were compared to two mixes with zeolites, with one containing 0.4% of a water-modified (20% moisture content) zeolite and the second containing 1.0% of natural air-dried zeolite. The investigations included: assessment of campactability using a gyratory compactor, air void content, indirect tensile strength before and after conditioning with one freeze-thaw cycle, and the resulting resistance to moisture and frost damage. The mixtures with zeolites exhibited decreased compactability when compared to reference mixes, which the Marshall samples confirmed. The mechanical properties have also deteriorated in zeolite-bearing mixtures, which was partially accounted to the decreased compaction level. It was concluded that the temperature of the mixture production was too low for the zeolite water to significantly improve the compactablity of the asphalt mixture and its mechanical parameters.
Collapse
|
22
|
Shelyapina MG, Krylova EA, Zhukov YM, Zvereva IA, Rodriguez-Iznaga I, Petranovskii V, Fuentes-Moyado S. Comprehensive Analysis of the Copper Exchange Implemented in Ammonia and Protonated Forms of Mordenite Using Microwave and Conventional Methods. Molecules 2019; 24:molecules24234216. [PMID: 31757044 PMCID: PMC6930670 DOI: 10.3390/molecules24234216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022] Open
Abstract
This article presents the results of a comprehensive study of copper-exchanged mordenite samples prepared from its ammonia and protonated forms (Si/Al = 10) using two different ion exchange methods: conventional and microwave (MW)-assisted. The protonated H-MOR-10 sample was obtained by calcination of commercial NH4MOR-10; in this case, a slight degradation of the mordenite framework was observed, but the resulting defects were partially restored after the first ion-exchange procedure of protons for copper ions. The level of copper exchange in the studied materials was found to be limited to 70%. Regardless of the exchange procedure, the replacement of ammonium or proton ions with copper led to a linear increase in the a/b ratio of cell parameters in accordance with an increase in the level of copper exchange, which means that all Cu2+ cations are ion-exchangeable and enter the main mordenite channel. Thermal analysis indicated a correlation between the replacement of various ammonium and hydroxyl groups by copper ions during the exchange treatment and their dehydroxylation energy during thermal decomposition. As a conclusion: MW-assisted treatment proved itself as an efficacious method for the synthesis of copper-exchanged mordenites, which not only significantly reduces preparation time but leads to a systematically higher copper exchange level.
Collapse
Affiliation(s)
- Marina G. Shelyapina
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (E.A.K.); (Y.M.Z.); (I.A.Z.)
- Correspondence: ; Tel.: +7-(812)-428-4469
| | - Ekaterina A. Krylova
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (E.A.K.); (Y.M.Z.); (I.A.Z.)
| | - Yurii M. Zhukov
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (E.A.K.); (Y.M.Z.); (I.A.Z.)
| | - Irina A. Zvereva
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; (E.A.K.); (Y.M.Z.); (I.A.Z.)
| | - Inocente Rodriguez-Iznaga
- Instituto de Ciencias y Tecnología de Materiales (IMRE)–Universidad de La Habana, Zapata y G, s/n La Habana 10400, Cuba;
| | - Vitalii Petranovskii
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mexico, Ensenada 22860, Baja California, Mexico; (V.P.); (S.F.-M.)
| | - Sergio Fuentes-Moyado
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autonoma de Mexico, Ensenada 22860, Baja California, Mexico; (V.P.); (S.F.-M.)
| |
Collapse
|
23
|
Mendes PS, Silva JM, Ribeiro MF, Bouchy C, Daudin A. Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Veselý O, Pang H, Vornholt SM, Mazur M, Yu J, Opanasenko M, Eliášová P. Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Vitillo JG, Bhan A, Cramer CJ, Lu CC, Gagliardi L. Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04813] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jenny G. Vitillo
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Blay V, Louis B, Miravalles R, Yokoi T, Peccatiello KA, Clough M, Yilmaz B. Engineering Zeolites for Catalytic Cracking to Light Olefins. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02011] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vincent Blay
- Departamento
de Ingeniería Química, Universitat de València, Av.
de la Universitat, s/n, 46100 Burjassot, Spain
| | - Benoît Louis
- Laboratoire
de Synthèse Réactivité Organiques et Catalyse,
Institut de Chimie, UMR 7177 CNRS, Université de Strasbourg, 1 rue
Blaise Pascal, 67000 CEDEX Strasbourg, France
| | - Rubén Miravalles
- Centro de Tecnología Repsol, C/Agustín de Betancourt s/n, 28935 Móstoles, Spain
| | - Toshiyuki Yokoi
- Institute
of Innovative Research, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Ken A. Peccatiello
- Peccatiello
Engineering,
Catalytic Cracking Solutions, LLC, Moriarity, New Mexico 87035, United States
| | - Melissa Clough
- BASF Refinery Catalysts, 11750 Katy Fwy. Ste. 120, Houston, Texas 77079, United States
| | - Bilge Yilmaz
- BASF Refinery Catalysts, 25 Middlesex-Essex
Tpk., Iselin, New Jersey 08830, United States
| |
Collapse
|
27
|
Borodina E, Sharbini Harun Kamaluddin H, Meirer F, Mokhtar M, Asiri AM, Al-Thabaiti SA, Basahel SN, Ruiz-Martinez J, Weckhuysen BM. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34. ACS Catal 2017; 7:5268-5281. [PMID: 28824823 PMCID: PMC5557614 DOI: 10.1021/acscatal.7b01497] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/21/2017] [Indexed: 11/29/2022]
Abstract
The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV-vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward propylene increases in the temperature range of 573-623 K, while it decreases in the temperature range of 623-773 K. The high degree of incorporation of olefins, mainly propylene, into the hydrocarbon pool affects the product selectivity at lower reaction temperatures. The nature and dynamics of the active and deactivating hydrocarbon species with increasing reaction temperature were revealed by a non-negative matrix factorization of the time-resolved operando UV-vis diffuse reflectance spectra. The active hydrocarbon pool species consist of mainly highly methylated benzene carbocations at temperatures between 573 and 598 K, of both highly methylated benzene carbocations and methylated naphthalene carbocations at 623 K, and of only methylated naphthalene carbocations at temperatures between 673 and 773 K. The operando spectroscopy results suggest that the nature of the active species also influences the olefin selectivity. In fact, monoenylic and highly methylated benzene carbocations are more selective to the formation of propylene, whereas the formation of the group of low methylated benzene carbocations and methylated naphthalene carbocations at higher reaction temperatures (i.e., 673 and 773 K) favors the formation of ethylene. At reaction temperatures between 573 and 623 K, catalyst deactivation is caused by the gradual filling of the micropores with methylated naphthalene carbocations, while between 623 and 773 K the formation of neutral poly aromatics and phenanthrene/anthracene carbocations are mainly responsible for catalyst deactivation, their respective contribution increasing with increasing reaction temperature. Methanol pulse experiments at different temperatures demonstrate the dynamics between methylated benzene and methylated naphthalene carbocations. It was found that methylated naphthalene carbocations species are deactivating and block the micropores at low reaction temperatures, while acting as the active species at higher reaction temperatures, although they give rise to the formation of extended hydrocarbon deposits.
Collapse
Affiliation(s)
- E. Borodina
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - H. Sharbini Harun Kamaluddin
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - F. Meirer
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - M. Mokhtar
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - A. M. Asiri
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - S. A. Al-Thabaiti
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - S. N. Basahel
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - J. Ruiz-Martinez
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - B. M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
28
|
Schwach P, Pan X, Bao X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem Rev 2017; 117:8497-8520. [DOI: 10.1021/acs.chemrev.6b00715] [Citation(s) in RCA: 656] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Schwach
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xiulian Pan
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Xinhe Bao
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Chemistry
Department, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
29
|
Mendes PSF, Silva JM, Ribeiro MF, Duchêne P, Daudin A, Bouchy C. Quantification of metal-acid balance in hydroisomerization catalysts: A step further toward catalyst design. AIChE J 2017. [DOI: 10.1002/aic.15613] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Pedro S. F. Mendes
- Centro de Química Estrutural; Instituto Superior Técnico, Universidade de Lisboa; Av. Rovisco Pais Lisboa 1049-001 Portugal
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3; Solaize 69360 France
| | - João M. Silva
- Centro de Química Estrutural; Instituto Superior Técnico, Universidade de Lisboa; Av. Rovisco Pais Lisboa 1049-001 Portugal
- ADEQ, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa; R. Cons. Emídio Navarro Lisboa 1959-007 Portugal
| | - M. Filipa Ribeiro
- Centro de Química Estrutural; Instituto Superior Técnico, Universidade de Lisboa; Av. Rovisco Pais Lisboa 1049-001 Portugal
| | - Pascal Duchêne
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3; Solaize 69360 France
| | - Antoine Daudin
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3; Solaize 69360 France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-point de l'échangeur de Solaize, BP 3; Solaize 69360 France
| |
Collapse
|
30
|
Ristanović Z, Kubarev AV, Hofkens J, Roeffaers MBJ, Weckhuysen BM. Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal. J Am Chem Soc 2016; 138:13586-13596. [PMID: 27709925 PMCID: PMC5089756 DOI: 10.1021/jacs.6b06083] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/27/2022]
Abstract
Visualizing proton-transfer processes at the nanoscale is essential for understanding the reactivity of zeolite-based catalyst materials. In this work, the Brønsted-acid-catalyzed oligomerization of styrene derivatives was used for the first time as a single molecule probe reaction to study the reactivity of individual zeolite H-ZSM-5 crystals in different zeolite framework, reactant and solvent environments. This was accomplished via the formation of distinct dimeric and trimeric fluorescent carbocations, characterized by their different photostability, as detected by single molecule fluorescence microscopy. The oligomerization kinetics turned out to be very sensitive to the reaction conditions and the presence of the local structural defects in zeolite H-ZSM-5 crystals. The remarkably photostable trimeric carbocations were found to be formed predominantly near defect-rich crystalline regions. This spectroscopic marker offers clear prospects for nanoscale quality control of zeolite-based materials. Interestingly, replacing n-heptane with 1-butanol as a solvent led to a reactivity decrease of several orders and shorter survival times of fluorescent products due to the strong chemisorption of 1-butanol onto the Brønsted acid sites. A similar effect was achieved by changing the electrophilic character of the para-substituent of the styrene moiety. Based on the measured turnover rates we have established a quantitative, single turnover approach to evaluate substituent and solvent effects on the reactivity of individual zeolite H-ZSM-5 crystals.
Collapse
Affiliation(s)
- Zoran Ristanović
- Inorganic
Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Alexey V. Kubarev
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Maarten B. J. Roeffaers
- Centre for Surface Chemistry and
Catalysis and Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - Bert M. Weckhuysen
- Inorganic
Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
31
|
de Winter DA, Meirer F, Weckhuysen BM. FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle. ACS Catal 2016; 6:3158-3167. [PMID: 27453799 PMCID: PMC4954740 DOI: 10.1021/acscatal.6b00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/02/2016] [Indexed: 11/30/2022]
Abstract
The overall performance of a catalyst particle strongly depends on the ability of mass transport through its pore space. Characterizing the three-dimensional structure of the macro- and mesopore space of a catalyst particle and establishing a correlation with transport efficiency is an essential step toward designing highly effective catalyst particles. In this work, a generally applicable workflow is presented to characterize the transport efficiency of individual catalyst particles. The developed workflow involves a multiscale characterization approach making use of a focused ion beam-scanning electron microscope (FIB-SEM). SEM imaging is performed on cross sections of 10.000 μm2, visualizing a set of catalyst particles, while FIB-SEM tomography visualized the pore space of a large number of 8 μm3 cubes (subvolumes) of individual catalyst particles. Geometrical parameters (porosity, pore connectivity, and heterogeneity) of the material were used to generate large numbers of virtual 3D volumes resembling the sample's pore space characteristics, while being suitable for computationally demanding transport simulations. The transport ability, defined as the ratio of unhindered flow over hindered flow, is then determined via transport simulations through the virtual volumes. The simulation results are used as input for an upscaling routine based on an analogy with electrical networks, taking into account the spatial heterogeneity of the pore space over greater length scales. This novel approach is demonstrated for two distinct types of industrially manufactured fluid catalytic cracking (FCC) particles with zeolite Y as the active cracking component. Differences in physicochemical and catalytic properties were found to relate to differences in heterogeneities in the spatial porosity distribution. In addition to the characterization of existing FCC particles, our method of correlating pore space with transport efficiency does also allow for an up-front evaluation of the transport efficiency of new designs of FCC catalyst particles.
Collapse
Affiliation(s)
- D. A.
Matthijs de Winter
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|