1
|
Xu Y, Montgomery J. Synthesis of 2-Amino-2-deoxy Sugars via Boron-Catalyzed Coupling of Glycosyl Fluorides and Silyl Ether Acceptors. Org Lett 2024; 26:7474-7478. [PMID: 39185923 PMCID: PMC11407749 DOI: 10.1021/acs.orglett.4c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although aminosugars are important components in a variety of bioactive molecules, their stereoselective formation is made challenging by the Lewis basic nature of amino substituents. Additionally, the use of N-acyl protecting groups is often problematic due to the competing formation of oxazolines during the glycosylation of 2-aminosugar derivatives. Herein, we report a boron-catalyzed strategy utilizing silyl ether glycosyl acceptors and 2-aminosugar donors that employs the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group for the C2 amino functionality in glycosyl fluorides. This modification allows for operationally simple room-temperature glycosylations and features a rapid reaction profile that addresses some of the limitations in the synthesis of 2-amino-2-deoxy sugar-containing glycosides. Tailoring the order of reactivity of the silyl acceptors enables one-pot iterative glycosylations, thus streamlining the synthesis of complex oligosaccharides while allowing fewer intermediates and purification steps.
Collapse
Affiliation(s)
- Yishu Xu
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Pertel SS, Kakayan ES, Zinin AI, Kononov LO. Synthesis and study of the glycosyl-donor properties of 2-(2,2,2-trichloroethoxy)-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-galactopyrano)-[2,1-d]-2-oxazoline. Carbohydr Res 2024; 536:109040. [PMID: 38232542 DOI: 10.1016/j.carres.2024.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
A synthesis of 2-(2,2,2-trichloroethoxy)-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-galactopyrano)-[2,1-d]-2-oxazoline - a previously unknown 2-alkoxy glyco-[2,1-d]-2-oxazoline derivative with d-galacto configuration was carried out. Glycosylating activity of the obtained galactooxazoline has been studied and it has been shown that in the presence of a weak protic acid, such as sym-collidinium triflate, this substance exhibits properties of a reactive and 1,2-trans-stereoselective glycosyl donor. The homopolymerization reaction of oxazoline derivatives of sugars has been found to proceed under the same conditions, leading to the formation of pseudo-oligosaccharide products. It has been found that this undesirable side reaction could be suppressed by changing the acid catalyst concentration, resulting in the development of efficient methods for the synthesis of glycoside and oligosaccharide derivatives of β-d-galactosamine using the synthesized 2-(2,2,2-trichloroethoxy)-2-oxazoline glycosyl donor under very mild conditions.
Collapse
Affiliation(s)
- Sergey S Pertel
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation.
| | - Elena S Kakayan
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991, Moscow, Russian Federation
| |
Collapse
|
3
|
Li D, Wang J, Wang X, Qiao Z, Wang L, Wang P, Song N, Li M. β-Glycosylations with 2-Deoxy-2-(2,4-dinitrobenzenesulfonyl)-amino-glucosyl/galactosyl Selenoglycosides: Assembly of Partially N-Acetylated β-(1 → 6)-Oligoglucosaminosides. J Org Chem 2023; 88:9004-9025. [PMID: 37306475 DOI: 10.1021/acs.joc.3c00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient protocol has been established for β-glycosylations with 2-deoxy-2-(2,4-dinitrobenzenesulfonyl)amino (2dDNsNH)-glucopyranosyl/galactopyranosyl selenoglycosides using PhSeCl/AgOTf as an activating system. The reaction features highly β-selective glycosylation with a wide range of alcohol acceptors that are either sterically hindered or poorly nucleophilic. Thioglycoside- and selenoglycoside-based alcohols prove to be viable nucleophiles, opening up new opportunities for one-pot construction of oligosaccharides. The power of this approach is highlighted by the efficient assembly of tri-, hexa-, and nonasaccharides composed of β-(1 → 6)-glucosaminosyl residues based on one-pot preparation of a triglucosaminosyl thioglycoside with DNs, phthaloyl, and 2,2,2-trichloroethoxycarbonyl as the protecting groups of amino groups. These glycans are potential antigens for developing glycoconjugate vaccines against microbial infections.
Collapse
Affiliation(s)
- Dongwei Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhi Qiao
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lingjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Pertel SS, Kakayan ES, Seryi SA, Zinin AI, Kononov LO. New method for the synthesis of 2-acylamino glycals. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
6
|
Pertel SS, Seryi SA, Kakayan ES, Zinin AI, Kononov LO. New methods for the synthesis of 2-(2,2,2-trichloroethoxy)-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline and its use for stereo-, chemo- and regioselective glycosylation. Carbohydr Res 2022; 520:108633. [PMID: 35868150 DOI: 10.1016/j.carres.2022.108633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
New methods for the synthesis of the title oxazoline 2 from the corresponding 2-deoxy-2-(2,2,2- trichloroethoxycarbonylamino)glucosyl bromide were developed. The target 2-(2,2,2-trichloroethoxy) gluco-[2,1-d]-2-oxazoline 2 can be synthesized under conditions of halide ion catalysis, using triethylamine as a base. The synthesized 2-(2,2,2-trichloroethoxy)-2-oxazoline glycosyl donor was used for stereo-, regio-, and chemoselective glycosylation reactions under extremely mild conditions. The undesirable side reaction of intermolecular aglycone transfer between an ethyl thioglycoside glycosyl acceptor and the 2-(2,2,2-trichloroethoxy)-2-oxazoline glycosyl donor occurred to a relatively small extent. Regio-, and chemoselectivity of the disaccharide synthesis with the oxazoline glycosyl donor depended on the reaction conditions.
Collapse
Affiliation(s)
- Sergey S Pertel
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation.
| | - Sergey A Seryi
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| | - Elena S Kakayan
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, 119991, Moscow, Russian Federation
| |
Collapse
|
7
|
Zhang G, Yang K, Wang L, Cheng Y, Liu C. Facile chemoenzymatic synthesis of unmodified anticoagulant ultra-low molecular weight heparin. Org Biomol Chem 2022; 20:8323-8330. [DOI: 10.1039/d2ob01221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A chemoenzymatic approach, mimicking the biosynthetic pathway of heparin and heparan sulfate (HS), has been well developed to prepare a series of structurally well-defined heparin oligosaccharides with excellent anticoagulant activity in good overall yields.
Collapse
Affiliation(s)
- Guijiao Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Kaihua Yang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Lin Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Yanzhen Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, PR China
| |
Collapse
|
8
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
9
|
Pertel SS, Zinin AI, Seryi SA, Kakayan ES. The study of the acid-catalyzed reaction between 2-methyl and 2-(2,2,2-trichloroethoxy) gluco-[2,1-d]-2-oxazolines. Synthesis of macrocyclic pseudo-tetrasaccharide derivative of d-glucosamine. Carbohydr Res 2020; 499:108230. [PMID: 33429169 DOI: 10.1016/j.carres.2020.108230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/26/2022]
Abstract
The formation of macrocyclic pseudo-tetrasaccharide derivative of d-glucosamine as a result of the acid-catalyzed reaction between 2-methyl- and 2-(2,2,2-trichloroethoxy)-substituted oxazoline derivatives of sugars was discovered. The structure of the obtained product was determined using NMR spectroscopy and mass spectrometry. An explanation of the obtained results based on the mechanism of the reaction of electrophilic polymerization of 2-substituted glyco-[2,1-d]-2-oxazolines and the principle of hard and soft acids and bases (HSAB) was proposed.
Collapse
Affiliation(s)
- Sergey S Pertel
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation.
| | - Alexander I Zinin
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 47, 119991, Moscow, Russian Federation
| | - Sergey A Seryi
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| | - Elena S Kakayan
- V.I. Vernadsky Crimean Federal University, Vernadsky Ave., 4, 295007, Simferopol, Russian Federation
| |
Collapse
|
10
|
Beau JM, Boyer FD, Norsikian S, Urban D, Vauzeilles B, Xolin A. Glycosylation: The Direct Synthesis of 2-Acetamido-2-Deoxy-Sugar Glycosides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jean-Marie Beau
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Institut Jean-Pierre Bourgin, INRA; AgroParisTech, CNRS; Université Paris-Saclay; 78000 Versailles France
| | - Stéphanie Norsikian
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| | - Dominique Urban
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
- Laboratoire de Synthèse de Biomolécules; Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ. Paris-Sud, CNRS, Université Paris-Saclay; 91405 Orsay France
| | - Amandine Xolin
- Institut de Chimie des Substances Naturelles; CNRS UPR2301; Univ. Paris-Sud, Université Paris-Saclay; 1 av. de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
11
|
Szeleszczuk Ł, Gubica T, Zimniak A, Pisklak DM, Dąbrowska K, Cyrański MK, Kańska M. The potential for the indirect crystal structure verification of methyl glycosides based on acetates’ parent structures: GIPAW and solid-state NMR approaches. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|