1
|
Li Z, Li J, Dai S, Su X, Ren M, He S, Guo Q, Liu F. Effects of Stress on Biological Characteristics and Metabolism of Periodontal Ligament Stem Cells of Deciduous Teeth. Int Dent J 2024:S0020-6539(24)01498-9. [PMID: 39370340 DOI: 10.1016/j.identj.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
INTRODUCTION AND AIMS Periodontal ligament stem cells (PDLSCs) from deciduous teeth (DePDLSCs) can perceive and respond to mechanical signals upon exposure to various environments. The effects of mechanical stress on the biological characteristics and metabolism of DePDLSCs were investigated using in vitro stress loading. METHODS DePDLSCs were subjected to mechanical stresses of different strengths. Cell proliferation, expression of osteogenic/osteoclastic factors, apoptosis, and oxidative stress levels were evaluated using CCK-8 assays, alkaline phosphatase staining, real-time PCR, flow cytometry, and malondialdehyde and superoxide dismutase assays. Liquid chromatography-mass spectrometry was used to perform nontargeted metabolomic detection and analysis. RESULTS Under stresses of 75 and 150 kPa, the expression of osteogenesis-related factors OPG, ALP, and RUNX2 decreased, and the ratio of RANKL/OPG significantly increased. A pressure of 150 kPa induced oxidative stress and caused a significant increase in cell apoptosis. Among the differential metabolites screened from the 150 kPa group, spermine, spermidine, ceramide, phosphatidylethanolamine, lysophosphatidylethanolamine, linoleic acid, and docosatrienoic acid were the most significantly upregulated. The metabolites screened from the 75 kPa group were mainly related to glycerophospholipid and sphingolipid metabolism, oxidative phosphorylation, and mineral absorption, which were common pathways affected in both experimental groups. CONCLUSION A certain degree of mechanical stress can inhibit the proliferative activity and osteogenic differentiation of DePDLSCs, enhance their osteoclast-inducing ability, and cause elevated levels of cell apoptosis and oxidative stress. The metabolic expression profile of DePDLSCs changed significantly under stress. Understanding changes in cellular activity and metabolic reactions may provide an experimental basis for elucidating the role of mechanical stress in root resorption and periodontal tissue remodelling of deciduous teeth. CLINICAL RELEVANCE Mechanical stress may affect periodontal tissue remodeling and root resorption of DePDLSc.
Collapse
Affiliation(s)
- Zhengyang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jinyi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Shanshan Dai
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xuelong Su
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meiyue Ren
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Shuyang He
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR China
| | - Qingyu Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
4
|
Zou Y, Guo S, Liao Y, Chen W, Chen Z, Chen J, Wen L, Xie X. Ceramide metabolism-related prognostic signature and immunosuppressive function of ST3GAL1 in osteosarcoma. Transl Oncol 2024; 40:101840. [PMID: 38029509 PMCID: PMC10698579 DOI: 10.1016/j.tranon.2023.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor with elevated disability and mortality rates in children and adolescents and the therapeutic effect for osteosarcoma has remained stagnant in the past 30 years. Emerging evidence has shown ceramide metabolism plays a vital role in tumor progression, but its mechanisms in osteosarcoma progression remain unknown. Through consensus clustering and LASSO regression analysis based on the osteosarcoma cohorts from TARGET database, we constructed a ceramide metabolism-related prognostic signature including ten genes for osteosarcoma, with ST3GAL1 exhibiting the highest hazard ratio. Biological signatures analysis demonstrated that ceramide metabolism was associated with immune-related pathways, immune cell infiltration and the expression of immune checkpoint genes. Single-cell profiling revealed that ceramide metabolism was enriched in myeloid, osteoblast and mesenchymal cells. The interaction between TAMs and CD8+ T cells played an essential role in osteosarcoma. ST3GAL1 regulated the SPP1-CD44 interaction between TAMs and CD8+ T cells and IL-10 secretion in TAMs through α2,3 sialic acid receptors, which inhibited CD8+ T cell function. IHC analysis showed that ST3GAL1 expression correlated with the prognosis of osteosarcoma patients. Co-culture assay revealed that upregulation of ST3GAL1 in tumor cells regulated the differentiation of TAMs and cytokine secretion. Collectively, our findings demonstrated that ceramide metabolism was associated with clinical outcome in osteosarcoma. ST3GAL1 facilitated tumor progression through regulating tumor immune microenvironment, providing a feasible therapeutic approach for patients with osteosarcoma.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Siyao Guo
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Lili Wen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Velazquez FN, Stith JL, Zhang L, Allam AM, Haley J, Obeid LM, Snider AJ, Hannun YA. Targeting sphingosine kinase 1 in p53KO thymic lymphoma. FASEB J 2023; 37:e23247. [PMID: 37800872 PMCID: PMC11740227 DOI: 10.1096/fj.202301417r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Sphingosine kinase 1 (SK1) is a key sphingolipid enzyme that is upregulated in several types of cancer, including lymphoma which is a heterogenous group of malignancies. Treatment for lymphoma has improved significantly by the introduction of new therapies; however, subtypes with tumor protein P53 (p53) mutations or deletion have poor prognosis, making it critical to explore new therapeutic strategies in this context. SK1 has been proposed as a therapeutic target in different types of cancer; however, the effect of targeting SK1 in cancers with p53 deletion has not been evaluated yet. Previous work from our group suggests that loss of SK1 is a key event in mediating the tumor suppressive effect of p53. Employing both genetic and pharmacological approaches to inhibit SK1 function in Trp53KO mice, we show that targeting SK1 decreases tumor growth of established p53KO thymic lymphoma. Inducible deletion of Sphk1 or its pharmacological inhibition drive increased cell death in tumors which is accompanied by selective accumulation of sphingosine levels. These results demonstrate the relevance of SK1 in the growth and maintenance of lymphoma in the absence of p53 function, positioning this enzyme as a potential therapeutic target for the treatment of tumors that lack functional p53.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Amira M Allam
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - John Haley
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Chen X, Li YX, Cao X, Qiang MY, Liang CX, Ke LR, Cai ZC, Huang YY, Zhan ZJ, Zhou JY, Deng Y, Zhang LL, Huang HY, Li X, Mei J, Xie GT, Guo X, Lv X. Widely targeted quantitative lipidomics and prognostic model reveal plasma lipid predictors for nasopharyngeal carcinoma. Lipids Health Dis 2023; 22:81. [PMID: 37365637 DOI: 10.1186/s12944-023-01830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism is closely associated with cancer progression. The study aimed to establish a prognostic model to predict distant metastasis-free survival (DMFS) in patients with nasopharyngeal carcinoma (NPC), based on lipidomics. METHODS The plasma lipid profiles of 179 patients with locoregionally advanced NPC (LANPC) were measured and quantified using widely targeted quantitative lipidomics. Then, patients were randomly split into the training (125 patients, 69.8%) and validation (54 patients, 30.2%) sets. To identify distant metastasis-associated lipids, univariate Cox regression was applied to the training set (P < 0.05). A deep survival method called DeepSurv was employed to develop a proposed model based on significant lipid species (P < 0.01) and clinical biomarkers to predict DMFS. Concordance index and receiver operating curve analyses were performed to assess model effectiveness. The study also explored the potential role of lipid alterations in the prognosis of NPC. RESULTS Forty lipids were recognized as distant metastasis-associated (P < 0.05) by univariate Cox regression. The concordance indices of the proposed model were 0.764 (95% confidence interval (CI), 0.682-0.846) and 0.760 (95% CI, 0.649-0.871) in the training and validation sets, respectively. High-risk patients had poorer 5-year DMFS compared with low-risk patients (Hazard ratio, 26.18; 95% CI, 3.52-194.80; P < 0.0001). Moreover, the six lipids were significantly correlated with immunity- and inflammation-associated biomarkers and were mainly enriched in metabolic pathways. CONCLUSIONS Widely targeted quantitative lipidomics reveals plasma lipid predictors for LANPC, the prognostic model based on that demonstrated superior performance in predicting metastasis in LANPC patients.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | | | - Xun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Intensive Care Unit, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Meng-Yun Qiang
- Department of Head and Neck Radiotherapy, the Cancer Hospitalof the, University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences , Hangzhou, 310022, China
| | - Chi-Xiong Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Liang-Ru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhuo-Chen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ying-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ze-Jiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jia-Yu Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Ying Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lu-Lu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hao-Yang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiang Li
- Ping An Technology, Shenzhen, 518000, China
| | - Jing Mei
- Ping An Technology, Shenzhen, 518000, China
| | | | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Dalhat MH, Choudhry H, Khan MI. NAT10, an RNA Cytidine Acetyltransferase, Regulates Ferroptosis in Cancer Cells. Antioxidants (Basel) 2023; 12:antiox12051116. [PMID: 37237981 DOI: 10.3390/antiox12051116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, we reported that N-acetyltransferase 10 (NAT10) regulates fatty acid metabolism through ac4C-dependent RNA modification of key genes in cancer cells. During this work, we noticed ferroptosis as one of the most negatively enriched pathways among other pathways in NAT10-depleted cancer cells. In the current work, we explore the possibility of whether NAT10 acts as an epitranscriptomic regulator of the ferroptosis pathway in cancer cells. Global ac4C levels and expression of NAT10 with other ferroptosis-related genes were assessed via dotblot and RT-qPCR, respectively. Flow cytometry and biochemical analysis were used to assess oxidative stress and ferroptosis features. The ac4C-mediated mRNA stability was conducted using RIP-PCR and mRNA stability assay. Metabolites were profiled using LC-MS/MS. Our results showed significant downregulation in expression of essential genes related to ferroptosis, namely SLC7A11, GCLC, MAP1LC3A, and SLC39A8 in NAT10-depleted cancer cells. Further, we noticed a reduction in cystine uptake and reduced GSH levels, along with elevated ROS, and lipid peroxidation levels in NAT10-depleted cells. Consistently, overproduction of oxPLs, as well as increased mitochondrial depolarization and decreased activities of antioxidant enzymes, support the notion of ferroptosis induction in NAT10-depleted cancer cells. Mechanistically, a reduced ac4C level shortens the half-life of GCLC and SLC7A11 mRNA, resulting in low levels of intracellular cystine and reduced GSH, failing to detoxify ROS, and leading to increased cellular oxPLs, which facilitate ferroptosis induction. Collectively, our findings suggest that NAT10 restrains ferroptosis by stabilizing the SLC7A11 mRNA transcripts in order to avoid oxidative stress that induces oxidation of phospholipids to initiate ferroptosis.
Collapse
Affiliation(s)
- Mahmood Hassan Dalhat
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Xu Y, Pan J, Lin Y, Wu Y, Chen Y, Li H. Ceramide Synthase 1 Inhibits Brain Metastasis of Non-Small Cell Lung Cancer by Interacting with USP14 and Downregulating the PI3K/AKT/mTOR Signaling Pathway. Cancers (Basel) 2023; 15:cancers15071994. [PMID: 37046655 PMCID: PMC10093008 DOI: 10.3390/cancers15071994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Brain metastasis (BM) is common in patients with non-small cell lung cancer (NSCLC) and is associated with a poor prognosis. Ceramide synthase 1 (CERS1) participates in malignancy development, but its potential role in NSCLC BM remains unclear. This study aimed to explore the physiological effects and molecular mechanism of CERS1 in NSCLC BM. CERS1 expression was evaluated in NSCLC tissues and cell lines, and its physiological roles were subsequently explored in vivo and in vitro. Mass spectrometry and co-immunoprecipitation were performed to explore CERS1-interacting proteins. The associated signaling pathways of CERS1 in NSCLC BM were further investigated using bioinformatics analysis and molecular biotechnology. We demonstrated that CERS1 was significantly downregulated in NSCLC cell lines and BM tissues, and its upregulation was associated with better prognoses. In vitro, CERS1 overexpression inhibited cell migration, invasion, and the ability to penetrate the blood-brain barrier. Moreover, CERS1 interacted with ubiquitin-specific protease 14 (USP14) and inhibited BM progression by downregulating the PI3K/AKT/mTOR signaling pathway. Further, CERS1 expression substantially suppressed BM tumor formation in vivo. This study demonstrated that CERS1 plays a suppressor role in NSCLC BM by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway, thereby serving as a novel therapeutic target for NSCLC BM.
Collapse
|
9
|
Che L, Huang J, Lin JX, Xu CY, Wu XM, Du ZB, Wu JS, Lin ZN, Lin YC. Aflatoxin B1 exposure triggers hepatic lipotoxicity via p53 and perilipin 2 interaction-mediated mitochondria-lipid droplet contacts: An in vitro and in vivo assessment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130584. [PMID: 37055989 DOI: 10.1016/j.jhazmat.2022.130584] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins widely found in food contaminants, and its target organ is the liver. It poses a major food security and public health threat worldwide. However, the lipotoxicity mechanism of AFB1 exposure-induced liver injury remains unclear and requires further elucidation. Herein, we investigated the potential hepatic lipotoxicity of AFB1 exposure using in vitro and in vivo models to assess the public health hazards of high dietary AFB1 exposure. We demonstrated that low-dose of AFB1 (1.25 μM for 48 h, about one-fifth of the IC50 in HepG2 and HepaRG cells, IC50 are 5.995 μM and 5.266 μM, respectively) exposure significantly induced hepatic lipotoxicity, including abnormal lipid droplets (LDs) growth, mitochondria-LDs contacts increase, lipophagy disruption, and lipid accumulation. Mechanistically, we showed that AFB1 exposure promoted the mitochondrial p53 (mito-p53) and LDs-associated protein perilipin 2 (PLIN2) interaction-mediated mitochondria-LDs contacts, resulting in lipid accumulation in hepatocytes. Mito-p53-targeted inhibition, knockdown of PLIN2, and rapamycin application efficiently promoted the lysosome-dependent lipophagy and alleviated the hepatic lipotoxicity and liver injury induced by AFB1 exposure. Overall, our study found that mito-p53 and PLIN2 interaction mediates three organelles-mitochondria, LDs, and lysosomal networks to regulate lipid homeostasis in AFB1 exposure-induced hepatotoxicity, revealing how this unique trio of organelles works together and provides a novel insight into the targeted intervention in inter-organelle lipid sensing and trafficking for alleviating hazardous materials-induced hepatic lipotoxicity.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jing Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chi-Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Mou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Weigel C, Maczis MA, Palladino END, Green CD, Maceyka M, Guo C, Wang XY, Dozmorov MG, Milstien S, Spiegel S. Sphingosine Kinase 2 in Stromal Fibroblasts Creates a Hospitable Tumor Microenvironment in Breast Cancer. Cancer Res 2023; 83:553-567. [PMID: 36541910 PMCID: PMC9931683 DOI: 10.1158/0008-5472.can-22-1638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Reciprocal interactions between breast cancer cells and the tumor microenvironment (TME) are important for cancer progression and metastasis. We report here that the deletion or inhibition of sphingosine kinase 2 (SphK2), which produces sphingosine-1-phosphate (S1P), markedly suppresses syngeneic breast tumor growth and lung metastasis in mice by creating a hostile microenvironment for tumor growth and invasion. SphK2 deficiency decreased S1P and concomitantly increased ceramides, including C16-ceramide, in stromal fibroblasts. Ceramide accumulation suppressed activation of cancer-associated fibroblasts (CAF) by upregulating stromal p53, which restrained production of tumor-promoting factors to reprogram the TME and to restrict breast cancer establishment. Ablation of p53 in SphK2-deficient fibroblasts reversed these effects, enabled CAF activation and promoted tumor growth and invasion. These data uncovered a novel role of SphK2 in regulating non-cell-autonomous functions of p53 in stromal fibroblasts and their transition to tumor-promoting CAFs, paving the way for the development of a strategy to target the TME and to enhance therapeutic efficacy. SIGNIFICANCE Sphingosine kinase 2 (SphK2) facilitates the activation of stromal fibroblasts to tumor-promoting cancer-associated fibroblasts by suppressing host p53 activity, revealing SphK2 as a potential target to reprogram the TME.
Collapse
Affiliation(s)
- Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Melissa A. Maczis
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Elisa N. D. Palladino
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mikhail G. Dozmorov
- Departments of Biostatistics and Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
11
|
Liu W, Li J, Zhao R, Lu Y, Huang P. The Uridine diphosphate (UDP)-glycosyltransferases (UGTs) superfamily: the role in tumor cell metabolism. Front Oncol 2023; 12:1088458. [PMID: 36741721 PMCID: PMC9892627 DOI: 10.3389/fonc.2022.1088458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
UDP-glycosyltransferases (UGTs), important enzymes in biotransformation, control the levels and distribution of numerous endogenous signaling molecules and the metabolism of a wide range of endogenous and exogenous chemicals. The UGT superfamily in mammals consists of the UGT1, UGT2, UGT3, and UGT8 families. UGTs are rate-limiting enzymes in the glucuronate pathway, and in tumors, they are either overexpressed or underexpressed. Alterations in their metabolism can affect gluconeogenesis and lipid metabolism pathways, leading to alterations in tumor cell metabolism, which affect cancer development and prognosis. Glucuronidation is the most common mammalian conjugation pathway. Most of its reactions are mainly catalyzed by UGT1A, UGT2A and UGT2B. The body excretes UGT-bound small lipophilic molecules through the bile, urine, or feces. UGTs conjugate a variety of tiny lipophilic molecules to sugars, such as galactose, xylose, acetylglucosamine, glucuronic acid, and glucose, thereby inactivating and making water-soluble substrates, such as carcinogens, medicines, steroids, lipids, fatty acids, and bile acids. This review summarizes the roles of members of the four UGT enzyme families in tumor function, metabolism, and multiple regulatory mechanisms, and its Inhibitors and inducers. The function of UGTs in lipid metabolism, drug metabolism, and hormone metabolism in tumor cells are among the most important topics covered.
Collapse
Affiliation(s)
| | | | | | - Yao Lu
- *Correspondence: Yao Lu, ; Panpan Huang,
| | | |
Collapse
|
12
|
A method for quantifying hepatic and intestinal ceramides on mice by UPLC-MS/MS. Anal Biochem 2023; 661:114982. [PMID: 36375519 DOI: 10.1016/j.ab.2022.114982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Ceramide is one type of sphingolipids, is associated with the occurrence of metabolic diseases, including obesity, diabetes, cardiovascular disease, cancer, and nonalcoholic fatty liver disease. Dihydroceramide, the direct precursors of ceramide, which is converted to ceramide with the dihydroceramide desaturase, is recently regarded as involving in various biological processes and metabolic diseases. The liver and gut ceramide levels are interactional in pathophysiological condition, quantifying hepatic and intestinal ceramide levels become indispensable. The aim of this study is to establish a rapid method for the determination of ceramides including dihydroceramides in liver and small intestinal tissues for researching the mechanisms of ceramide related diseases. METHODS The levels of Cer d18:1/2:0, Cer d18:1/6:0, Cer d18:1/12:0, Cer d18:1/14:0, Cer d18:1/16:0, Cer d18:1/17:0, Cer d18:1/18:0, Cer d18:1/20:0, Cer d18:1/22:0, Cer d18:1/24:1, Cer d18:1/24:0, dHCer d18:0/12:0, dHCer d18:0/14:0, dHCer d18:0/16:0, dHCer d18:0/18:0, dHCer d18:0/24:1 and dHCer d18:0/24:0 in mice liver and small intestine were directly quantified by ultra-high performance liquid chromatography-tandem mass spectrometry after methanol extraction. In detail, liver or small intestine tissues were thoroughly homogenized with methanol. The resultant ceramides were separated on a Waters BEH C18 column using gradient elution within 10 min. Positive electrospray ionization with multiple reaction monitoring was applied to detect. In the end, the levels of ceramides in mice liver and small intestine tissues were quantified by this developed method. RESULTS The limits of detection and quantification of 11 ceramides and 6 dihydroceramides were 0.01-0.5 ng/mL and 0.02-1 ng/mL, respectively, and all detected ceramides had good linearities (R2 > 0.997). The extraction recoveries of ceramides at three levels were within 82.32%-115.24% in the liver and within 83.21%-118.70% in the small intestine. The relative standard deviations of intra- and inter-day precision were all within 15%. The extracting solutions of the liver and small intestine could be stably stored in the autosampler 24 h at 10 °C, the lyophilized liver and small intestine for ceramides quantification could be stably stored at least 1 week at -80 °C. The ceramides and dihydroceramides in normal mice liver and small intestinal tissues analyzed by the developed method indicated that the detected 9 ceramide and 5 dihydroceramides levels were significantly different, in which Cer d18:1/16:0, Cer d18:1/22:0, Cer d18:1/24:1, Cer d18:1/24:0 and dHCer d18:0/24:1 are the main components in the liver, whereas Cer d18:1/16:0 and dHCer d18:0/16:0 accounts for the majority of proportion in the intestinal tissues. CONCLUSION A simple and rapid method for the quantification of 11 ceramides and 6 dihydroceramides in the animal tissues was developed and applied. The compositions of ceramides in two tissues suggested that the compositional features should to be considered when exploring the biomarkers or molecular mechanisms.
Collapse
|
13
|
An R, Yu H, Wang Y, Lu J, Gao Y, Xie X, Zhang J. Integrative analysis of plasma metabolomics and proteomics reveals the metabolic landscape of breast cancer. Cancer Metab 2022; 10:13. [PMID: 35978348 PMCID: PMC9382832 DOI: 10.1186/s40170-022-00289-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most commonly diagnosed cancer. Currently, mammography and breast ultrasonography are the main clinical screening methods for BC. Our study aimed to reveal the specific metabolic profiles of BC patients and explore the specific metabolic signatures in human plasma for BC diagnosis. METHODS This study enrolled 216 participants, including BC patients, benign patients, and healthy controls (HC) and formed two cohorts, one training cohort and one testing cohort. Plasma samples were collected from each participant and subjected to perform nontargeted metabolomics and proteomics. The metabolic signatures for BC diagnosis were identified through machine learning. RESULTS Metabolomics analysis revealed that BC patients showed a significant change of metabolic profiles compared to HC individuals. The alanine, aspartate and glutamate pathways, glutamine and glutamate metabolic pathways, and arginine biosynthesis pathways were the critical biological metabolic pathways in BC. Proteomics identified 29 upregulated and 2 downregulated proteins in BC. Our integrative analysis found that aspartate aminotransferase (GOT1), L-lactate dehydrogenase B chain (LDHB), glutathione synthetase (GSS), and glutathione peroxidase 3 (GPX3) were closely involved in these metabolic pathways. Support vector machine (SVM) demonstrated a predictive model with 47 metabolites, and this model achieved a high accuracy in BC prediction (AUC = 1). Besides, this panel of metabolites also showed a fairly high predictive power in the testing cohort between BC vs HC (AUC = 0.794), and benign vs HC (AUC = 0.879). CONCLUSIONS This study uncovered specific changes in the metabolic and proteomic profiling of breast cancer patients and identified a panel of 47 plasma metabolites, including sphingomyelins, glutamate, and cysteine could be potential diagnostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Rui An
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Jie Lu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Xinyou Xie
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China. .,Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, People's Republic of China.
| |
Collapse
|
14
|
Ke JT, Zhang H, Bu YH, Gan PR, Chen FY, Dong XT, Wang Y, Wu H. Metabonomic analysis of abnormal sphingolipid metabolism in rheumatoid arthritis synovial fibroblasts in hypoxia microenvironment and intervention of geniposide. Front Pharmacol 2022; 13:969408. [PMID: 35935818 PMCID: PMC9353937 DOI: 10.3389/fphar.2022.969408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a joint hypoxia microenvironment. Our previous untargeted metabolomics study found that sphingolipid (SPL) metabolism was abnormal in the joint synovial fluid samples from adjuvant arthritis (AA) rats. Geniposide (GE), an iridoid glycoside component of the dried fruit of Gardenia jasminoides Ellis, is commonly used for RA treatment in many Asian countries. At present, the mechanism of GE in the treatment of RA, especially in the joint hypoxia microenvironment, is not entirely clear from the perspective of SPL metabolism. The purpose of this research was to explore the potential mechanism of abnormal SPL metabolism in RA joint hypoxia microenvironment and the intervention effect of GE, through the untargeted metabolic analysis based on the ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Arthritis index, foot swelling and histopathology were used to assess whether the AA rat model was successfully established. The SPLs extracts collected from AA rats’ synovial tissue, serum and rheumatoid arthritis synovial fibroblasts (RASFs, MH7A cells, hypoxia/normoxia culture) were analyzed by metabolomics and lipdomics approach based on UPLC-Q-TOF/MS, to identify potential biomarkers associated with disorders of GE regulated RA sphingolipid metabolism. As a result, 11 sphingolipid metabolites related to RA were screened and identified. Except for galactosylceramide (d18:1/20:0), GE could recover the change levels of the above 10 sphingolipid biomarkers in varying degrees. Western blotting results showed that the changes in ceramide (Cer) level regulated by GE were related to the down-regulation of acid-sphingomyelinase (A-SMase) expression in synovial tissue of AA rats. To sum up, this research examined the mechanism of GE in the treatment of RA from the perspective of SPL metabolism and provided a new strategy for the screening of biomarkers for clinical diagnosis of RA.
Collapse
Affiliation(s)
- Jiang-Tao Ke
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan-Hong Bu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Pei-Rong Gan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Fang-Yuan Chen
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xin-Tong Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| | - Hong Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| |
Collapse
|
15
|
Li D, Zheng X, Zhang Y, Li X, Chen X, Yin Y, Hu J, Li J, Guo M, Wang X. What Should Be Responsible for Eryptosis in Chronic Kidney Disease? Kidney Blood Press Res 2022; 47:375-390. [PMID: 35114677 DOI: 10.1159/000522133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal anemia is an important complication of chronic kidney disease (CKD). In addition to insufficient secretion of erythropoietin (EPO) and erythropoiesis disorders, the impact of eryptosis on renal anemia demands attention. However, a systemic analysis concerning the pathophysiology of eryptosis has not been expounded. SUMMARY The complicated conditions in CKD patients, including oxidative stress, osmotic stress, metabolic stress, accumulation of uremic toxins, and iron deficiency, affect the normal skeleton structure of red blood cells (RBCs) and disturbs ionic homeostasis, causing phosphatidylserine to translocate to the outer lobules of the RBC membrane that leads to early elimination and/or shortening of the RBC lifespan. Inadequate synthesis of RBCs cannot compensate for their accelerated destruction, thus exacerbating renal anemia. Meanwhile, EPO treatment alone will not reverse renal anemia. A variety of eryptosis inhibitors have so far been found, but evidence of their effectiveness in the treatment of CKD remains to be established. KEY MESSAGES In this review, the pathophysiological processes and factors influencing eryptosis in CKD were elucidated. The aim of this review was to underline the importance of eryptosis in renal anemia and determine some promising research directions or possible therapeutic targets to correct anemia in CKD.
Collapse
Affiliation(s)
- Dongxin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China,
| | - Xujuan Zheng
- Health Science Centre, Shenzhen University, Shenzhen, China
| | - Yunxia Zhang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangling Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xuexun Chen
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, China
| | - Jingwen Hu
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Jialin Li
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Min Guo
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| | - Xiangming Wang
- Department of Nephrology, Clinical Medicine College & Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Pretransplant Systemic Lipidomic Profiles in Allogeneic Stem Cell Transplant Recipients. Cancers (Basel) 2022; 14:cancers14122910. [PMID: 35740576 PMCID: PMC9220974 DOI: 10.3390/cancers14122910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Stem cell transplantation is used in the treatment of aggressive hematological malignancies and consists of initial high-dose and potentially lethal chemotherapy, followed by rescue with the transplantation of hematopoietic stem cells. Transplantation with stem cells from a healthy donor (i.e., allogeneic stem cells) has the strongest anti-cancer effect, but also the highest risk of severe toxicity. Furthermore, the clinical status at the time of transplantation (inflammation, fluid overload) is associated with posttransplant mortality, and immune-mediated acute graft-versus-host disease (GVHD) is a potential lethal complication. Finally, lipid metabolism regulates the proliferation and survival of both malignant hematological cells and immunocompetent cells that cause GVHD. Our study shows that the pretransplant lipid profiles differ between allotransplant recipients and can be used for the subclassification of patients and possibly to identify patients with an increased risk of death due to disease relapse or treatment toxicity. The therapeutic targeting of lipid metabolism should therefore be further explored in these transplant recipients. Abstract Allogeneic stem cell transplantation is used in the treatment of high-risk hematological malignancies. However, this treatment is associated with severe treatment-related morbidity and mortality. The metabolic status of the recipient may be associated with the risk of development of transplant-associated complications such as graft-versus-host disease (GVHD). To better understand the impact of the lipidomic profile of transplant recipients on posttransplant complications, we evaluated the lipid signatures of patients with hematological disease using non-targeted lipidomics. In the present study, we studied pretransplant serum samples derived from 92 consecutive patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS). A total of 960 lipid biochemicals were identified, and the pretransplant lipidomic profiles differed significantly when comparing patients with and without the risk factors: (i) pretransplant inflammation, (ii) early fluid overload, and (iii) patients with and without later steroid-requiring acute GVHD. All three factors, but especially patients with pretransplant inflammation, were associated with decreased levels of several lipid metabolites. Based on the overall concentrations of various lipid subclasses, we identified a patient subset characterized by low lipid levels, increased frequency of MDS patients, signs of inflammation, decreased body mass index, and an increased risk of early non-relapse mortality. Metabolic targeting has been proposed as a possible therapeutic strategy in allotransplant recipients, and our present results suggest that the clinical consequences of therapeutic intervention (e.g., nutritional support) will also differ between patients and depend on the metabolic context.
Collapse
|
17
|
Jie G, Peng S, Cui Z, He C, Feng X, Yang K. Long non-coding RNA TFAP2A-AS1 plays an important role in oral squamous cell carcinoma: research includes bioinformatics analysis and experiments. BMC Oral Health 2022; 22:160. [PMID: 35524329 PMCID: PMC9074241 DOI: 10.1186/s12903-022-02203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common neck and head malignancies, and the prognosis is not good. Studies shown that the long non-coding RNA (lncRNA) TFAP2A-AS1 is involved in the progression of multiple cancers. However, the role of lncRNA TFAP2A-AS1 in OSCC remains unclear. We aimed to explore the functions and expression in OSCC. METHODS The lncRNA profiles for OSCC patients were acquired from the TCGA. Based on these data, the data mining of TFAP2A-AS1 in patients with OSCC were performed. The functions of TFAP2A-AS1 were determined by bioinformatics analysis. The expression and roles in cell growth were tested by RT-qPCR and MTS assay. Cell invasion and migration were tested by wound healing and transwell assays. RESULTS The consequences displayed that TFAP2A-AS1 was upregulated in the TCGA datasets. The expression of TFAP2A-AS1 was higher in OSCC samples. Bioinformatics analysis shown that TFAP2A-AS1 might be associated with the P53 signaling pathway. Cell culture experiments indicated that deficiency of TFAP2A-AS1 inhibited cell growth, invasion, and migration, and overexpression of it could opposite results in SCC-25 cells. CONCLUSION The results suggested that TFAP2A-AS1 was overexpressed in OSCC cells, which could facilitate OSCC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Guo Jie
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - ShiXiong Peng
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - ZiFeng Cui
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - Chen He
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China
| | - XuPo Feng
- Department of Stomatology, Zhao County People's Hospital, No. 1 Yongtong Road, Shijiazhuang, 050000, Hebei Province, China
| | - Kaicheng Yang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei Province, China.
| |
Collapse
|
18
|
Li Y, Nicholson RJ, Summers SA. Ceramide signaling in the gut. Mol Cell Endocrinol 2022; 544:111554. [PMID: 34998898 PMCID: PMC8828712 DOI: 10.1016/j.mce.2022.111554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
Sphingolipids are essential lipid components in the intestinal epithelial cells (IEC) along the intestinal tract. They play crucial roles in maintaining barrier integrity, regulating nutrient absorption, and acting as signaling molecules to regulate regeneration and differentiation of intestinal mucosa (Kurek et al., 2012). Ceramide is the central sphingolipid species and the precursor of all complex sphingolipids and other downstream simple intermediates like sphingosine (SPH), ceramide-1-phosphate (C-1-P), and sphingosine-1-phosphate (S-1-P). It is also a critical signaling molecule regulating numerous physiologic and pathologic processes. This review will summarize the metabolism of ceramides in the gut and their regulation in inflammatory bowel diseases and colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA.
| | - Rebekah J Nicholson
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, 15 North 2030 East, UT, 84112, Salt Lake City, USA
| |
Collapse
|
19
|
Li J, Xu X, Peng X. NDC80 Enhances Cisplatin-resistance in Triple-negative Breast Cancer. Arch Med Res 2022; 53:378-387. [PMID: 35346500 DOI: 10.1016/j.arcmed.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS Chemotherapy is a standard systemic treatment option for triple-negative breast cancer (TNBC). Cisplatin has been used to treat TNBC, but frequently leads to cisplatin resistance in patients. The aim of our study was to investigate cisplatin-resistant mechanism in TNBC. MATERIALS AND METHODS To identify the potential genes and pathways relative to cisplatin resistance, GSE103115 data were analyzed by the Limma package and Gene set enrichment analysis (GSEA). TNBC data from TCGA, GSE76250 and GSE115275 datasets were used to calculate NDC80 expression. Immunohistochemistry detected NDC80 protein expression in TNBC tissues from patients before and after cisplatin treatment. After expose to cisplatin treatment, the viability and proliferation of TNBC cells were measured by CCK-8 and colony formation assays, respectively. RESULTS NDC80 was regarded as a cisplatin-resistant gene because after cisplatin treatment NDC80 was downregulated in cisplatin-sensitive cells but was upregulated in cisplatin-resistant cells. NDC80 was over-expressed in TNBC tissues compared to normal tissues. Furthermore, NDC80 expression in TNBC patients was increased after cisplatin treatment. Cisplatin-sensitive TNBC patients showed lower NDC80 expression than cisplatin-resistant patients. Additionally, NDC80 expression was correlated with clinical stages, tumor size and chemotherapy of TNBC patients. Moreover, NDC80 overexpression promoted the viability and proliferation of TNBC cells and enhanced the cells resistance to cisplatin. The potential pathways relative to cisplatin resistance were obtained, such as p53 signaling pathway and Oxidative phosphorylation. CONCLUSION These findings provide new insights for understanding the mechanism of cisplatin resistance in TNBC, and NDC80 may be a potential therapeutic target for TNBC treatment.
Collapse
|
20
|
Gu H, Chen S, Zhang M, Wen Y, Li B. Differences in the expression profiles of lncRNAs and mRNAs in partially injured anterior cruciate ligament and medial collateral ligament of rabbits. PeerJ 2022; 10:e12781. [PMID: 35070509 PMCID: PMC8760859 DOI: 10.7717/peerj.12781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), as a novel regulatory factor, are considered to play a vital role in various biological processes and diseases. However, the overall expression profile and biological functions of lncRNAs in the partially injured anterior cruciate ligament (ACL) and medial collateral ligament (MCL) have not been clearly explored. Partially injured models of ACL and MCL were established in 3-month-old healthy male New Zealand white rabbits. Expression of lncRNAs and mRNAs in the ligament tissue was detected by high-throughput sequencing technology, and biological functions of differentially expressed RNAs were evaluated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Validation of several differentially expressed RNAs was performed using quantitative real-time PCR (qRT-PCR). Protein-protein interaction (PPI) analysis and competitive endogenous RNA (ceRNA) prediction were used to identify interactions among hub genes and the interaction among lncRNAs, miRNAs, and mRNAs. The results showed that compared with the normal group, there were 267 mRNAs and 329 lncRNAs differentially expressed in ACL and 726 mRNAs and 609 lncRNAs in MCL in the injured group. Compared with MCL, 420 mRNAs and 470 lncRNAs were differentially expressed in ACL in the normal group; 162 mRNAs and 205 lncRNAs were differentially expressed in ACL in the injured group. Several important lncRNAs and genes were identified, namely, COL7A1, LIF, FGFR2, EPHA2, CSF1, MMP2, MMP9, SOX5, LOX, MSTRG.1737.1, MSTRG.26038.25, MSTRG.20209.5, MSTRG.22764.1, and MSTRG.18113.1, which are closely related to inflammatory response, tissue damage repair, cell proliferation, differentiation, migration, and apoptosis. Further study of the functions of these genes may help to better understand the specific molecular mechanisms underlying the occurrence of endogenous repair disorders in ACL, which may provide new ideas for further exploration of effective means to promote endogenous repair of ACL injury.
Collapse
Affiliation(s)
- Huining Gu
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Siyuan Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Mingzheng Zhang
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yu Wen
- Department of Histology and Embryology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Bin Li
- Department of Joint Surgery and Sports Medicine, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Elhady SS, Habib ES, Abdelhameed RFA, Goda MS, Hazem RM, Mehanna ET, Helal MA, Hosny KM, Diri RM, Hassanean HA, Ibrahim AK, Eltamany EE, Abdelmohsen UR, Ahmed SA. Anticancer Effects of New Ceramides Isolated from the Red Sea Red Algae Hypnea musciformis in a Model of Ehrlich Ascites Carcinoma: LC-HRMS Analysis Profile and Molecular Modeling. Mar Drugs 2022; 20:md20010063. [PMID: 35049918 PMCID: PMC8778197 DOI: 10.3390/md20010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Different classes of phytochemicals were previously isolated from the Red Sea algae Hypnea musciformis as sterols, ketosteroids, fatty acids, and terpenoids. Herein, we report the isolation of three fatty acids-docosanoic acid 4, hexadecenoic acid 5, and alpha hydroxy octadecanoic acid 6-as well as three ceramides-A (1), B (2), and C (3)-with 9-methyl-sphinga-4,8-dienes and phytosphingosine bases. Additionally, different phytochemicals were determined using the liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (LC-ESI-HRMS) technique. Ceramides A (1) and B (2) exhibited promising in vitro cytotoxic activity against the human breast adenocarcinoma (MCF-7) cell line when compared with doxorubicin as a positive control. Further in vivo study and biochemical estimation in a mouse model of Ehrlich ascites carcinoma (EAC) revealed that both ceramides A (1) and B (2) at doses of 1 and 2 mg/kg, respectively, significantly decreased the tumor size in mice inoculated with EAC cells. The higher dose (2 mg/kg) of ceramide B (2) particularly expressed the most pronounced decrease in serum levels of vascular endothelial growth factor -B (VEGF-B) and tumor necrosis factor-α (TNF-α) markers, as well as the expression levels of the growth factor midkine in tumor tissue relative to the EAC control group. The highest expression of apoptotic factors, p53, Bax, and caspase 3 was observed in the same group that received 2 mg/kg of ceramide B (2). Molecular docking simulations suggested that ceramides A (1) and B (2) could bind in the deep grove between the H2 helix and the Ser240-P250 loop of p53, preventing its interaction with MDM2 and leading to its accumulation. In conclusion, this study reports the cytotoxic, apoptotic, and antiangiogenic effects of ceramides isolated from the Red Sea algae Hypnea musciformis in an experimental model of EAC.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Reem M. Hazem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt;
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reem M. Diri
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hashim A. Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.S.H.); (M.S.G.); (H.A.H.); (A.K.I.); (E.E.E.)
- Correspondence: or ; Tel.: +20-010-92638387
| |
Collapse
|
22
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021; 192:45-54. [PMID: 34619274 DOI: 10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Reprogrammed cell metabolism is a well-accepted hallmark of cancer. Metabolism changes provide energy and precursors for macromolecule biosynthesis to satisfy the survival needs of cancer cells. The specific changes in different aspects of lipid metabolism in cancer cells have been focused in recent years. These changes can affect cell growth, proliferation, differentiation and motility through affecting membranes synthesis, energy homeostasis and cell signaling. The tumor suppressor p53 plays vital roles in the control of cell proliferation, senescence, DNA repair, and cell death in cancer through various transcriptional and non-transcriptional activities. Accumulating evidences indicate that p53 also regulates cellular metabolism, which appears to contribute to its tumor suppressive functions. Particularly the role of p53 in regulating lipid metabolism has gained more and more attention in recent decades. In this review, we summarize recent advances in the function of p53 on lipid metabolism in cancer. Further understanding and research on the role of p53 in lipid metabolism regulation will provide a potential therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
24
|
Roux-Biejat P, Coazzoli M, Marrazzo P, Zecchini S, Di Renzo I, Prata C, Napoli A, Moscheni C, Giovarelli M, Barbalace MC, Catalani E, Bassi MT, De Palma C, Cervia D, Malaguti M, Hrelia S, Clementi E, Perrotta C. Acid Sphingomyelinase Controls Early Phases of Skeletal Muscle Regeneration by Shaping the Macrophage Phenotype. Cells 2021; 10:3028. [PMID: 34831250 PMCID: PMC8616363 DOI: 10.3390/cells10113028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle regeneration is a complex process involving crosstalk between immune cells and myogenic precursor cells, i.e., satellite cells. In this scenario, macrophage recruitment in damaged muscles is a mandatory step for tissue repair since pro-inflammatory M1 macrophages promote the activation of satellite cells, stimulating their proliferation and then, after switching into anti-inflammatory M2 macrophages, they prompt satellite cells' differentiation into myotubes and resolve inflammation. Here, we show that acid sphingomyelinase (ASMase), a key enzyme in sphingolipid metabolism, is activated after skeletal muscle injury induced in vivo by the injection of cardiotoxin. ASMase ablation shortens the early phases of skeletal muscle regeneration without affecting satellite cell behavior. Of interest, ASMase regulates the balance between M1 and M2 macrophages in the injured muscles so that the absence of the enzyme reduces inflammation. The analysis of macrophage populations indicates that these events depend on the altered polarization of M1 macrophages towards an M2 phenotype. Our results unravel a novel role of ASMase in regulating immune response during muscle regeneration/repair and suggest ASMase as a supplemental therapeutic target in conditions of redundant inflammation that impairs muscle recovery.
Collapse
Affiliation(s)
- Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Marco Coazzoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy; (P.M.); (M.C.B.); (M.M.); (S.H.)
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Ilaria Di Renzo
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
| | - Alessandra Napoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy; (P.M.); (M.C.B.); (M.M.); (S.H.)
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Maria Teresa Bassi
- Scientific Institute IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy;
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milano, Italy;
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy; (P.M.); (M.C.B.); (M.M.); (S.H.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy; (P.M.); (M.C.B.); (M.M.); (S.H.)
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
- Scientific Institute IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy;
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy; (P.R.-B.); (M.C.); (S.Z.); (I.D.R.); (A.N.); (C.M.); (M.G.); (E.C.)
| |
Collapse
|
25
|
Yang S, Wang YL, Lyu Y, Jiang Y, Xiang J, Ji S, Kang S, Lyu X, He C, Li P, Liu B, Wu C. mGWAS identification of six novel single nucleotide polymorphism loci with strong correlation to gastric cancer. Cancer Metab 2021; 9:34. [PMID: 34565479 PMCID: PMC8474935 DOI: 10.1186/s40170-021-00269-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolite genome-wide association studies (mGWAS) are key for understanding the genetic regulation of metabolites in complex diseases including cancers. Although mGWAS has revealed hundreds of metabolomics quantitative trait loci (mQTLs) in the general population, data relating to gastric cancer (GC) are still incomplete. METHODS We identified mQTLs associated with GC by analyzing genome-wide and metabolome-wide datasets generated from 233 GC patients and 233 healthy controls. RESULTS Twenty-two metabolites were statistically different between GC cases and healthy controls, and all of them were associated with the risk of gastric cancer. mGWAS analyses further revealed that 9 single nucleotide polymorphisms (SNPs) were significantly associated with 3 metabolites. Of these 9 SNPs, 6 loci were never reported in the previous mGWAS studies. Surprisingly, 4 of 9 SNPs were significantly enriched in genes involved in the T cell receptor signaling pathway. CONCLUSIONS Our study unveiled several novel GC metabolite and genetic biomarkers, which may be implicated in the prevention and diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Shuangfeng Yang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yuan-Liang Wang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yanping Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Yu Jiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Jianjun Xiang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shumi Ji
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Shuling Kang
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Xuejie Lyu
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Chenzhou He
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Peixin Li
- School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China
| | - Baoying Liu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| | - Chuancheng Wu
- School of Public Health, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Fuzhou, China.
| |
Collapse
|
26
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
27
|
Ceramide Synthase 6 Maximizes p53 Function to Prevent Progeny Formation from Polyploid Giant Cancer Cells. Cancers (Basel) 2021; 13:cancers13092212. [PMID: 34062962 PMCID: PMC8125704 DOI: 10.3390/cancers13092212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary One mechanism that contributes to cancer recurrence is the ability of some malignant cells to temporarily halt cell division and accumulate multiple nuclei that are later released as progeny, which resume cell division. The release of progeny occurs via primitive cleavage and is highly dependent on the sphingolipid enzyme acid ceramidase but the role of sphingolipid metabolism in this process remains to be elucidated. This study highlights differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells and shows that ceramide synthase 6, which preferentially generates C16-ceramide maximizes the ability of the tumor suppressor p53 to inhibit progeny formation in polyploid cancer cells. These results offer an explanation as to why non-cancerous polyploid cells, which express wildtype p53, do not generate progeny and suggest that cancer cells with deregulated p53 function pose a higher risk of evading therapy especially if enzymes that generate C16-ceramide are also dysregulated. Abstract Polyploid giant cancer cells (PGCC) constitute a transiently senescent subpopulation of cancer cells that arises in response to stress. PGCC are capable of generating progeny via a primitive, cleavage-like cell division that is dependent on the sphingolipid enzyme acid ceramidase (ASAH1). The goal of this study was to understand differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells to gain an understanding of the ASAH1-dependence in the PGCC population. Steady-state and flux analysis of sphingolipids did not support our initial hypothesis that the ASAH1 product sphingosine is rapidly converted into the pro-survival lipid sphingosine-1-phosphate. Instead, our results suggest that ASAH1 activity is important for preventing the accumulation of long chain ceramides such as C16-ceramide. We therefore determined how modulation of C16-ceramide, either through CerS6 or p53, a known PGCC suppressor and enhancer of CerS6-derived C16-ceramide, affected PGCC progeny formation. Co-expression of the CerS6 and p53 abrogated the ability of PGCC to form offspring, suggesting that the two genes form a positive feedback loop. CerS6 enhanced the effect of p53 by significantly increasing protein half-life. Our results support the idea that sphingolipid metabolism is of functional importance in PGCC and that targeting this signaling pathway has potential for clinical intervention.
Collapse
|
28
|
Qiao N, Yang Y, Liao J, Zhang H, Yang F, Ma F, Han Q, Yu W, Li Y, Hu L, Pan J, Hussain R, Tang Z. Metabolomics and transcriptomics indicated the molecular targets of copper to the pig kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112284. [PMID: 33945902 DOI: 10.1016/j.ecoenv.2021.112284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Copper poses huge environmental and public health concerns due to its widespread and persistent use in the past several decades. Although it is well established that at higher levels copper causes nephrotoxicity, the exact mechanisms of its toxicity is not fully understood. Therefore, this experimental study for the first time investigates the potential molecular mechanisms including transcriptomics, metabolomics, serum biochemical, histopathological, cell apoptosis and autophagy in copper-induced renal toxicity in pigs. A total of 14 piglets were randomly assigned to two group (7 piglets per group) and treated with a standard diet (11 mg CuSO4 per kg of feed) and a high copper diet (250 mg CuSO4 per kg of feed). The results of serum biochemical tests and renal histopathology suggested that 250 mg/kg CuSO4 in the diet significantly increased serum creatinine (CREA) and induced renal tubular epithelial cell swelling. Results on transcriptomics and metabolomics showed alteration in 804 genes and 53 metabolites in kidneys of treated pigs, respectively. Combined analysis of transcriptomics and metabolomics indicated that different genes and metabolism pathways in kidneys of treated pigs were involved in glycerophospholipids metabolism and glycosphingolipid metabolism. Furthermore, copper induced mitochondrial apoptosis characterized by increased bax, bak, caspase 3, caspase 8 and caspase 9 expressions while decreased bcl-xl and bcl2/bax expression. Exposure to copper decreased the autophagic flux in terms of increased number of autophagosomes, beclin1 and LC3b/LC3a expression and p62 accumulation. These results indicated that the imbalance of glycosphingolipid metabolism, the impairment of autophagy and increase mitochondrial apoptosis play an important role in copper induced renal damage and are useful mechanisms to understand the mechanisms of copper nephrotoxicity.
Collapse
Affiliation(s)
- Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanyang Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
30
|
Overriding sorafenib resistance via blocking lipid metabolism and Ras by sphingomyelin synthase 1 inhibition in hepatocellular carcinoma. Cancer Chemother Pharmacol 2020; 87:217-228. [PMID: 33226447 DOI: 10.1007/s00280-020-04199-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/31/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The survival benefit of sorafenib, the most used drug for advanced hepatocellular carcinoma (HCC), is unsatisfactory due to the development of adaptive resistance. Exploring the mechanisms underlying sorafenib resistance is important to develop sensitizing strategy. Sphingomyelin synthase (SMS) plays a critical role in sphingolipid metabolism which is involved in oncogenesis and drug resistance. METHODS SMS1 and SMS2 levels in HCC cells in response to prolonged chemotherapy were analyzed using ELISA. mRNA and protein levels of SMS in HCC and adjacent normal tissues were analyzed by ELISA and real-time PCR. The roles of SMS and its downstream targets were investigated using cellular and biochemical assays and mass spectrometry. RESULTS SMS1, but not SMS2, was upregulated in HCC in response to sorafenib treatment, although HCC displayed similar RNA and protein level of SMS1 compared to adjacent normal liver tissues. Overexpression of SMS1 promoted HCC growth and migration, and alleviated sorafenib's toxicity. SMS1 inhibition via genetic and pharmacological approaches consistently resulted in inhibition of growth and migration, and apoptosis induction in sorafenib-resistance HCC cells. SMS1 inhibition also augmented the efficacy of sorafenib in sensitive HCC cells. SMS1 inhibition disrupted sphingolipid metabolism via accumulating ceramide and decreasing sphingomyelin, inducing mitochondrial dysfunction and oxidative stress, and decreasing Ras activity in resistant cells. Overexpression of constitutively active Ras reversed the inhibitory effects of SMS1 inhibition. Although SMS1 overexpression did not affect Ras expression and activity, Pearson correlation coefficient analysis of SMS1 and Ras expression demonstrated that there was positive correlation between SMS1 and RAS (NRAS, R = 0.55, p < 0.01; KRAS, R = 0.44, p < 0.01). CONCLUSIONS Our work is the first to suggest that SMS1 plays a more important role in sorafenib resistance than tumorigenesis, and provides preclinical evidence to overcome sorafenib resistance with SMS1 inhibition in HCC.
Collapse
|
31
|
Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Mol Neurobiol 2020; 57:2799-2811. [PMID: 32356173 PMCID: PMC7253528 DOI: 10.1007/s12035-020-01908-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The imbalance in sphingolipid signaling may be critically linked to the upstream events in the neurodegenerative cascade of Alzheimer’s disease (AD). We analyzed the influence of mutant (V717I) amyloid β precursor protein (AβPP) transgene on sphingolipid metabolism enzymes in mouse hippocampus. At 3 months of age AβPP/Aβ presence upregulated enzymes of ceramide turnover on the salvage pathway: ceramide synthases (CERS2, CERS4, CERS6) and also ceramidase ACER3. At 6 months, only CERS6 was elevated, and no ceramide synthase was increased at 12 months. However, sphingomyelin synthases, which utilize ceramide on the sphingomyelinase pathway, were reduced (SGMS1 at 12 and SGMS2 at 6 months). mRNAs for sphingomyelin synthases SGMS1 and SGMS2 were also significantly downregulated in human AD hippocampus and neocortex when compared with age-matched controls. Our findings suggest early-phase deregulation of sphingolipid homeostasis in favor of ceramide signaling. Fingolimod (FTY720), a modulator of sphingosine-1-phosphate receptors countered the AβPP-dependent upregulation of hippocampal ceramide synthase CERS2 at 3 months. Moreover, at 12 months, FTY720 increased enzymes of ceramide-sphingosine turnover: CERS4, ASAH1, and ACER3. We also observed influence of fingolimod on the expression of the sphingomyelinase pathway enzymes. FTY720 counteracted the AβPP-linked reduction of sphingomyelin synthases SGMS1/2 (at 12 and 6 months, respectively) and led to elevation of sphingomyelinase SMPD2 (at 6 and 12 months). Therefore, our results demonstrate potentially beneficial, age-specific effects of fingolimod on transcription of sphingolipid metabolism enzymes in an animal model of AD.
Collapse
|
32
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
33
|
Khiste SK, Liu Z, Roy KR, Uddin MB, Hosain SB, Gu X, Nazzal S, Hill RA, Liu YY. Ceramide-Rubusoside Nanomicelles, a Potential Therapeutic Approach to Target Cancers Carrying p53 Missense Mutations. Mol Cancer Ther 2019; 19:564-574. [PMID: 31645443 DOI: 10.1158/1535-7163.mct-19-0366] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/24/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Ceramide (Cer) is an active cellular sphingolipid that can induce apoptosis or proliferation-arrest of cancer cells. Nanoparticle-based delivery offers an effective approach for overcoming bioavailability and biopharmaceutics issues attributable to the pronounced hydrophobicity of Cer. Missense mutations of the protein p53, which have been detected in approximately 42% of cancer cases, not only lose the tumor suppression activity of wild-type p53, but also gain oncogenic functions promoting tumor progression and drug resistance. Our previous works showed that cellular Cer can eradicate cancer cells that carry a p53 deletion-mutation by modulating alternative pre-mRNA splicing, restoring wild-type p53 protein expression. Here, we report that new ceramide-rubusoside (Cer-RUB) nanomicelles considerably enhance Cer in vivo bioavailability and restore p53-dependent tumor suppression in cancer cells carrying a p53 missense mutation. Natural RUB encapsulated short-chain C6-Cer so as to form Cer-RUB nanomicelles (∼32 nm in diameter) that substantially enhanced Cer solubility and its levels in tissues and tumors of mice dosed intraperitoneally. Intriguingly, Cer-RUB nanomicelle treatments restored p53-dependent tumor suppression and sensitivity to cisplatin in OVCAR-3 ovarian cancer cells and xenograft tumors carrying p53 R248Q mutation. Moreover, Cer-RUB nanomicelles showed no signs of significant nonspecific toxicity to noncancerous cells or normal tissues, including bone marrow. Furthermore, Cer-RUB nanomicelles restored p53 phosphorylated protein and downstream function to wild-type levels in p53 R172H/+ transgenic mice. Altogether, this study, for the first time, indicates that natural Cer-RUB nanomicelles offer a feasible approach for efficaciously and safely targeting cancers carrying p53 missense mutations.
Collapse
Affiliation(s)
- Sachin K Khiste
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana
| | - Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Mohammad B Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Salman B Hosain
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Sami Nazzal
- Department of Pharmaceutical Sciences, Texas Tech University Health Science Center, Dallas, Texas
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana.
| |
Collapse
|
34
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
35
|
Knapp P, Chomicz K, Świderska M, Chabowski A, Jach R. Unique Roles of Sphingolipids in Selected Malignant and Nonmalignant Lesions of Female Reproductive System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4376583. [PMID: 31187044 PMCID: PMC6521305 DOI: 10.1155/2019/4376583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Cancer develops as a result of the loss of self-control mechanisms by a cell; it gains the ability to induce angiogenesis, becomes immortal and resistant to cell death, stops responding to growth suppressor signals, and becomes capable of invasion and metastasis. Sphingolipids-a family of membrane lipids-are known to play important roles in the regulation of cell proliferation, the response to chemotherapeutic agents, and/or prevention of cancer. Despite the underlying functions of sphingolipids in cancer biology, their metabolism in different malignant tumors is poorly investigated. Some studies showed marked differences in ceramide content between the tumor and the respective healthy tissue. Interestingly, the level of this sphingolipid could be either low or elevated, suggesting that the alterations in ceramide metabolism in cancer tissue may depend on the biology of the tumor. These processes are indeed related to the type of cancer, its stage, and histology status. In this paper we present the unique roles of bioactive sphingolipid derivative in selected gynecologic malignant and nonmalignant lesions.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, Poland
| | - Karolina Chomicz
- Ist Medical Faculty with Stomatology, Medical University of Lublin, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Poland
| | - Robert Jach
- Jagiellonian University Medical College Gynecology and Obstetrics, Krakow, Poland
| |
Collapse
|
36
|
Zhang CH, Zhang MJ, Shi XX, Mao C, Zhu ZR. Alkaline Ceramidase Mediates the Oxidative Stress Response in Drosophila melanogaster Through Sphingosine. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494809. [PMID: 31115476 PMCID: PMC6529914 DOI: 10.1093/jisesa/iez042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 05/04/2023]
Abstract
Alkaline ceramidase (Dacer) in Drosophila melanogaster was demonstrated to be resistant to paraquat-induced oxidative stress. However, the underlying mechanism for this resistance remained unclear. Here, we showed that sphingosine feeding triggered the accumulation of hydrogen peroxide (H2O2). Dacer-deficient D. melanogaster (Dacer mutant) has higher catalase (CAT) activity and CAT transcription level, leading to higher resistance to oxidative stress induced by paraquat. By performing a quantitative proteomic analysis, we identified 79 differentially expressed proteins in comparing Dacer mutant to wild type. Three oxidoreductases, including two cytochrome P450 (CG3050, CG9438) and an oxoglutarate/iron-dependent dioxygenase (CG17807), were most significantly upregulated in Dacer mutant. We presumed that altered antioxidative activity in Dacer mutant might be responsible for increased oxidative stress resistance. Our work provides a novel insight into the oxidative antistress response in D. melanogaster.
Collapse
Affiliation(s)
- Chun-Hong Zhang
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Jing Zhang
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao-Xiao Shi
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- State University of New York at Stony Brook, Stony Brook, NY
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, MOA Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
- Corresponding author, e-mail:
| |
Collapse
|
37
|
Dando I, Pozza ED, Ambrosini G, Torrens-Mas M, Butera G, Mullappilly N, Pacchiana R, Palmieri M, Donadelli M. Oncometabolites in cancer aggressiveness and tumour repopulation. Biol Rev Camb Philos Soc 2019; 94:1530-1546. [PMID: 30972955 DOI: 10.1111/brv.12513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.
Collapse
Affiliation(s)
- Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| |
Collapse
|
38
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
39
|
C 16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat Commun 2018; 9:4149. [PMID: 30297838 PMCID: PMC6175828 DOI: 10.1038/s41467-018-06650-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
Ceramides are important participants of signal transduction, regulating fundamental cellular processes. Here we report the mechanism for activation of p53 tumor suppressor by C16-ceramide. C16-ceramide tightly binds within the p53 DNA-binding domain (Kd ~ 60 nM), in close vicinity to the Box V motif. This interaction is highly selective toward the ceramide acyl chain length with its C10 atom being proximal to Ser240 and Ser241. Ceramide binding stabilizes p53 and disrupts its complex with E3 ligase MDM2 leading to the p53 accumulation, nuclear translocation and activation of the downstream targets. This mechanism of p53 activation is fundamentally different from the canonical p53 regulation through protein–protein interactions or posttranslational modifications. The discovered mechanism is triggered by serum or folate deprivation implicating it in the cellular response to nutrient/metabolic stress. Our study establishes C16-ceramide as a natural small molecule activating p53 through the direct binding. Ceramides are important participants of signal transduction, regulating fundamental cellular processes. Here authors show that C16-ceramide binds to the tumor suppressor p53, disrupts its interaction with MDM2 and facilitates p53 accumulation and activation of its downstream targets.
Collapse
|