1
|
Stefàno E, Rovito G, Cossa LG, Castro FD, Vergaro V, Ali A, My G, Migoni D, Muscella A, Marsigliante S, Benedetti M, Fanizzi FP. Novel Pt (II) Complexes With Anticancer Activity Against Pancreatic Ductal Adenocarcinoma Cells. Bioinorg Chem Appl 2024; 2024:5588491. [PMID: 39886428 PMCID: PMC11779987 DOI: 10.1155/bca/5588491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive type of solid tumor that is becoming more common. cis-[PtCl2 (NH3)2] (in short cisplatin or CDDP) has been shown to be effective in treating various cancers, including PDAC. However, the development of resistance to chemotherapy drugs has created a need for the synthesis of new anticancer agents. Platinum-based drugs containing the bidentate ligand phenanthroline have been found to have strong antitumor activity due to their ability to cause DNA damage. In this study, we examined the ability of two Pt (II) cationic complexes, [Pt(η 1-C2H4OR) (DMSO) (phen)]+ (in short Pt-EtORSOphen; R = Me, 1; Et, 2), to inhibit the growth and spread of BxPC-3 PDAC cells, in comparison to CDDP. The length of the alkyl chain and its associated lipophilic properties did not affect the anticancer effects of complexes 1 and 2 in BxPC-3 cells. However, it did appear to influence the rapid loss of mitochondrial membrane potential (ΔΨM), suggesting that these complexes could potentially be used as mitochondria-targeted lipophilic cations in anticancer therapy.
Collapse
Affiliation(s)
- Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Luca G. Cossa
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Viviana Vergaro
- Department of Experimental Medicine, University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Asjad Ali
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Giulia My
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Via Monteroni I-73100, Italy
| |
Collapse
|
2
|
Yu C, Su Y, Miao X, Chai C, Tang H, Li L, Yi J, Ye Z, Zhang H, Hu Z, Chen L, Li N, Xu H, Zhou W. Establishment and characterization of a novel multidrug-resistant pancreatic ductal adenocarcinoma cell line, PDAC-X1. BMC Cancer 2024; 24:800. [PMID: 38965506 PMCID: PMC11225239 DOI: 10.1186/s12885-024-12588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
Drug resistance remains a significant challenge in the treatment of pancreatic cancer. The development of drug-resistant cell lines is crucial to understanding the underlying mechanisms of resistance and developing novel drugs to improve clinical outcomes. Here, a novel pancreatic cancer cell line, PDAC-X1, derived from Chinese patients has been established. PDAC-X1 was characterized by the immune phenotype, biology, genetics, molecular characteristics, and tumorigenicity. In vitro analysis revealed that PDAC-X1 cells exhibited epithelial morphology and cell markers (CK7 and CK19), expressed cancer-associated markers (E-cadherin, Vimentin, Ki-67, CEA, CA19-9), and produced pancreatic cancer-like organs in suspension culture. In vivo analysis showed that PDAC-X1 cells maintained tumorigenicity with a 100% tumor formation rate. This cell line exhibited a complex karyotype, dominated by subtriploid karyotypes. In addition, PDAC-X1 cells exhibited intrinsic multidrug resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil, and oxaliplatin. In conclusion, the PDAC-X1 cell line has been established and characterized, representing a useful and valuable preclinical model to study the underlying mechanisms of drug resistance and develop novel drug therapeutics to improve patient outcomes.
Collapse
Affiliation(s)
- Cheng Yu
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanhui Su
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Changpeng Chai
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huan Tang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jianfeng Yi
- The First Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhenzhen Ye
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Hui Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China
| | - Zhao Hu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Luyang Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Ning Li
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Hepatobiliary Surgery, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Hao Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Hepatobiliary Surgery, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Wence Zhou
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Argentiero A, Andriano A, Caradonna IC, de Martino G, Desantis V. Decoding the Intricate Landscape of Pancreatic Cancer: Insights into Tumor Biology, Microenvironment, and Therapeutic Interventions. Cancers (Basel) 2024; 16:2438. [PMID: 39001498 PMCID: PMC11240778 DOI: 10.3390/cancers16132438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents significant oncological challenges due to its aggressive nature and poor prognosis. The tumor microenvironment (TME) plays a critical role in progression and treatment resistance. Non-neoplastic cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), contribute to tumor growth, angiogenesis, and immune evasion. Although immune cells infiltrate TME, tumor cells evade immune responses by secreting chemokines and expressing immune checkpoint inhibitors (ICIs). Vascular components, like endothelial cells and pericytes, stimulate angiogenesis to support tumor growth, while adipocytes secrete factors that promote cell growth, invasion, and treatment resistance. Additionally, perineural invasion, a characteristic feature of PDAC, contributes to local recurrence and poor prognosis. Moreover, key signaling pathways including Kirsten rat sarcoma viral oncogene (KRAS), transforming growth factor beta (TGF-β), Notch, hypoxia-inducible factor (HIF), and Wnt/β-catenin drive tumor progression and resistance. Targeting the TME is crucial for developing effective therapies, including strategies like inhibiting CAFs, modulating immune response, disrupting angiogenesis, and blocking neural cell interactions. A recent multi-omic approach has identified signature genes associated with anoikis resistance, which could serve as prognostic biomarkers and targets for personalized therapy.
Collapse
Affiliation(s)
| | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ingrid Catalina Caradonna
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giulia de Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, Medical School, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
4
|
Tang H, Miao X, Yu C, Chai C, Su Y, Li L, Yi J, Ye Z, Miao L, Wang Z, Zhang H, Xu H, Zhou W. A novel multidrug-resistant cell line from a Chinese patient with pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:9259. [PMID: 38649719 PMCID: PMC11035558 DOI: 10.1038/s41598-024-56464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.
Collapse
Affiliation(s)
- Huan Tang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Xin Miao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Cheng Yu
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Changpeng Chai
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- The Fourth Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yuanhui Su
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
| | - Lu Li
- The Fourth Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jianfeng Yi
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhenzhen Ye
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- The First School of Clinical Medicine of Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Long Miao
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- The Fourth Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zhengfeng Wang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China
- The Fourth Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Hui Zhang
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
| | - Hao Xu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310006, China.
- Department of Hepatobiliary Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310006, China.
| | - Wence Zhou
- The Second Clinical Medical School of Lanzhou University, Lanzhou, 730000, China.
- Department of General Surgery, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Chengguan District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
5
|
Bartkowski M, Bincoletto V, Salaroglio IC, Ceccone G, Arenal R, Nervo S, Rolando B, Riganti C, Arpicco S, Giordani S. Enhancing pancreatic ductal adenocarcinoma (PDAC) therapy with targeted carbon nano-onion (CNO)-mediated delivery of gemcitabine (GEM)-derived prodrugs. J Colloid Interface Sci 2024; 659:339-354. [PMID: 38176243 DOI: 10.1016/j.jcis.2023.12.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Nanotechnology's potential in revolutionising cancer treatments is evident in targeted drug delivery systems (DDSs) engineered to optimise therapeutic efficacy and minimise toxicity. This study examines a novel nanocarrier constructed with carbon nano-onions (CNOs), engineered and evaluated for its ability to selectively target cancer cells overexpressing the hyaluronic acid receptor; CD44. Our results highlighted that the CNO-based nanocarrier coupled with hyaluronic acid as the targeting agent demonstrated effective uptake by CD44+ PANC-1 and MIA PaCa-2 cells, while avoiding CD44- Capan-1 cells. The CNO-based nanocarrier also exhibited excellent biocompatibility in all tested pancreatic ductal adenocarcinoma (PDAC) cells, as well as healthy cells. Notably, the CNO-based nanocarrier was successfully loaded with chemotherapeutic 4-(N)-acyl- sidechain-containing prodrugs derived from gemcitabine (GEM). These prodrugs alone exhibited remarkable efficacy in killing PDAC cells which are known to be GEM resistant, and their efficacy was amplified when combined with the CNO-based nanocarrier, particularly in targeting GEM-resistant CD44+ PDAC cells. These findings demonstrate the potential of CNOs as promising scaffolds in advancing targeted DDSs, signifying the translational potential of carbon nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Valeria Bincoletto
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | | | | | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, 50009 Zaragoza, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain; ARAID Foundation, 50018 Zaragoza, Spain
| | - Sara Nervo
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Via Nizza 44, Torino, Italy; Molecular Biotechnology Center "Guido Tarone", University of Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Via P. Giuria 9, Torino, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|