1
|
Waheed-Ullah Q, Wilsdon A, Abbad A, Rochette S, Bu'Lock F, Saed AA, Hitz MP, Brook JD, Loughna S. Cyclin-dependent kinase 13 is indispensable for normal mouse heart development. J Anat 2024. [PMID: 39556044 DOI: 10.1111/joa.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Congenital heart disease (CHD) has an incidence of approximately 1%. Over the last decade, sequencing studies including large cohorts of individuals with CHD have begun to unravel the genetic mechanisms underpinning CHD. This includes the identification of variants in cyclin-dependent kinase 13 (CDK13), in individuals with syndromic CHD. CDK13 encodes a serine/threonine protein kinase. The cyclin partner of CDK13 is cyclin K; this complex is thought to be important in transcription and RNA processing. Pathogenic variants in CDK13 cause CDK13-related disorder in humans, characterised by intellectual disability and developmental delay, recognisable facial features, feeding difficulties and structural brain defects, with 35% of individuals having CHD. To obtain a greater understanding for the role that this essential protein kinase plays in embryonic heart development, we have analysed a presumed loss of function Cdk13 transgenic mouse model (Cdk13tm1b). The homozygous mutants were embryonically lethal in most cases by E15.5. X-gal staining showed Cdk13 expression localised to developing facial regions, heart and surrounding areas at E10.5, whereas at E12.5, it was more widely present. In the E15.5 heart, staining was seen throughout. RT-qPCR showed significant reduction in Cdk13 transcript expression in homozygous compared with WT and heterozygous hearts at E10.5 and E12.5. Detailed morphological 3D analysis of embryonic and postnatal hearts was performed using high-resolution episcopic microscopy, which affords a more detailed analysis of structures such as cardiac valve leaflets and endocardial cushions, compared with more traditional histological techniques. We show that both the homozygous and heterozygous Cdk13tm1b mutants exhibit a range of CHD, including ventricular septal defects, bicuspid aortic valve, double outlet right ventricle and atrioventricular septal defects. 100% (n = 4) of homozygous hearts displayed CHD. Differential expression was seen in Cdk13tm1b homozygous mutants for two genes known to be necessary for normal heart development. The types of defects, and the presence of CHD in heterozygous mice (17.02%, n = 8/47), are consistent with the CDK13-related disorder phenotype in humans. This study provides important insights into the effects of reduced function of CDK13 in the mouse heart and contributes to our understanding of the mechanism behind this disorder as a cause of CHD.
Collapse
Affiliation(s)
- Qazi Waheed-Ullah
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Anna Wilsdon
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Aseel Abbad
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Sophie Rochette
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Frances Bu'Lock
- East Midlands Congenital Heart Centre, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Asma Ali Saed
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Marc-Phillip Hitz
- Institute of Medical Genetics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department of Congenital Heart Disease and Paediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Kiel, Germany
| | - J David Brook
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Hampl M, Jandová N, Lusková D, Nováková M, Szotkowská T, Čada Š, Procházka J, Kohoutek J, Buchtová M. Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis. Dis Model Mech 2024; 17:dmm050261. [PMID: 38511331 PMCID: PMC11212636 DOI: 10.1242/dmm.050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/12/2024] [Indexed: 03/22/2024] Open
Abstract
CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
Collapse
Affiliation(s)
- Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Nela Jandová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Denisa Lusková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Monika Nováková
- Department of Chemistry and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Tereza Szotkowská
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Kohoutek
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic
| |
Collapse
|
3
|
Isa HM, Abdulla AM, Abdulla KM, Abdulnabi MJ, Khudhair ZA, Hubail ZJ, Busehail MY, Abdulrasool HA. A Novel Cyclin-Dependent Kinase 13 Variant and Unusual Association of Situs Inversus Partialis in a Child From Bahrain: A Case Report and Literature Review. Cureus 2024; 16:e60970. [PMID: 38910624 PMCID: PMC11193875 DOI: 10.7759/cureus.60970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
Cyclin-dependent kinase 13 (CDK13)-related disorder is a rare autosomal dominant disease caused by pathogenic variants in the CDK13 gene. This disorder was found to be related to several clinical features, including structural cardiac anomalies, developmental delay, anomalies of the corpus callosum, and a variety of facial dysmorphisms. In addition, feeding difficulties and neonatal hypotonia might also present. The diagnosis of this disorder is based on molecular genetic testing to detect the causative pathogenic variants. Here, we report a case of a one-year-old girl from Yemen, residing in Bahrain, with a CDK13-related disorder who was found to have an unusual association of abdominal situs inversus along with multiple structural cardiac anomalies, including atrial septal defect, ventricular septal defect, patent ductus arteriosus, interrupted inferior vena cava, bilateral superior vena cava, mild coarctation of the aorta, dilated coronary sinuses, and mild regurgitation in the tricuspid valve. Moreover, facial dysmorphism including medial epicanthal folds, posteriorly rotated ears, and a depressed nasal bridge was also noted. Further assessment showed a delay in reaching developmental milestones, including speech and motor delay. The patient also presented with recurrent episodes of upper respiratory tract infections, acute bronchiolitis, and lobar pneumonia which required admission to the intensive care unit and ventilation. The last infection episode was at the age of one year. Thereafter, the patient underwent cardiac repair of the ventricular septal defect followed by no more infection episodes until the age of one year and two months. The diagnosis of CDK13 was confirmed by a whole exome sequencing test which demonstrated a novel missense variant in exon 14 of the CDK13 gene as a variant of uncertain significance in a heterozygous state.
Collapse
Affiliation(s)
- Hasan M Isa
- Department of Pediatrics, Arabian Gulf University, Manama, BHR
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | | | | | | | | | - Zakariya J Hubail
- Department of Pediatrics, Arabian Gulf University, Manama, BHR
- Department of Pediatrics, Salmaniya Medical Complex, Manama, BHR
| | | | | |
Collapse
|
4
|
Wang L, Yang Z, Li G, Liu Y, Ai C, Rao Y. Discovery of small molecule degraders for modulating cell cycle. Front Med 2023; 17:823-854. [PMID: 37935945 DOI: 10.1007/s11684-023-1027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/16/2023] [Indexed: 11/09/2023]
Abstract
The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.
Collapse
Affiliation(s)
- Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Zhouli Yang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Guangchen Li
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yongbo Liu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chao Ai
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Foreman J, Perrett D, Mazaika E, Hunt SE, Ware JS, Firth HV. DECIPHER: Improving Genetic Diagnosis Through Dynamic Integration of Genomic and Clinical Data. Annu Rev Genomics Hum Genet 2023; 24:151-176. [PMID: 37285546 PMCID: PMC7615097 DOI: 10.1146/annurev-genom-102822-100509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DECIPHER (Database of Genomic Variation and Phenotype in Humans Using Ensembl Resources) shares candidate diagnostic variants and phenotypic data from patients with genetic disorders to facilitate research and improve the diagnosis, management, and therapy of rare diseases. The platform sits at the boundary between genomic research and the clinical community. DECIPHER aims to ensure that the most up-to-date data are made rapidly available within its interpretation interfaces to improve clinical care. Newly integrated cardiac case-control data that provide evidence of gene-disease associations and inform variant interpretation exemplify this mission. New research resources are presented in a format optimized for use by a broad range of professionals supporting the delivery of genomic medicine. The interfaces within DECIPHER integrate and contextualize variant and phenotypic data, helping to determine a robust clinico-molecular diagnosis for rare-disease patients, which combines both variant classification and clinical fit. DECIPHER supports discovery research, connecting individuals within the rare-disease community to pursue hypothesis-driven research.
Collapse
Affiliation(s)
- Julia Foreman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom; ,
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Daniel Perrett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom; ,
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Erica Mazaika
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; ,
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom; ,
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom; ,
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Helen V Firth
- Wellcome Sanger Institute, Hinxton, United Kingdom
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom;
| |
Collapse
|
6
|
Gibbs M, Poulin A, Xi Y, Hashemi B. A Prenatal Presentation of CDK13-Related Disorder with a Novel Pathogenic Variant. Case Rep Genet 2023; 2023:3437706. [PMID: 37351084 PMCID: PMC10284631 DOI: 10.1155/2023/3437706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Cyclin-dependent kinase 13 (CDK13) is a member of the cyclin-dependent serine/threonine protein kinase family. Members of this family are well known for their essential roles as master switches in cell cycle control. CDK13-related disorder is a newly described genetic condition with characteristic clinical features including mild to severe intellectual disability, developmental delay, neonatal hypotonia, a variety of facial dysmorphism, behavioral problems, congenital heart defects, and structural brain abnormalities. We report a case of prenatal diagnosis of CDK13-related disorder. Detection of cystic hygroma with thickened nuchal fold led to prenatal genetic investigation, which identified a novel de novo likely pathogenic variant in the CDK13 gene (c.900C > G, p.Tyr300∗). Pregnancy was terminated and autopsy was performed. To our best knowledge, this is the first reported case of prenatal presentation of this condition with a detailed phenotypic description of the affected fetus.
Collapse
Affiliation(s)
- Michael Gibbs
- Department of Pediatrics, Division of Medical Genetics, University of Saskatchewan, Saskatoon, Canada
| | - Alysa Poulin
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Yanwei Xi
- Department of Genomic Laboratory Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Bita Hashemi
- Department of Pediatrics, Division of Medical Genetics, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
7
|
Garrett L, Trümbach D, Spielmann N, Wurst W, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Hölter SM. A rationale for considering heart/brain axis control in neuropsychiatric disease. Mamm Genome 2023; 34:331-350. [PMID: 36538124 PMCID: PMC10290621 DOI: 10.1007/s00335-022-09974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Neuropsychiatric diseases (NPD) represent a significant global disease burden necessitating innovative approaches to pathogenic understanding, biomarker identification and therapeutic strategy. Emerging evidence implicates heart/brain axis malfunction in NPD etiology, particularly via the autonomic nervous system (ANS) and brain central autonomic network (CAN) interaction. This heart/brain inter-relationship harbors potentially novel NPD diagnosis and treatment avenues. Nevertheless, the lack of multidisciplinary clinical approaches as well as a limited appreciation of molecular underpinnings has stymied progress. Large-scale preclinical multi-systemic functional data can therefore provide supplementary insight into CAN and ANS interaction. We here present an overview of the heart/brain axis in NPD and establish a unique rationale for utilizing a preclinical cardiovascular disease risk gene set to glean insights into heart/brain axis control in NPD. With a top-down approach focusing on genes influencing electrocardiogram ANS function, we combined hierarchical clustering of corresponding regional CAN expression data and functional enrichment analysis to reveal known and novel molecular insights into CAN and NPD. Through 'support vector machine' inquiries for classification and literature validation, we further pinpointed the top 32 genes highly expressed in CAN brain structures altering both heart rate/heart rate variability (HRV) and behavior. Our observations underscore the potential of HRV/hyperactivity behavior as endophenotypes for multimodal disease biomarker identification to index aberrant executive brain functioning with relevance for NPD. This work heralds the potential of large-scale preclinical functional genetic data for understanding CAN/ANS control and introduces a stepwise design leveraging preclinical data to unearth novel heart/brain axis control genes in NPD.
Collapse
Affiliation(s)
- Lillian Garrett
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dietrich Trümbach
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Research Center for Environmental Health, Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nadine Spielmann
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut Für Neurodegenerative Erkrankungen (DZNE) Site Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Helmut Fuchs
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany.
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Technische Universität München, Freising-Weihenstephan, Germany.
- Helmholtz Center Munich, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
8
|
Cui D, Wang S, Zhang A, Liu A, Hu Q. Case Report: Hemophagocytic Lymphohistiocytosis Prior to the Onset of Leukemia in a Boy With CDK13-Related Disorder. Front Genet 2022; 13:858668. [PMID: 35651941 PMCID: PMC9149378 DOI: 10.3389/fgene.2022.858668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
Cardinal features of CDK13-related disorders are characterized by intellectual disability, developmental delay, dysmorphic facial features, structural heart defect and structural brain abnormality. A 9-year-old boy presented with intellectual disability, development delay, characteristic craniofacial features, brain malformation, cryptorchidism, autism spectrum disorder, and recently, recurrent hemophagocytic lymphohistiocytosis (HLH) in a half year period. Further investigation revealed the diagnosis of CDK13-related disorder. Finally, we found the underlying cause of HLH is acute lymphoblastic leukemia. Probably leukemia was a coincidental finding in this boy with CDK13-related disorder, but the case herein suggests that individuals with CDK13-related disorder also face risk of developing cancers. Further detailed information could enable us to clarify this presentation because of only limited investigation in affected cases.
Collapse
Affiliation(s)
- Dongyan Cui
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songmi Wang
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Zhang
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Hu
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Marwaha A, Costain G, Cytrynbaum C, Mendoza-Londano R, Chad L, Awamleh Z, Chater-Diehl E, Choufani S, Weksberg R. The utility of DNA methylation signatures in directing genome sequencing workflow: Kabuki syndrome and CDK13-related disorder. Am J Med Genet A 2022; 188:1368-1375. [PMID: 35043535 PMCID: PMC9303780 DOI: 10.1002/ajmg.a.62650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a neurodevelopmental disorder characterized by hypotonia, intellectual disability, skeletal anomalies, and postnatal growth restriction. The characteristic facial appearance is not pathognomonic for KS as several other conditions demonstrate overlapping features. For 20‐30% of children with a clinical diagnosis of KS, no causal variant is identified by conventional genetic testing of the two associated genes, KMT2D and KDM6A. Here, we describe two cases of suspected KS that met clinical diagnostic criteria and had a high gestalt match on the artificial intelligence platform Face2Gene. Although initial KS testing was negative, genome‐wide DNA methylation (DNAm) was instrumental in guiding genome sequencing workflow to establish definitive molecular diagnoses. In one case, a positive DNAm signature for KMT2D led to the identification of a cryptic variant in KDM6A by genome sequencing; for the other case, a DNAm signature different from KS led to the detection of another diagnosis in the KS differential, CDK13‐related disorder. This approach illustrates the clinical utility of DNAm signatures in the diagnostic workflow for the genome analyst or clinical geneticist—especially for disorders with overlapping clinical phenotypes.
Collapse
Affiliation(s)
- Ashish Marwaha
- Department of Medical Genetics, Cumming School of Medicine, The University of Calgary, Calgary, Alberta, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl Cytrynbaum
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londano
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Zain Awamleh
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eric Chater-Diehl
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Cui X, Wu X, Wang H, Zhang S, Wang W, Jing X. Genetic of preimplantation diagnosis of dysmorphic facial features and intellectual developmental disorder (CHDFIDD) without congenital heart defects. Mol Genet Genomic Med 2022; 10:e1863. [PMID: 35034425 PMCID: PMC8830809 DOI: 10.1002/mgg3.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Background Cyclin‐dependent kinase 13 plays a critical role in the regulation of gene transcription. Recent evidence suggests that heterozygous variants in CDK13 are associated with a syndromic form of mental deficiency and developmental delay, which is inherited in an autosomal dominant manner. Methods A mentally retarded mother (33‐year‐old) and son (10‐year‐old boy) in our hospital with CDK13 variant (c.2149 (exon 4) G>A. p.Gly717Arg) were detected by whole‐exome sequencing (WES). All published CDK13 variant syndrome cases as of November 11, 2021, were searched, and their clinical information was recorded and summarized. Results We studied two patients in a Chinese family with a heterozygous constitutional CDK13 variant (c.2149 (exon 4) G>A. p.Gly717Arg), exhibiting the classical characteristics of dysmorphic facial features and intellectual developmental disorder (CHDFIDD, OMIM # 617360), without congenital heart defects. This is the first reported case of an adult patient with a CDK13 variant that gave birth to the next generation with the same variant. Preimplantation genetic testing for monogenic disease (PGT‐M) was performed for the proband and her husband with full informed consent and successfully blocked the inheritance of the disease. Conclusion Our study is of great significance for molecular diagnosis and genetic counseling of patients with CDHFIDD and extends the variant spectrum of CDK13.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Affiliated of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Department of Hematology, 2nd Hospital of Shanxi Medical University, Taiyuan, China
| | - Sanyuan Zhang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Wang
- Chigene Translational Medicine Research Center, Beijing, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Prov. People's Hospital, Affiliated of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Kozma K, Bembea M, Jurca CM, Ioana M, Streață I, Şoşoi SŞ, Pirvu A, Petchesi CD, Szilágyi A, Sava CN, Jurca A, Ujfalusi A, Szűcs Z, Szakszon K. Greig Cephalopolysyndactyly Contiguous Gene Syndrome: Case Report and Literature Review. Genes (Basel) 2021; 12:genes12111674. [PMID: 34828280 PMCID: PMC8623992 DOI: 10.3390/genes12111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Greig cephalopolysyndactyly syndrome (GCPS) is a rare genetic disorder (about 200 cases reported), characterized by macrocephaly, hypertelorism, and polysyndactyly. Most of the reported GCPS cases are the results of heterozygous loss of function mutations affecting the GLI3 gene (OMIM# 175700), while a small proportion of cases arise from large deletions on chromosome 7p14 encompassing the GLI3 gene. To our knowledge, only 6 patients have been reported to have a deletion with an exact size (given by genomic coordinates) and a gene content larger than 1 Mb involving the GLI3 gene. This report presents a patient with Greig cephalopolysyndactyly contiguous gene syndrome (GCP-CGS) diagnosed with a large, 18 Mb deletion on chromosome 7p14.2-p11.2. Similar cases are reviewed in the literature for a more accurate comparison between genotype and phenotype.
Collapse
Affiliation(s)
- Kinga Kozma
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Regional Center of Medical Genetics Bihor, 410445 Oradea, Romania
- Municipal Clinical Hospital “Dr. Gavril Curteanu”, 410469 Oradea, Romania
- Correspondence: (K.K.); (C.D.P.); Tel.: +40-744-708-777 (K.K.)
| | - Marius Bembea
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Regional Center of Medical Genetics Bihor, 410445 Oradea, Romania
- Municipal Clinical Hospital “Dr. Gavril Curteanu”, 410469 Oradea, Romania
| | - Claudia M. Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Regional Center of Medical Genetics Bihor, 410445 Oradea, Romania
- Municipal Clinical Hospital “Dr. Gavril Curteanu”, 410469 Oradea, Romania
| | - Mihai Ioana
- Regional Center of Medical Genetics Dolj, 200349 Craiova, Romania; (M.I.); (I.S.); (S.Ş.Ş.); (A.P.)
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Regional Center of Medical Genetics Dolj, 200349 Craiova, Romania; (M.I.); (I.S.); (S.Ş.Ş.); (A.P.)
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy Craiova, 200642 Craiova, Romania
| | - Simona Ş. Şoşoi
- Regional Center of Medical Genetics Dolj, 200349 Craiova, Romania; (M.I.); (I.S.); (S.Ş.Ş.); (A.P.)
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy Craiova, 200642 Craiova, Romania
| | - Andrei Pirvu
- Regional Center of Medical Genetics Dolj, 200349 Craiova, Romania; (M.I.); (I.S.); (S.Ş.Ş.); (A.P.)
- Human Genomics Laboratory, Faculty of Medicine, University of Medicine and Pharmacy Craiova, 200642 Craiova, Romania
| | - Codruța D. Petchesi
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Correspondence: (K.K.); (C.D.P.); Tel.: +40-744-708-777 (K.K.)
| | - Ariana Szilágyi
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Municipal Clinical Hospital “Dr. Gavril Curteanu”, 410469 Oradea, Romania
| | - Cristian N. Sava
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
- Municipal Clinical Hospital “Dr. Gavril Curteanu”, 410469 Oradea, Romania
| | - Alexandru Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (M.B.); (C.M.J.); (A.S.); (C.N.S.); (A.J.)
| | - Anikó Ujfalusi
- Division of Clinical Genetics, Faculty of Medicine, Departament of Laboratory Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.U.); (Z.S.)
| | - Zsuzsanna Szűcs
- Division of Clinical Genetics, Faculty of Medicine, Departament of Laboratory Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.U.); (Z.S.)
| | - Katalin Szakszon
- Faculty of Medicine, Departament of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
12
|
Wu Z, Wang M, Li F, Wang F, Jia J, Feng Z, Huo X, Yang J, Jin W, Sa R, Gao W, Yu L. CDK13-Mediated Cell Cycle Disorder Promotes Tumorigenesis of High HMGA2 Expression Gastric Cancer. Front Mol Biosci 2021; 8:707295. [PMID: 34513922 PMCID: PMC8427521 DOI: 10.3389/fmolb.2021.707295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022] Open
Abstract
The inhibitor of CDK4/6 has been clinically used for treating certain types of cancer which are characterized by G0/G1 acceleration induced by the CDK4/6-RB1 pathway. On the contrary, the cell cycle–related molecules are abnormal in over 50% of the patients with gastric cancer (GC), but the efficiency of inhibiting CDK4/6 does not work well as it is expected. In our study, we found HMGA2 promotes GC through accelerating the S–G2/M phase transition, instead of G0/G1. We also found CDK13 is the direct target gene of HMGA2. Importantly, we analyzed 200 pairs of GC and the adjacent tissue and proved the positive relation between HMGA2 and CDK13; moreover, high expression of both genes predicts a poorer prognosis than the expression of single gene does. We explored the effect of the novel CDK12/13 inhibiting agent, SR-4835, on high HMGA2 expression GC and found inhibition of both genes jointly could reach a satisfied result. Therefore, we suggest that inhibition of CDK13 and HMGA2 simultaneously could be an effective strategy for high HMGA2 expression GC. To detect the expression of both genes simultaneously and individually could be of benefit to predict prognosis for GC.
Collapse
Affiliation(s)
- Zhouying Wu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Min Wang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Feng Li
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Feng Wang
- Department of Pathology, Inner Mongolia People's Hospital, Hohhot, China
| | - Jianchao Jia
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Zongqi Feng
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Xue Huo
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Jie Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Wen Jin
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Rina Sa
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| | - Wenming Gao
- Departments of Cardiology, Hohhot First Hospital, Hohhot, China
| | - Lan Yu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China.,Department of Endocrine and Metabolic Diseases, Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
13
|
Siri B, Varesio C, Freri E, Darra F, Gana S, Mei D, Porta F, Fontana E, Galati G, Solazzi R, Niceta M, Veggiotti P, Alfei E. CDKL5 deficiency disorder in males: Five new variants and review of the literature. Eur J Paediatr Neurol 2021; 33:9-20. [PMID: 33989939 DOI: 10.1016/j.ejpn.2021.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022]
Abstract
The X-linked Cyclin-Dependent Kinase-Like 5 (CDKL5) gene encodes a serine-threonine kinase highly expressed in the developing brain. Loss of function of CDKL5 is pointed out to underlie the CDKL5 Deficiency Disorder (CDD), an X-linked dominant disease characterized by early-onset epileptic encephalopathy and developmental delay, usually affecting females more than males. To the best to our knowledge, only 45 males with CDD have been reported so far. Type and position of CDKL5 variants with different impact on the protein are reported to influence the clinical presentation. X-chromosome inactivation occurring in females and post-zygotic mosaicism in males are also believed to contribute to this variability. Based on these issues, genotype-phenotype correlations are still challenging. Here, we describe clinical features of five additional affected males with unreported CDKL5 variants, expanding the molecular spectrum of the disorder. We also reviewed the clinical profile of the previously reported 45 males with molecularly confirmed CDD. Severe developmental delay, cortical visual impairment, and early-onset refractory epilepsy characterize the CDD picture in males. By assessing the molecular spectrum, we confirm that germ-line truncating CDKL5 variants, equally distributed across the coding sequence, are the most recurrent mutations in CDD, and cause the worsen phenotype. While recurrence and relevance of missense substitutions within C-terminal remain still debated, disease-causing missense changes affecting the N-terminal catalytic domain correlate to a severe clinical phenotype. Finally, our data provide evidence that post-zygotic CDKL5 mosaicism may result in milder phenotypes and, at least in a subset of subjects, in variable response to antiepileptic treatments.
Collapse
Affiliation(s)
- Barbara Siri
- Department of Paediatrics, Ospedale Infantile Regina Margherita, University of Torino, Italy; Division of Metabolism, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Italy.
| | - Elena Freri
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Darra
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Simone Gana
- Medical Genetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Italy
| | - Francesco Porta
- Department of Paediatrics, AOU Città della Salute e della Scienza di Torino, University of Torino, Italy
| | - Elena Fontana
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Giulia Galati
- Child Neuropsychiatry, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, AOUI Verona, Verona, Italy
| | - Roberta Solazzi
- Department of Paediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Pierangelo Veggiotti
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| | - Enrico Alfei
- Paediatric Neurology Unit V. Buzzi Children's Hospital Milan, Italy
| |
Collapse
|
14
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
15
|
Qi JC, Yang Z, Lin T, Ma L, Wang YX, Zhang Y, Gao CC, Liu KL, Li W, Zhao AN, Shi B, Zhang H, Wang DD, Wang XL, Wen JK, Qu CB. CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 contributes to prostate carcinogenesis. J Exp Clin Cancer Res 2021; 40:2. [PMID: 33390186 PMCID: PMC7780414 DOI: 10.1186/s13046-020-01814-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. METHODS The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. RESULTS Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. CONCLUSIONS These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.
Collapse
Affiliation(s)
- Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Tao Lin
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Long Ma
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Ya-Xuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Yong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Chun-Cheng Gao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
16
|
Colas P. Cyclin-dependent kinases and rare developmental disorders. Orphanet J Rare Dis 2020; 15:203. [PMID: 32762766 PMCID: PMC7410148 DOI: 10.1186/s13023-020-01472-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies in the past 30 years have established that cyclin-dependent kinases (CDKs) exert many diverse, important functions in a number of molecular and cellular processes that are at play during development. Not surprisingly, mutations affecting CDKs or their activating cyclin subunits have been involved in a variety of rare human developmental disorders. These recent findings are reviewed herein, giving a particular attention to the discovered mutations and their demonstrated or hypothesized functional consequences, which can account for pathological human phenotypes. The review highlights novel, important CDK or cyclin functions that were unveiled by their association with human disorders, and it discusses the shortcomings of mouse models to reveal some of these functions. It explains how human genetics can be used in combination with proteome-scale interaction databases to loom regulatory networks around CDKs and cyclins. Finally, it advocates the use of these networks to profile pathogenic CDK or cyclin variants, in order to gain knowledge on protein function and on pathogenic mechanisms.
Collapse
Affiliation(s)
- Pierre Colas
- Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université / CNRS, Roscoff, France.
| |
Collapse
|
17
|
Yakubov R, Ayman A, Kremer AK, van den Akker M. One-month-old girl presenting with pseudohypoaldosteronism leading to the diagnosis of CDK13-related disorder: a case report and review of the literature. J Med Case Rep 2019; 13:386. [PMID: 31883531 PMCID: PMC6935476 DOI: 10.1186/s13256-019-2319-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/20/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND It is not uncommon that an infant with a disease of unknown etiology is presented to a physician. Facial dysmorphic features lead to a different diagnosis. It is a challenge to link the presentation to the newfound diagnosis. CASE PRESENTATION A 37-day-old Yemenite Jewish girl was presented to our institution with a clinical picture of pseudohypoaldosteronism due to abnormal facial features and a psychomotor developmental delay. Further investigation led to the diagnosis of CDK13-related disorder. According to the literature, CDK13 has a key role in the cell cycle, but no interference with the aldosterone signaling pathway or electrolyte balance was described. No mutations in the previously described gene NR3C2 (cytogenetic location 4q31.23), encoding the mineralocorticoid receptor, were found. Although the clinical presentation corresponded to pseudohypoaldosteronism type 1, we could not genetically confirm this. CONCLUSIONS Probably pseudohypoaldosteronism was a coincidental finding in this girl with a CDK13 mutation, but because only limited information is known about CDK13-related disorders, further investigation could be more informative to clarify this presentation.
Collapse
Affiliation(s)
- Renata Yakubov
- Department of Pediatrics, Nephrology Unit, Hillel Yaffe Medical Center, Ha-Shalom Street, 38100, Hadera, Israel.
| | - Asaly Ayman
- Department of Pediatrics, Nephrology Unit, Hillel Yaffe Medical Center, Ha-Shalom Street, 38100, Hadera, Israel
| | - Adi Klein Kremer
- Department of Pediatrics, Nephrology Unit, Hillel Yaffe Medical Center, Ha-Shalom Street, 38100, Hadera, Israel
| | - Machiel van den Akker
- Department of Pediatrics, Queen Paola Children's Hospital, Antwerp, Belgium.,Department of Pediatric Hematology Oncology, UZ Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Kumar D. Preface. ADVANCES IN GENETICS 2019; 103:ix-xi. [PMID: 30904098 DOI: 10.1016/s0065-2660(19)30010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Dhavendra Kumar
- Division of Cancer and Genetics, Institute of Medical Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom; The Genomic Policy Unit, The University of South Wales, Pontypridd, United Kingdom
| |
Collapse
|