1
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Huang G, Cong Z, Liu Z, Chen F, Bravo A, Soberón M, Zheng J, Peng D, Sun M. Silencing Ditylenchus destructor cathepsin L-like cysteine protease has negative pleiotropic effect on nematode ontogenesis. Sci Rep 2024; 14:10030. [PMID: 38693283 PMCID: PMC11063044 DOI: 10.1038/s41598-024-60018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.
Collapse
Affiliation(s)
- Guoqiang Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ziwen Cong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhonglin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Feng Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Emans SW, Yerevanian A, Ahsan FM, Rotti JF, Zhou Y, Cedillo L, Soukas AA. GRD-1/PTR-11, the C. elegans hedgehog/patched-like morphogen-receptor pair, modulates developmental rate. Development 2023; 150:dev201974. [PMID: 37982457 PMCID: PMC10753586 DOI: 10.1242/dev.201974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Both hedgehog (Hh) and target of rapamycin complex 2 (TORC2) are central, evolutionarily conserved signaling pathways that regulate development and metabolism. In C. elegans, loss of the essential TORC2 component RICTOR (rict-1) causes delayed development, shortened lifespan, reduced brood, small size and increased fat. Here, we report that knockdown of both the hedgehog-related morphogen grd-1 and its patched-related receptor ptr-11 rescues delayed development in TORC2 loss-of-function mutants, and grd-1 and ptr-11 overexpression delays wild-type development to a similar level to that in TORC2 loss-of-function animals. These findings potentially indicate an unexpected role for grd-1 and ptr-11 in slowing developmental rate downstream of a nutrient-sensing pathway. Furthermore, we implicate the chronic stress transcription factor pqm-1 as a key transcriptional effector in this slowing of whole-organism growth by grd-1 and ptr-11. We propose that TORC2, grd-1 and ptr-11 may act linearly or converge on pqm-1 to delay organismal development.
Collapse
Affiliation(s)
- Sinclair W. Emans
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Armen Yerevanian
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Fasih M. Ahsan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Jen F. Rotti
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yifei Zhou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lucydalila Cedillo
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Biological and Biomedical Sciences, Division of Medical Science, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander A. Soukas
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADAR-mediated regulation of PQM-1 expression in neurons impacts gene expression throughout C. elegans and regulates survival from hypoxia. PLoS Biol 2023; 21:e3002150. [PMID: 37747897 PMCID: PMC10553819 DOI: 10.1371/journal.pbio.3002150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington, Indiana, United States of America
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine–Bloomington, Bloomington, Indiana, United States of America
| | - Heather A. Hundley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
5
|
Mahapatra A, Dhakal A, Noguchi A, Vadlamani P, Hundley HA. ADARs employ a neural-specific mechanism to regulate PQM-1 expression and survival from hypoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539519. [PMID: 37205482 PMCID: PMC10187282 DOI: 10.1101/2023.05.05.539519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.
Collapse
Affiliation(s)
- Ananya Mahapatra
- Genome, Cell and Developmental Biology Graduate Program, Indiana University, Bloomington IN, 47405 USA
| | - Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | - Aika Noguchi
- Department of Biology, Indiana University, Bloomington IN 47405 USA
| | - Pranathi Vadlamani
- Medical Sciences Program, Indiana University School of Medicine – Bloomington, Bloomington IN, 47405 USA
| | | |
Collapse
|
6
|
The evolving role of the Caenorhabditis elegans model as a tool to advance studies in nutrition and health. Nutr Res 2022; 106:47-59. [DOI: 10.1016/j.nutres.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
|
7
|
Mata-Cabana A, Romero-Expósito FJ, Geibel M, Piubeli FA, Merrow M, Olmedo M. Deviations from temporal scaling support a stage-specific regulation for C. elegans postembryonic development. BMC Biol 2022; 20:94. [PMID: 35477393 PMCID: PMC9047341 DOI: 10.1186/s12915-022-01295-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND After embryonic development, Caenorhabditis elegans progress through for larval stages, each of them finishing with molting. The repetitive nature of C. elegans postembryonic development is considered an oscillatory process, a concept that has gained traction from regulation by a circadian clock gene homologue. Nevertheless, each larval stage has a defined duration and entails specific events. Since the overall duration of development is controlled by numerous factors, we have asked whether different rate-limiting interventions impact all stages equally. RESULTS We have measured the duration of each stage of development for over 2500 larvae, under varied environmental conditions known to alter overall developmental rate. We applied changes in temperature and in the quantity and quality of nutrition and analysed the effect of genetically reduced insulin signalling. Our results show that the distinct developmental stages respond differently to these perturbations. The changes in the duration of specific larval stages seem to depend on stage-specific events. Furthermore, our high-resolution measurement of the effect of temperature on the stage-specific duration of development has unveiled novel features of temperature dependence in C. elegans postembryonic development. CONCLUSIONS Altogether, our results show that multiple factors fine tune developmental timing, impacting larval stages independently. Further understanding of the regulation of this process will allow modelling the mechanisms that control developmental timing.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012, Seville, Spain
| | | | - Mirjam Geibel
- Faculty of Medicine, Institute of Medical Psychology, LMU Munich, Goethestrasse 31, 80336, Munich, Germany
| | - Francine Amaral Piubeli
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 41012, Seville, Spain
| | - Martha Merrow
- Faculty of Medicine, Institute of Medical Psychology, LMU Munich, Goethestrasse 31, 80336, Munich, Germany
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012, Seville, Spain.
| |
Collapse
|