1
|
Elhadad N, de Campos Zani SC, Chan CB, Wu J. Ovalbumin Hydrolysates Enhance Skeletal Muscle Insulin-Dependent Signaling Pathway in High-Fat Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15248-15255. [PMID: 38940702 DOI: 10.1021/acs.jafc.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Egg white hydrolysates (EWH) and ovotransferrin-derived peptides have distinct beneficial effects on glucose metabolism. This research aims to investigate whether ovalbumin hydrolysates (OVAHs), without ovotransferrin can improve insulin signaling pathway in high-fat diet (HFD)-fed mice. Two types of ovalbumin hydrolysates were produced, either using thermoase (OVAT), or thermoase + pepsin (OVATP). Both OVAHs-supplemented groups exhibited lower body weight gain (P < 0.001) and enhanced oral glucose tolerance (P < 0.05) compared with HFD. Moreover, diet supplementation with either hydrolysate increased the insulin-stimulated activation of protein kinase B (AKT) and insulin receptor β (IRβ) (P < 0.0001) in skeletal muscle. In conclusion, OVAHs improved glucose tolerance and insulin-dependent signaling pathway in HFD-fed mice.
Collapse
Affiliation(s)
- Nesma Elhadad
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| | - S C de Campos Zani
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - C B Chan
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, T6G2H7 Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, T6G2E1 Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, T6G2P5 Alberta, Canada
| |
Collapse
|
2
|
Cao X, Chen L, Lu K, Yu T, Xia H, Wang S, Sun G, Liu P, Liao W. Egg white-derived peptides reduced blood glucose in high-fat-diet and low-dose streptozotocin-induced type 2 diabetic mice via regulating the hepatic gluconeogenic signaling and metabolic profile. Food Funct 2024; 15:7003-7016. [PMID: 38855929 DOI: 10.1039/d4fo00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Food proteins are considered an ideal source for the identification of bioactive peptides with the potential to intervene in nutrition-related chronic diseases such as cardiovascular disease, obesity, and diabetes. Egg white-derived peptides (EWPs) have been shown to improve glucose tolerance in insulin-resistant rats. However, underlying mechanisms are to be elucidated. Therefore, we hypothesized that EWP exerts a hypoglycemic effect by regulating hepatic glucose homeostasis. Our results showed that 7 weeks of EWP treatment reduced the fasting blood glucose in T2DM mice and the inhibition of the liver gluconeogenic pathway was involved in the mechanisms of actions. Using the untargeted metabolomics technique, we found that EWP treatment also altered the hepatic metabolic profile in T2DM mice, in which, the role of fatty acid esters of hydroxy fatty acids in mediating the hypoglycemic effect of EWPs might be pivotal.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Kun Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Tingqing Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| | - Ping Liu
- Department of Food Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, P.R. China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, P.R. China.
| |
Collapse
|
3
|
Virtanen JK, Larsson SC. Eggs - a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10507. [PMID: 38370115 PMCID: PMC10870976 DOI: 10.29219/fnr.v68.10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/07/2022] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiovascular diseases (CVD), type 2 diabetes (T2D), and cancer are a significant public health burden in the Nordic and Baltic countries. High intake of eggs, mainly due to its high cholesterol content, has been suggested to have adverse health effects. The purpose of this scoping review is to describe the evidence related to the impact of egg intake on health. A literature search identified 38 systematic reviews and meta-analyses on egg consumption in relation to health outcomes published between 2011 and 30 April 2022. Overall, current evidence from systematic reviews of randomized clinical trials indicates that higher egg intake may increase serum total cholesterol concentration and the ratio of low-density lipoprotein to high-density lipoprotein cholesterol, but with substantial heterogeneity in the response. However, recent evidence from observational studies does not provide strong support for a detrimental role of moderate egg consumption (up to one egg/day) on the risk of CVD, especially in the European studies. The overall evidence from observational studies indicates that egg consumption is not associated with increased risk of mortality or T2D in European study populations. There is also little support for a role of egg consumption in cancer development, although a weak association with higher risk of certain cancers has been found in some studies, mainly case-control studies. Again, no associations with cancer risk have been observed in European studies. Systematic reviews and meta-analyses of egg consumption in relation to other health-related outcomes are scarce. There are also limited data available on the associations between the consumption of more than one egg/day and risk of diseases. Based on the available evidence, one egg/day is unlikely to adversely affect overall disease risk.
Collapse
Affiliation(s)
- Jyrki K. Virtanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Susanna C. Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Arena S, Renzone G, Ciaravolo V, Scaloni A. Albumen and Yolk Plasma Peptidomics for the Identification and Quantitation of Bioactive Molecules and the Quality Control of Hen Egg Products. Methods Mol Biol 2024; 2758:241-254. [PMID: 38549018 DOI: 10.1007/978-1-0716-3646-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Hen eggs and the corresponding food products are essential components of human diet. In addition to supplying basic nutrients, they contain functional peptides that are released in vivo within the intact raw material following physiological proteolytic events affecting specific proteins or derive from technological processing of albumen and yolk fractions as a result of the dedicated use of proteases from plant and microbial sources. Besides their potential importance for functional applications, peptides released under physiological conditions in intact egg can be used as markers of product storage and deterioration. Therefore, characterization and quantitation of peptides in egg and egg-derived products can be used to implement evaluation of potential bioactivities as well as to assess food product qualitative characteristics. Here, we provide dedicated information on extraction, identification, and quantitative analysis of peptides from albumen and yolk plasma; nano-liquid chromatography-mass spectrometry combined with bioinformatic analysis of resulting raw data by different software tools allowed to assign molecules based on database searching and to evaluate their relative quantity in different samples.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Giovanni Renzone
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Valentina Ciaravolo
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Portici, Italy.
| |
Collapse
|
5
|
Zhang Y, Liu M, Ding Y, Wang T, Ma Y, Huang J, He S, Qu Q, Sun F, Lv W, Guo S. Effects of Perilla Seed Meal on Productive Performance, Egg Quality, Antioxidant Capacity and Hepatic Lipid Metabolism of Wenchang Breeder Hens. Animals (Basel) 2023; 13:3587. [PMID: 38003204 PMCID: PMC10668772 DOI: 10.3390/ani13223587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The aim of this study was to investigate the effects of adding perilla seed meal (PSM) to the diet on reproductive performance, egg quality, yolk fatty acids, antioxidant capacity and liver lipid metabolism in breeding hens. A total of 192 31-week-old yellow-feathered hens were randomly divided into 4 treatments with 6 replicates of 8 birds for 8 weeks. The chickens were fed a typical corn-soybean meal diet containing 0% (control), 0.3%, 0.6%, and 1% PSM. The results showed that PSM can change the productivity of laying hens. Adding 0.6% PSM to the feed reduced the mortality rate of chickens. Adding 1% PSM improved the fertilization rate and hatching rate of chickens. Regarding egg quality, the albumen height and Haugh unit were improved in the 0.6% PSM group. The content of MUFAs and PUFAs in the egg yolk was increased in all the PSM groups, while SFAs were only increased in the 0.6% PSM group. Among the indicators related to lipid metabolism, serum GLU decreased in all the PSM groups. The 0.6% PSM group had a reduction in serum and liver TG, as well as reductions in serum LDL-C and ALT. The same results were observed for the abdominal fat percentage in the 0.6% PSM group. Liver lipid metabolism-associated gene expression of FAS and LXRα was decreased in all the PSM groups, and the mRNA expression of ACC and SREBP-1c was significantly reduced in the 0.6% PSM group. HE staining showed that the vacuoles in the liver tissue gradually decreased with increasing PSM doses, especially the 1% PSM dose. Lipid droplets with a similar trend were observed using Oil Red O staining. In the results of the antioxidant capacity test, the serum T-AOC was increased in the 0.6% and 1% PSM groups, and the SOD in both the serum and liver was significantly increased in all the PSM groups. The expression of antioxidant-related genes such as Nrf2, NQO-1, HO-1, CAT and GSH-Px was significantly upregulated in the 1% PSM group. In conclusion, the PSM diet improved the lipid metabolism and antioxidant capacity of breeding hens. PSM reduces mortality and improves fertilization and hatchability in the late laying period of chickens, resulting in greater benefits. We recommend adding 0.6% PSM to layer feed, which improves the physical condition of the hens and brings higher economic benefits.
Collapse
Affiliation(s)
- Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Mengjie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Yiqing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
| | - Fenggang Sun
- Guangdong Weilai Biotechnology Co., Ltd., Guangzhou 510000, China
| | - Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (M.L.); (Y.D.); (T.W.); (Y.M.); (J.H.); (S.H.); (Q.Q.)
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Nature Medicine, Guangzhou 510642, China
- International Institute of Traditional Chinese Veterinary Medicine, Guangzhou 510642, China
| |
Collapse
|
6
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
7
|
Yu Z, Ma W, Ji H, Fan Y, Zhao W. Interaction mechanism of egg derived peptides RVPSL and QIGLF with dipalmitoyl phosphatidylcholine membrane: microcalorimetric and molecular dynamics simulation studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6383-6393. [PMID: 37205773 DOI: 10.1002/jsfa.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Egg-derived peptides are becoming increasingly popular due to their biological activity and non-toxic effects. The egg-derived peptides Arg-Val-Pro-Ser-Leu (RVPSL) and Gln-Ile-Gly-Leu-Phe (QIGLF) display strong angiotensin-converting enzyme inhibitory activity and they can be taken up by intestinal epithelial cells. The interaction of the egg-derived peptides RVPSL and QIGLF with the membrane remains unclear. RESULTS The position and structure of the peptides in the membrane were calculated. The maximum density values of RVPSL and QIGLF were 2.27 and 1.22 nm from the center of the 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membrane, respectively, indicating that peptides penetrated the membrane-water interface and were embedded in the membrane. The interaction of RVPSL and QIGLF with the DPPC membrane did not affect the average area per lipid or the lipid sequence parameters. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between the peptide RVPSL with the DPPC membrane were 17.91 kJ mol-1 , -17.63 kJ mol-1 , 187.5 J mol-1 ·k-1 , respectively. The thermodynamic parameters ΔH, ΔG, and ΔS of the interaction between peptide QIGLF with DPPC membrane were 17.10 kJ mol-1 , -17.12 kJ mol-1 , 114.8 J mol-1 ·k-1 , respectively. CONCLUSION The results indicated that the binding of peptides RVPSL and QIGLF to DPPC is an endothermic, spontaneous, and entropy-driven reaction. The results of the study are relevant to the problem of the low bioavailability of bioactive peptides (BP). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| | - Wenhao Ma
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Huizhuo Ji
- College of Food Science and Engineering, Bohai University, Jinzhou, P. R. China
| | - Yue Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xian, P. R. China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, P. R. China
| |
Collapse
|
8
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
9
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
10
|
Yu Z, Wang L, Wu S, Zhao W. Dissecting the potential mechanism of antihypertensive effects of RVPSL on spontaneously hypertensive rats via widely targeted kidney metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:428-436. [PMID: 36373790 DOI: 10.1002/jsfa.12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Our previous study has demonstrated that the egg-white-derived peptide RVPSL can lower blood pressure in spontaneously hypertensive rats (SHRs), but its potential action mechanism remains unclear. In this work, the underlying mechanism of the antihypertensive effects of RVPSL in SHRs was elucidated using the widely targeted kidney metabolomics approach. RESULTS Ten SHRs were divided into two groups: SHR-Untreated group (0.9% saline) and SHR-RVPSL group (50 mg kg-1 body weight RVPSL) for 4 weeks. After 4 weeks, kidney samples were collected and widely targeted (liquid chromatography-electrospray ionization-tandem mass spectrometry) metabolomics was used to detect metabolites. Fifty-six biomarkers were identified that may be associated with hypertension. Among them, 17 biomarkers were upregulated and 39 biomarkers were downregulated. The results suggested that eight potential biomarkers were identified in kidney samples: O-phospho-l-serine, tyramine, citric acid, 3-hydroxybutyrate, O-acetyl-l-serine, 15-oxo-5Z,8Z,11Z,13E-eicosatetraenoic acid (15-oxoETE), dopaquinone and 3,3',5-triiodo-l-thyronine. These potential biomarkers mainly involved carbon metabolism, thyroid hormone signaling pathway, tyrosine metabolism and arachidonic acid metabolism. CONCLUSION The study suggested that RVPSL may exert antihypertensive effects through upregulation of O-phospho-l-serine, 3-hydroxybutyrate and 15-oxoETE, and downregulation of tyramine, citric acid, O-acetyl-l-serine, 3,3',5-triiodo-l-thyronine and dopaquinone. The antihypertensive effects of RVPSL may be related to carbon metabolism, thyroid hormone signaling pathway, tyrosine metabolism and arachidonic acid metabolism. RVPSL exhibited a potent antihypertensive effect, and the antihypertensive effects were associated with inhibition of vascular smooth muscle cell proliferation, vascular remodeling, vascular endothelium dysfunction, restoring reactive oxygen species, oxidative stress, inflammation and immune reaction. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Li Wang
- College of Food Science and Engineering, Bohai University, Jinzhou, PR China
| | - Sijia Wu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
11
|
Wu S, Zhuang H, Yan H, Mao C, Wang B, Zhou G, Tian G. Mechanism of interactions between tripeptide NCW on cellular membrane using molecular dynamic simulation. Front Nutr 2022; 9:1066873. [DOI: 10.3389/fnut.2022.1066873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Tripeptide NCW identified in Mizuhopecten yessoensis has been shown to possess in vivo antihypertensive effect. However, the poor understanding of the absorption of NCW across the membrane limits its application. In this study, we have investigated the interaction of NCW with DPPC membrane via 400 ns all-atom molecular dynamic simulation using GROMACS software. The structural variations of NCW during absorption, the location and distribution of NCW in the membrane, and the effect of NCW on the properties of membranes during simulation were analyzed to understand the dynamic behavior of NCW in DPPC membrane system. The results suggested that the structures of NCW were stable during simulation. Further, NCW could bind on the surface of the DPPC membrane and enter the hydrophobic interior of the DPPC membrane. Residue Try played an important role in the absorption of NCW across the membrane. Hydrogen bonds and hydrophobic interactions stabilized the interaction of NCW with the membrane. All the above studies analyzed the interaction mechanism between NCW and DPPC membranes at the atomic level and laid the foundation for further transmembrane studies of NCW.
Collapse
|
12
|
Cao X, Liao W, Wang S. Food protein-derived bioactive peptides for the management of nutrition related chronic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:277-307. [PMID: 35940708 DOI: 10.1016/bs.afnr.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dietary intervention via modifications of dietary pattern or supplementations of naturally derived bioactive compounds has been considered as an efficient approach in management of nutrition related chronic diseases. Food protein-derived bioactive peptide is representative of natural compounds which show the potential to prevent or mitigate nutrition related chronic diseases. In the past decades, substantial research has been conducted concentrating on the characterization, bioavailability, and activity assessment of bioactive peptides. Although various activities of bioactive peptides have been reported, the activity testes of most peptides were only conducted in cells and animal models. Some clinical trials of bioactive peptides were also reported but only limited to antihypertensive peptides, antidiabetic peptides and peptides modulating blood lipid profile. Hereby, clinical evidence of bioactive peptides in management of nutrition-related chronic diseases is summarized in this chapter, which aims at providing implications for the clinical studies of bioactive peptides in the future.
Collapse
Affiliation(s)
- Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China.
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Matsuoka R, Sugano M. Health Functions of Egg Protein. Foods 2022; 11:2309. [PMID: 35954074 PMCID: PMC9368041 DOI: 10.3390/foods11152309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Egg protein is a remarkably abundant source of protein, with an amino acid score of 100 and the highest net protein utilization rate. However, there have been relatively fewer studies investigating the health benefits of egg protein. In this review, we have summarized the available information regarding the health benefits of egg proteins based on human studies. In particular, studies conducted on the characteristics of egg whites, as they are high in pure protein, have reported their various health functions, such as increases in muscle mass and strength enhancement, lowering of cholesterol, and visceral fat reduction. Moreover, to facilitate and encourage the use of egg white protein in future, we also discuss its health functions. These benefits were determined by developing an egg white hydrolysate and lactic-fermented egg whites, with the latter treatment simultaneously improving the egg flavor. The health benefits of the protein hydrolysates from the egg yolk (bone growth effect) and eggshell membrane (knee join pain-lowering effect) have been limited in animal studies. Therefore, the consumption of egg protein may contribute to the prevention of physical frailty and metabolic syndromes.
Collapse
Affiliation(s)
| | - Michihiro Sugano
- Kyushu University, Fukuoka 819-0395, Japan;
- Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
- Chair of the Japan Egg Science Society, Tokyo 182-0002, Japan
| |
Collapse
|
14
|
Zhou N, Zhao Y, Yao Y, Wu N, Xu M, Du H, Wu J, Tu Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5-20. [PMID: 34962122 DOI: 10.1021/acs.jafc.1c04742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress and chronic inflammation are the common pathological bases of chronic diseases such as atherosclerosis, cancer, and cardiovascular diseases, but most of the treatment drugs for chronic diseases have side effects. There is an increasing interest to identify food-derived bioactive compounds that can mitigate the pathological pathways associated with oxidative stress and chronic inflammation. Egg white contain a variety of biologically active proteins, many of which have antioxidant and anti-inflammatory activities and usually show better activity after enzymatic hydrolysis. This review covers the antioxidative stress and anti-inflammatory activities of egg white proteins and their derived peptides and clarifies their mechanism of action in vivo and in vitro. In addition, the link between oxidative stress and inflammation as well as their markers are reviewed. It suggests the potential application of egg white proteins and their derived peptides and puts forward further research prospects.
Collapse
Affiliation(s)
- Na Zhou
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Sun S, Gao Y, Chen J, Liu R. Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chem 2022; 378:132089. [PMID: 35032798 DOI: 10.1016/j.foodchem.2022.132089] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Collagen from tilapia skin was extracted and confirmed as type I collagen. Collagen was then hydrolyzed with alcalase for 4 h and the released peptides were identified. The structure-activity relationship of collagen-released peptides showed that proline at position C3 played a key role in improving ACE inhibitory activity, while proline at position C2 had a negative effect. Collagen peptide release kinetics showed that with the extension of time, the number of peptides increased dramatically at first, decreased, and then tended to be stable. This indicated that collagen peptides mainly originated from primary enzymolysis at the first stage and began to undergo secondary hydrolysis in the second stage. Afterwards, secondary enzymolysis was dominant at the third stage and finally remained stable at final two stages. Understanding the pattern of collagen peptide release kinetics might offer a powerful approach in the collagen-peptide food processing industry to better control food safety and quality.
Collapse
Affiliation(s)
- Shanshan Sun
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | - Junde Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
16
|
Zhou X, Liu L, Wang L, Liu T, Wu X. Proteomic study of Chinese black-bone silky fowl and the ring-necked pheasant egg white by iTRAQ technique. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Sanlier N, Üstün D. Egg consumption and health effects: A narrative review. J Food Sci 2021; 86:4250-4261. [PMID: 34472102 DOI: 10.1111/1750-3841.15892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
This study was planned and conducted to investigate the effects of egg consumption on metabolic syndrome components and potential mechanisms of action on humans. Egg, an important source of animal protein, is defined as a functional food containing various bioactive compounds that can affect the proinflammatory and anti-inflammatory pathways. As a matter of fact, the egg can show immunomodulatory, anti-inflammatory, antioxidant, anticancer, or antihypertensive effects with its bioactive components. It is claimed that egg consumption may protect individuals against metabolic syndrome by increasing HDL-C levels and reducing inflammation. The increase in egg consumption creates the perception that it may lead to cardiovascular diseases due to its cholesterol content. However, there is insufficient evidence as to whether dietary cholesterol-lowers LDL-C. The possible potential mechanisms of egg impact on human health, MEDLINE, Embase, the Cochrane Central, www.ClinicalTrials.gov, PubMed, Science Direct, Google Scholar, and selected websites including) and databases were examined in this regard. With a view to delving into the rather mysterious relationship between egg cholesterol and blood cholesterol, it is necessary to understand the absorption of cholesterol from the egg and to know the functioning of the intestinal microbiota. Studies conducted to date have generally yielded inconsistent results regarding egg consumption and risks of CVD, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Dilara Üstün
- Department of Nutrition and Dietetics, Institute of Health Sciences, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
18
|
Mahgoub S, Alagawany M, Nader M, Omar SM, Abd El-Hack ME, Swelum A, Elnesr SS, Khafaga AF, Taha AE, Farag MR, Tiwari R, Marappan G, El-Sayed AS, Patel SK, Pathak M, Michalak I, Al-Ghamdi ES, Dhama K. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig Egypt
| | - Maha Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Safaa M. Omar
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig’ Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Up Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Izabela Michalak
- Department of Advanced Material Technologies,Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław’, Poland
| | - Etab S. Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| |
Collapse
|
19
|
Miguel M, Vassallo DV, Wiggers GA. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems. Curr Pharm Des 2021; 26:3676-3683. [PMID: 32216734 DOI: 10.2174/1381612826666200327181458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación em Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espirito Santo and School of Medicine of Santa Casa de Misericordia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitoria, Espirito Santo, Brazil
| | - Giulia A Wiggers
- Cardiovascular Physiology Research Group, Federal University of Pampa, BR 472 - Km 592 - PO box 118. Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
20
|
Lysozyme and its modified forms: A critical appraisal of selected properties and potential. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
22
|
Kaur A, Kehinde BA, Sharma P, Sharma D, Kaur S. Recently isolated food-derived antihypertensive hydrolysates and peptides: A review. Food Chem 2020; 346:128719. [PMID: 33339686 DOI: 10.1016/j.foodchem.2020.128719] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Hypertension is a non-communicable disease characterized by elevated blood pressure, and a prominent metabolic syndrome of modern age. Food-borne bioactive peptides have shown considerable potencies as suitable therapeutic agents for hypertension. The peptide inhibition of the angiotensin I-converting enzyme (ACE) from its default biochemical conversion of Ang I to Ang II has been studied and more relatively adopted in several studies. This review offers an examination of the isolation of concomitant proteins in foods, their hydrolysis into peptides and the biofunctionality checks of those peptides based on their anti-hypertensive potentialities. Furthermore, critical but concise details about methodologies and analytical techniques used in the purification of such peptides are discussed. This review is a beneficial literature supplement for scholars and provides functional awareness material for the food-aligned alternative therapy for hypertension. In addition, it points researchers in the direction of adopting food materials and associated by-products as natural sources for the isolation biologically active peptides.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| | | | - Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India.
| | - Deepansh Sharma
- Amity Institute of Microbial Technology, Amity University Rajasthan, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara 144411, Punjab, India
| |
Collapse
|
23
|
Spent Hen Protein Hydrolysate with Good Gastrointestinal Stability and Permeability in Caco-2 Cells Shows Antihypertensive Activity in SHR. Foods 2020; 9:foods9101384. [PMID: 33019511 PMCID: PMC7601532 DOI: 10.3390/foods9101384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Spent hens are a major byproduct of the egg industry but are rich in muscle proteins that can be enzymatically transformed into bioactive peptides. The present study aimed to develop a spent hen muscle protein hydrolysate (SPH) with antihypertensive activity. Spent hen muscle proteins were hydrolyzed by nine enzymes, either individually or in combination; 18 SPHs were assessed initially for their in vitro angiotensin-converting enzyme (ACE) inhibitory activity, and three SPHs, prepared by Protex 26L (SPH-26L), pepsin (SPH-P), and thermoase (SPH-T), showed promising activity and peptide yield. These three hydrolysates were further assessed for their angiotensin-converting enzyme 2 (ACE2) upregulating, antioxidant, and anti-inflammatory activities; only SPH-T upregulated ACE2 expression, while all three SPHs showed antioxidant and anti-inflammatory activities. During simulated gastrointestinal digestion, ACE2 upregulating, ACE inhibitory and antioxidant activities of SPH-T were not affected, but those of SPH-26L and SPH-P were reduced. ACE inhibitory activity of gastrointestinal-digested SPH-T was not affected after the permeability study in Caco-2 cells, while ACE2 upregulating, antioxidant and anti-inflammatory activities were improved; nine novel peptides with five–eight amino acid residues were identified from the Caco-2 permeate. Among these three hydrolysates, only SPH-T reduced blood pressure significantly when given orally at a daily dose of 1000 mg/kg body weight to spontaneously hypertensive rats. SPH-T can be developed into a promising functional food ingredient against hypertension, contributing to a more sustainable utilization for spent hens while generating extra revenue for the egg industry.
Collapse
|
24
|
Moreno-Fernández S, Garcés-Rimón M, Miguel M. Egg-derived peptides and hydrolysates: A new bioactive treasure for cardiometabolic diseases. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Yu Z, Wang L, Wu S, Zhao W, Ding L, Liu J. In vivo
anti‐hypertensive effect of peptides from egg white and its molecular mechanism with ACE. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Li Wang
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Sijia Wu
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Wenzhu Zhao
- College of Food Science and Engineering Bohai University Jinzhou121013China
| | - Long Ding
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food Jilin University Changchun130062China
| |
Collapse
|
26
|
Liao W, Wu J. The ACE2/Ang (1-7)/MasR axis as an emerging target for antihypertensive peptides. Crit Rev Food Sci Nutr 2020; 61:2572-2586. [PMID: 32551837 DOI: 10.1080/10408398.2020.1781049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Food protein-derived bioactive peptides, particularly antihypertensive peptides, are important constituents of functional foods or nutraceuticals. Most antihypertensive are identified as the inhibitors of angiotensin converting enzyme (ACE), a key enzyme responsible for the generation of angiotensin II (Ang II), which is a vasoconstricting peptide. Hence, ACE has long been used as a universal target to identify antihypertensive peptides. Angiotensin converting enzyme 2 (ACE2), is a homolog of ACE but uses Ang II as its key substrate to produce angiotensin (1-7), exerting vasodilatory activity via the mas receptor (MasR). Therefore, ACE2 functions in the opposite way as ACE and is an emerging novel target for cardiovascular therapy. The potential of food protein-derived bioactive peptides in targeting ACE2 has been rarely explored. While, recently we found that IRW, an egg white ovotransferrin-derived antihypertensive peptide, reduced blood pressure in spontaneously hypertensive rats via the ACE2/Ang (1-7)/MasR axis, indicating a new mechanism of food protein-derived bioactive peptides in reducing blood pressure. The objectives of this review are to summarize the functions of the ACE2/Ang (1-7)/MasR axis and to examine its potential roles in the actions of food protein-derived antihypertensive peptides. The interaction between antihypertensive peptides and the ACE2/Ang (1-7)/MasR axis will also be discussed.
Collapse
Affiliation(s)
- Wang Liao
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Liu L, Li S, Zheng J, Bu T, He G, Wu J. Safety considerations on food protein-derived bioactive peptides. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
A multi-approach peptidomic analysis of hen egg white reveals novel putative bioactive molecules. J Proteomics 2020; 215:103646. [PMID: 31927067 DOI: 10.1016/j.jprot.2020.103646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/25/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022]
Abstract
Chicken egg white is a raw material broadly used as additive for the preparation of food and cosmetoceutical products. To describe its molecular properties, various proteomic investigations were performed in the last decade characterizing highly abundant components. No peptidomic counterparts were accomplished so far; scientific literature only reports on the characterization of specific bioactive peptides or preparations from egg white and its hydrolysates, which was performed through dedicated functional assays. In this study, a broad description of the egg white peptidome at 24, 336 and 672 h after laying was achieved using three peptide extraction procedures, which were combined with MALDI-TOF-TOF-MS and nanoLC-ESI-Q-Orbitrap-MS/MS analyses. In the whole, 506 peptides were characterized; they mostly resulted from the physiological degradation of intact proteins following the activity of endoprotease ArgC-, trypsin- and plasmin-like enzymes. Eventual detection of peptide post-translational modifications also provided structural information on parental proteins. When analyzed by bioinformatics and/or compared with literature data, identified peptides allowed recognizing a number of protein fragments associated with different hypothetical biological activities. These results confirmed previous observations regarding functional characteristics of egg white unfractionated preparations or purified molecules, emphasizing the useful application of this raw material in human nutrition and cosmetics. Finally, a comparative label-free peptidomic evaluation of samples stored for different times under refrigeration identified 31 peptides showing significant quantitative changes during storage. BIOLOGICAL SIGNIFICANCE: This study provided the largest inventory of peptides described in chicken egg while so far. In addition, it identified a number of protein fragments associated with hypothetical antihypertensive, antioxidant, antiinflammatory, antimicrobial, anticancer, antiviral, antibiofilm, calcium-binding, antidiabetic, antithrombotic, adipogenic differentiating, stimulating/immunostimulating, hormonal, lipid-binding and cell adhesion-affecting activities. These results confirmed previous observations regarding functional characteristics of egg white unfractionated preparations or purified molecules, emphasizing the useful application of this raw material in human nutrition and cosmetics.
Collapse
|
29
|
Li Y, Lammi C, Boschin G, Arnoldi A, Aiello G. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11825-11838. [PMID: 31588750 DOI: 10.1021/acs.jafc.9b03566] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is now great interest in food protein hydrolysates and food-derived peptides, because they may provide numerous health benefits. Among other foodstuffs, microalgae appear to be sustainable sources of proteins and bioactive peptides that can be exploited in foods and functional formulations. This review considers protein hydrolysates and individual peptides that may be relevant in cardiovascular disease prevention because they mimic the functions of mediators involved in pathologic processes that represent relevant risk factors for cardiovascular disease development, such as hypercholesterolemia, hypertension, diabetes, inflammation, and oxidative status. Some of these peptides are also multifunctional (i.e., they offer more than one benefit). Moreover, the most efficient techniques for protein extraction and hydrolyzation are commented on, as well as the best methodologies for high-throughput detection and quantification. Finally, current challenges and critical issues are discussed.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| | - Gilda Aiello
- Department of Pharmaceutical Sciences , University of Milan , Milan , Italy
| |
Collapse
|
30
|
Priya S. Therapeutic Perspectives of Food Bioactive Peptides: A Mini Review. Protein Pept Lett 2019; 26:664-675. [DOI: 10.2174/0929866526666190617092140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023]
Abstract
Bioactive peptides are short chain of amino acids (usually 2-20) that are linked by amide
bond in a specific sequence which have some biological effects in animals or humans. These can be
of diverse origin like plant, animal, fish, microbe, marine organism or even synthetic. They are
successfully used in the management of many diseases. In recent years increased attention has been
raised for its effects and mechanism of action in various disease conditions like cancer, immunity,
cardiovascular disease, hypertension, inflammation, diabetes, microbial infections etc. Bioactive
peptides are more bioavailable and less allergenic when compared to total proteins. Food derived
bioactive peptides have health benefits and its demand has increased tremendously over the past
decade. This review gives a view on last two years research on potential bioactive peptides derived
from food which have significant therapeutic effects.
Collapse
Affiliation(s)
- Sulochana Priya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIRNIIST), Trivandrum, Kerala, 695 019, India
| |
Collapse
|
31
|
Fan H, Wang J, Liao W, Jiang X, Wu J. Identification and Characterization of Gastrointestinal-Resistant Angiotensin-Converting Enzyme Inhibitory Peptides from Egg White Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7147-7156. [PMID: 31140270 DOI: 10.1021/acs.jafc.9b01071] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Egg proteins are recognized as excellent sources of bioactive peptides, such as angiotensin-converting enzyme inhibitory (ACEi) peptides. Oral administration of a thermolysin-digested egg white hydrolysate (T-EWH) caused a significant blood pressure reduction in spontaneously hypertensive rats; a further ACEi assay implied that its ACEi activity was enhanced after in vitro gastrointestinal (GI) digestion. These results indicated that T-EWH contained ACEi peptides resisting GI digestion and/or being further released during GI digestion. Therefore, the objective of this study was to identify these responsible ACEi peptides from T-EWH. The conventionally activity-guided fractionation was applied, coupled with a synchronized GI digestion throughout, during which both peptide yield and ACEi activity before and after the GI digestion were measured. Finally, six ACEi peptides (LAPYK, LKISQ, LKYAT, INKVVR, LFLIKH, and LGHWVY) with good GI resistance were identified with IC50 values <20 μM, especially LKYAT (0.09 μM). The structure-activity relationship of these peptides was discussed. The discovery of GI-resistant ACEi peptides could further support the application of egg white proteins as functional food ingredients.
Collapse
Affiliation(s)
- Hongbing Fan
- Department of Agricultural Food and Nutritional Science , University of Alberta , 4-10 Ag/For Building, Edmonton , Alberta T6G 2P5 , Canada
| | - Jiapei Wang
- Department of Agricultural Food and Nutritional Science , University of Alberta , 4-10 Ag/For Building, Edmonton , Alberta T6G 2P5 , Canada
| | - Wang Liao
- Department of Agricultural Food and Nutritional Science , University of Alberta , 4-10 Ag/For Building, Edmonton , Alberta T6G 2P5 , Canada
| | - Xu Jiang
- Department of Agricultural Food and Nutritional Science , University of Alberta , 4-10 Ag/For Building, Edmonton , Alberta T6G 2P5 , Canada
| | - Jianping Wu
- Department of Agricultural Food and Nutritional Science , University of Alberta , 4-10 Ag/For Building, Edmonton , Alberta T6G 2P5 , Canada
| |
Collapse
|