1
|
Fan L, Chen Y, Zeng Y, Yu Z, Dong Y, Li D, Zhang C, Ye C. Application of visual intelligent labels in the assessment of meat freshness. Food Chem 2024; 460:140562. [PMID: 39059324 DOI: 10.1016/j.foodchem.2024.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
With the increasing demand for meat products, the evaluation and real-time monitoring of its freshness has become one of the focuses of related industry research. Conventional freshness detection methods, including sensory evaluation, microbial experiments, and determination of physicochemical indicators, are time-consuming, low sensitivity, and destructive, so there is an urgent need to develop a convenient, intuitive, and inexpensive detection method. As a representative of smart packaging, visual intelligent labels can realize real-time perception and monitoring of meat freshness by measuring the temperature, pH value or other indicators of meat and converting them into visual signals. This paper first summarizes the common types, basic principles and research progress of visual intelligent labels, then introduces its application in livestock, poultry and seafood freshness monitoring, finally looks forward to the development prospect of visual smart labels.
Collapse
Affiliation(s)
| | - Yihan Chen
- Naval Medical University, Shanghai 200433, PR China
| | - Yiwen Zeng
- Naval Medical University, Shanghai 200433, PR China
| | - Zhumin Yu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Li
- Navy Special Medical Center, Naval Medical University, Shanghai 200433, PR China.
| | - Chunhong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Changqing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
2
|
Babolanimogadam N, Akhondzadeh Basti A, Khanjari A, Sajjadi Alhashem SH, Babolani Moghadgam K, Ahadzadeh S. Shelf life extending of probiotic beef patties with polylactic acid-ajwain essential oil films and stress effects on Bacillus coagulans. J Food Sci 2024; 89:866-880. [PMID: 38193159 DOI: 10.1111/1750-3841.16864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024]
Abstract
Meat and meat products are prone to the microbial and chemical spoilage, due to the high nutritional content. This study investigated the effect of polylactic acid (PLA) films incorporated with ajwain essential oil (AEO) on microbial (total viable count [TVC], psychrotrophic bacterial count [PTC], Enterobacteriaceae, Pseudomonas spp., yeast and mold (Y&M), and also Bacillus coagulans [BCG]), chemical (pH, peroxide value [PV], thiobarbituric acid-reactive substance [TBARS], and TVN values), and sensorial properties of beef patties, as well as survivability of BCG during refrigerated storage. Results showed that all microbial counts of samples were significantly increased, except BCG, during storage but the lowest TVC of samples was achieved in samples wrapped with PLA-1% AEO (8 log colony forming units per gram [CFU/g]) at 12th of storage, which is significantly lower than control treatments (10.66 log CFU/g). The best results in all treatments are those wrapped by PLA-1% AEO in all evaluated characteristics. At the final day of storage, PTC (8.82 log CFU/g), Enterobacteriaceae (5.05 log CFU/g), Pseudomonas spp. (9.08 log CFU/g), Y&M (4.69 log CFU/g), and also pH (4.5), PV (5.12 meq/kg), TBARS (2.92 MDA/kg), and TVN (14.43 mgN/100 g) values of PLA-1% AEO treatments were significantly lower than control samples. AEO-PLA films reduce the survival of BCG in raw patties, which reached 6.19 log CFU/g in PLA-1% AEO treatments, although increasing the concentration of AEO in packaging PLA films led to the maintenance of BCG viability during the cooking process by increasing the AEO in PLA films. Overall, results showed shelf life of beef patties is extended 3 days more (150%) by wrapping with PLA films incorporated with 1% AEO.
Collapse
Affiliation(s)
- Nima Babolanimogadam
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Food Science and Technology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Khanjari
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Kimiya Babolani Moghadgam
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sara Ahadzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Hoa VB, Song DH, Seol KH, Kim YS, Kim HW, Bae IS, Cho SH. Effect of coating with combined chitosan and gallic acid on shelf-life stability of Jeju black cattle beef. Anim Biosci 2024; 37:123-130. [PMID: 37905318 PMCID: PMC10766466 DOI: 10.5713/ab.23.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Beef of Jeju black cattle (JBC) is considered as a healthy meat type due to its significantly higher unsaturated fatty acids (UFA). Lipid (e.g., UFA) is highly susceptible to oxidizing agents, which results in the quality deterioration and economic value loss of meat products. Therefore, development and application of novel preservative techniques is necessary to improve the shelf-life stability of high-UFA beef. The objective of this study was to assess the applicability of chitosan-based coatings in preservation of JBC beef. METHODS Different coating solutions: 2% chitosan alone, and 2% chitosan containing 0.1% or 0.3% gallic acid were prepared to investigate their applicability in preservation of fresh beef during storage. Jeju black cattle beef (2-cm thick steaks) were non-coated (control) or coated with the above coating solutions, placed on trays, over-wrapped with plastic film and stored at 4°C. The microbiological indices, color, total volatile basic nitrogen (TVBN) and lipid oxidation of the beef were investigated after 1, 10, and 21 days of storage. RESULTS Coating with 2% chitosan alone reduced the spoilage bacteria count, TVBN and thiobarbituric acid reactive substances levels in the beef compared with control during storage (p<0.05). Noticeably, coating with 2% chitosan containing 0.1% or 0.3% gallic acid was more effective on retardation of spoilage bacteria growth, lipid oxidation and discoloration in the beef compared to the chitosan coating alone over the storage period (21 days) (p<0.05). CONCLUSION Taken together, the combined chitosan and gallic acid coating could be used as a bio-preservative technique in the meat industry.
Collapse
Affiliation(s)
- Van-Ba Hoa
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Dong-Heon Song
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Kuk-Hwan Seol
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Yun-Seok Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Hyun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| |
Collapse
|
4
|
Atambayeva Z, Nurgazezova A, Assirzhanova Z, Urazbayev Z, Kambarova A, Dautova A, Idyryshev B, Sviderskaya D, Kaygusuz M. Nutritional, physicochemical, textural and sensory characterization of horsemeat patties as affected by whole germinated green buckwheat and its flour. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2174552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhibek Atambayeva
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Almagul Nurgazezova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhanna Assirzhanova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhumatay Urazbayev
- Oilseed Processing Laboratory, Kazakh Research Institute of Processing and Food Industry, Astana, Kazakhstan
| | - Aray Kambarova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Assel Dautova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Berik Idyryshev
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Diana Sviderskaya
- Faculty of Engineering, Toraighyrov University, Pavlodar, Kazakhstan
| | - Meruyert Kaygusuz
- Vocational School of Technical Sciences, Isparta University of Applied Sciences, Isparta, Türkiye
| |
Collapse
|
5
|
Nikmanesh A, Baghaei H, Mohammadi Nafchi A. Development and Characterization of Antioxidant and Antibacterial Films Based on Potato Starch Incorporating Viola odorata Extract to Improve the Oxidative and Microbiological Quality of Chicken Fillets during Refrigerated Storage. Foods 2023; 12:2955. [PMID: 37569224 PMCID: PMC10418992 DOI: 10.3390/foods12152955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, the antioxidant and antibacterial activities of active films based on potato starch containing Viola odorata extract (VOE) were investigated both in vitro and in chicken fillets. The VOE was added to the starch film formulation at 0, 1, 2, and 3% (w/v). The results showed that by increasing the extract level, the total phenol content and antioxidant and antibacterial activity of the films against Escherichia coli, Staphylococcus aureus, and Salmonella typhimurium improved remarkably. The results of the meat tests indicated the significant antioxidant and antimicrobial activity of active films containing different levels of VOE in chicken fillets, and a direct relationship was observed between the concentration of the extract and the functional activity of the films, so with the increase in the concentration of the extract in the films, the rate of lipid oxidation and growth of microorganisms in the chicken fillets decreased significantly during the storage period, and less volatile nitrogen bases, metmyoglobin, and oxidation products were produced in the fillets. In general, the results of this research demonstrated that an active film based on potato starch containing VOE (especially 2 and 3% levels) has the ability to extend the oxidative and microbiological shelf life of chicken fillets during cold storage for at least eight days.
Collapse
Affiliation(s)
- Ali Nikmanesh
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Homa Baghaei
- Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran;
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
6
|
Olvera-Aguirre G, Piñeiro-Vázquez ÁT, Sanginés-García JR, Sánchez Zárate A, Ochoa-Flores AA, Segura-Campos MR, Vargas-Bello-Pérez E, Chay-Canul AJ. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023; 9:e17071. [PMID: 37383206 PMCID: PMC10293679 DOI: 10.1016/j.heliyon.2023.e17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 06/30/2023] Open
Abstract
The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.
Collapse
Affiliation(s)
| | | | | | | | - Angélica Alejandra Ochoa-Flores
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| | - Maira Rubi Segura-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Colonia Chuburná de Hidalgo Inn, Mérida, Yucatán, Mexico
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, P.O. Box 237, Earley Gate, Reading, RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, 31453, Mexico
| | - Alfonso Juventino Chay-Canul
- División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Km 25. Carretera Villahermosa-Teapa, R/A La Huasteca, CP, 86280, Colonia Centro, Tabasco, Mexico
| |
Collapse
|
7
|
Serdaroğlu M, Can H, Sarı B, Kavuşan HS, Yılmaz FM. Effects of natural nitrite sources from arugula and barberry extract on quality characteristic of heat-treated fermented sausages. Meat Sci 2023; 198:109090. [PMID: 36610293 DOI: 10.1016/j.meatsci.2022.109090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023]
Abstract
This study was designed to compare the effects of natural nitrite sources from the arugula leaves (arugula extract and pre-converted arugula extract) and the use of barberry extract (BE) in heat-treated fermented sausage formulations. Eight different sausages were manufactured as follows: pre-converted arugula extract (PA), arugula extract (A), pre-converted arugula extract + BE (PAB), arugula extract + BE (AB), nitrite +BE (POB), no nitrite+ BE (NEB), also positive and negative control groups were prepared with (POC) or without nitrite (NEC). The addition of arugula and barberry extracts reduced the residual nitrite content, in fact PAB had the lowest value with a reduction ratio of 47%. The addition of BE lowered the lipid oxidation compared to other counterparts. The use of arugula extract or pre-converted arugula extract resulted in a lower carbonylation than nitrite free samples. The use of natural extracts lowered the a* and b* values compared to control. At the end of the storage, no differences were observed on the overall acceptability of all samples. Combined use of barberry extract with arugula and pre-converted arugula extracts could be used as alternative novel curing agent in heat-treated fermented sausages.
Collapse
Affiliation(s)
- Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey.
| | - Hilal Can
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Burcu Sarı
- Gastronomy and Culinary Arts, School of Applied Sciences, Kapadokya University, Nevşehir, Turkey
| | - Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, Aydın, Turkey
| |
Collapse
|
8
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Development of Healthier and Functional Dry Fermented Sausages: Present and Future. Foods 2022; 11:foods11081128. [PMID: 35454715 PMCID: PMC9031353 DOI: 10.3390/foods11081128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, consumer perception about the healthiness of meat products has changed. In this scenario, the meat industry and the scientific and technological areas have put their efforts into improving meat products and achieving healthier and functional formulations that meet the demands of today’s market and consumers. This article aims to review the current functional fermented meat products, especially on sausage development. Firstly, an emphasis is given to reducing and replacing traditional ingredients associated with increased risk to consumer’s health (sodium, fat, and nitrites), adding functional components (prebiotics, probiotics, symbiotics, and polyphenols), and inducing health benefits. Secondly, a look at future fermented sausages is provided by mentioning emerging strategies to produce innovative healthier and functional meat products. Additional recommendations were also included to assist researchers in further development of healthier and functional sausages.
Collapse
|
10
|
Šojić B, Putnik P, Danilović B, Teslić N, Bursać Kovačević D, Pavlić B. Lipid Extracts Obtained by Supercritical Fluid Extraction and Their Application in Meat Products. Antioxidants (Basel) 2022; 11:antiox11040716. [PMID: 35453401 PMCID: PMC9024703 DOI: 10.3390/antiox11040716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Supercritical fluid extraction (SFE) has been recognized as the green and clean technique without any negative impact on the environment. Although this technique has shown high selectivity towards lipophilic bioactive compounds, very few case studies on the application of these extracts in final products and different food matrices were observed. Considering the recent developments in food science and the increasing application of supercritical extracts in meat products in the last decade (2012–2022), the aim of this manuscript was to provide a systematic review of the lipid extracts and bioactives successfully obtained by supercritical fluid extraction and their application in meat products as antioxidant and/or antimicrobial agents. Lipophilic bioactives from natural resources were explained in the first step, which was followed by the fundamentals of supercritical fluid extraction and application on recovery of these bioactives. Finally, the application of natural extracts and bioactives obtained by this technique as functional additives in meat and meat products were thoroughly discussed in order to review the state-of-the-art techniques and set the challenges for further studies.
Collapse
Affiliation(s)
- Branislav Šojić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Predrag Putnik
- Department of Food Technology, University North, 48000 Koprivnica, Croatia;
| | - Bojana Danilović
- Faculty of Technology, University of Niš, 16000 Leskovac, Serbia;
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: (D.B.K.); (B.P.)
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, 21000 Novi Sad, Serbia;
- Correspondence: (D.B.K.); (B.P.)
| |
Collapse
|
11
|
Domínguez R, Pateiro M, Munekata PES, Santos López EM, Rodríguez JA, Barros L, Lorenzo JM. Potential Use of Elderberry ( Sambucus nigra L.) as Natural Colorant and Antioxidant in the Food Industry. A Review. Foods 2021; 10:2713. [PMID: 34828994 PMCID: PMC8621476 DOI: 10.3390/foods10112713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The food industry, in response to current consumer demand for natural and functional foods, is constantly evolving and reformulating traditional products formulations. Thus, during the last decades, multiple natural sources have been investigated to replace the need to add synthetic additives. In addition, the use of natural sources can also increase the nutritional quality of the food. With this in mind, elderberry is used in the food industry for certain purposes. However, its potential is much higher than the number of applications it currently has. Its high content of anthocyanins, as well as other polyphenols and vitamins, means that it can be used by the food industry both as a colorant and as an antioxidant. In addition, the incorporation of these bioactive compounds results in functional foods, with a high antioxidant capacity. Moreover, the inclusion of elderberry products in foods formulation increases their shelf-life, but the correct amount and strategy for adding elderberry to food should be studied to ensure a positive effect on nutritional and technological properties without affecting (or improving) the sensory quality of foods. Therefore, this manuscript aims to review the main bioactive compounds present in elderberries, as well as their potential uses in the food industry.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, 32900 San Cibrao das Viñas, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, 32900 San Cibrao das Viñas, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, 32900 San Cibrao das Viñas, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Eva María Santos López
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.M.S.L.); (J.A.R.)
| | - José Antonio Rodríguez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Ctra. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma 42183, Hidalgo, Mexico; (E.M.S.L.); (J.A.R.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, 32900 San Cibrao das Viñas, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
12
|
Bellucci ERB, Dos Santos JM, Carvalho LT, Borgonovi TF, Lorenzo JM, Silva-Barretto ACD. Açaí extract powder as natural antioxidant on pork patties during the refrigerated storage. Meat Sci 2021; 184:108667. [PMID: 34656002 DOI: 10.1016/j.meatsci.2021.108667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The current trends among consumers are pushing for the use of natural antioxidants options. Açaí fruit is rich on polyphenolic components but no studies have been carried out to evaluate their effect in meat products. The objective was to investigate the effect of açaí extract on refrigerated pork patties quality. Five treatments were done: without antioxidant (CON), Sodium Erythorbate 500 mg.kg -1 (ERY), Açaí Extract: 250 (AEL), 500 (AEM), 750 mg.kg -1 (AEH). Açaí extract did not affect the proximate composition, pH and cooking parameters. The concentrations of açaí extract studied increased antioxidant activity and reduced lipid oxidation (0.379, 0.293, and 0.217 vs. 0.889 mg MDA.kg-1 for AEL, AEM, AEH vs. CON, respectively). However, only the AEL treatment did not affect the color parameters, showing the best option for the application on pork patties. Thus, açaí extract at 250 mg.kg-1 can be used as a natural antioxidant replacing sodium erythorbate to preserve the quality of refrigerated pork patties.
Collapse
Affiliation(s)
- Elisa Rafaela Bonadio Bellucci
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - João Marcos Dos Santos
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Larissa Tátero Carvalho
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - Taís Fernanda Borgonovi
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Andrea Carla da Silva-Barretto
- Department of Food Technology and Engineering, UNESP - São Paulo State University, Street Cristóvão Colombo, 2265, Zip Code 15054-000 São José do Rio Preto, SP, Brazil.
| |
Collapse
|
13
|
Influence of Murta (Ugni molinae Turcz) Powder on the Frankfurters Quality. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Frankfurters are one of the most demanded meat products in the world due to their low cost and good taste. However, they contain up to 30% animal fat, which is negative for the consumer’s health. Moreover, high-fat contents could also decrease frankfurter sensory properties, since it accelerates the rancidity of the products. This fact is highly dependent on the fatty acids composition since the unsaturation promotes oxidative reactions. Currently, strategies have been developed to replace animal fat with vegetable oils or the inclusion of new raw materials. The murta (Ugni molinae Turcz), an endemic plant in Chile, is a specie that contains high levels of flavonoids in its fruits and has a pleasant flavor, as well as a sweet and floral aroma. However, the effect of the addition of these fruits in the formulation of meat products has been scarcely studied. The present study aims to reduce the use of synthetic additives using natural ones (murta powder). Therefore, this research evaluated the influence of the inclusion of murta on the chemical, sensory, and instrumental parameters of traditional frankfurters. Three batches of frankfurters were manufactured: control sausages without additives (T0); samples with chemical antioxidant (T1); and with murta fruit powder (T2). The chemical composition, physicochemical parameters and sensory properties were determined. Frankfurters made with murta (T2) presented middle values in energy, moisture and sodium compared with control. Also, the reformulated sausages (T2) presented the lowest water holding capacity, redness (a*) and yellowness and the highest values of fat and carbohydrates. Regarding fatty acids content, the most important changes were observed in the C18:0 and C14:0 (T2 presented the lowest values) and C18:2n-6 (T2 had the highest values), but minimal differences were observed in the total SFA, MUFA and PUFA content. Cholesterol content from T2 were similar to the control samples, and T1 presented the highest values. Although these differences, both chemical and nutritional quality of all frankfurters manufactured in the present study were very similar among treatments. Finally, according to the sensory analysis, T2 presented better acceptability and sensory characteristics compared with the other treatments (p ≤ 0.05). Therefore, the inclusion of murta in the production of frankfurters could be a strategy to improve the sensory characteristics of this product with minimal changes in chemical and nutritional properties. However, the effect of murta on oxidative stability and frankfurter shelf-life should be studied in depth in future research.
Collapse
|
14
|
Domínguez R, Pateiro M, Munekata PES, McClements DJ, Lorenzo JM. Encapsulation of Bioactive Phytochemicals in Plant-Based Matrices and Application as Additives in Meat and Meat Products. Molecules 2021; 26:3984. [PMID: 34210093 PMCID: PMC8272106 DOI: 10.3390/molecules26133984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/01/2022] Open
Abstract
The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, 100 Holdsworth Way, Amherst, MA 01003, USA
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (M.P.); (P.E.S.M.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
15
|
Development of a Natural Preservative from Chestnut Flowers: Ultrasound-Assisted Extraction Optimization and Functionality Assessment. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was carried out with the aim of optimizing the ultrasound-assisted extraction (UAE) of phenolic compounds from male chestnut flowers (C. sativa Mill) to develop a bioactive extract with potential to be used as a natural antioxidant preservative ingredient in the food industry. Time (t, 1–39 min), solvent concentration (S, 0–100%), and ultrasonic power (P, 5–500 W) were used as the independent variables for a 5-level experimental circumscribed central composite design (CCCD) coupled with response surface methodology (RSM) to optimize the extraction of phenolic compounds by UAE. Regarding the variables, the three showed a significant effect on the extraction of phenolic compounds. The content of phenolic compounds (including flavonoids and tannins) and the extraction yield (extract weight gravimetrically assessed) were the response criteria for the optimization. Based on the statistically validated predictive polynomial models, it was possible to reach a maximum content of phenolic compounds at the global optimal conditions of 24 ± 3 min, 259 ± 16 W, and 51 ± 7% ethanol. Additionally, pentagalloyl-glucoside and trigalloyl-hexahydroxydiphenoyl-glucoside were the major phenolic compounds identified. The optimized extract was then analyzed for their biological properties. The bioactive potential of the chestnut flower extract obtained under these optimized conditions was evaluated using in vitro assays for antioxidant, anti-inflammatory, and antimicrobial activity, as well as cytotoxicity and hepatotoxicity tests. The results revealed that the enriched extract has antioxidant, antitumoral, and anti-inflammatory activities without toxicity issues. Overall, this study allowed to define the optimal conditions for the extraction of phenolic compounds from chestnuts male flowers by UAE, to obtain an enriched extract with biological properties that could be further used as a natural antioxidant ingredient with applications on functional foods.
Collapse
|