1
|
Wang JP, Liu T, Wu Y, Wang P. Pd-Catalyzed Migratory 1,1-Cycloannulation Reaction of Alkenes. J Am Chem Soc 2024. [PMID: 39692582 DOI: 10.1021/jacs.4c14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Here, we report a novel strategy for the preparation of diverse heterocycles via a Pd-catalyzed migratory 1,1-cycloannulation reaction (MCAR) of alkenes. Starting from readily available alkenyl amines and alkenyl alcohols, this approach allows the formation of a wide range of five- to seven-membered azaheterocycles and oxaheterocycles with high efficiency and good functional group tolerance. The key to the realization of this reaction is the use of 4-iodophenol or 2-iodophenol derivatives where the phenolic hydroxyl group plays a critical role in controlling the direction of migration and the ring-size of the heterocycles through the formation of a quinone methide intermediate.
Collapse
Affiliation(s)
- Jin-Ping Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| | - Tao Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
2
|
Surgenor RR, Lee H. Synthesis of (Hetero)biaryls via Nickel Catalyzed Reductive Cross-Electrophile Coupling Between (Hetero)aryl Iodides and Bromides. Chemistry 2024; 30:e202401552. [PMID: 38723102 DOI: 10.1002/chem.202401552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/19/2024]
Abstract
(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.
Collapse
Affiliation(s)
| | - Hyelee Lee
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
4
|
Sadhu C, Mitra AK. Synthetic, biological and optoelectronic properties of phenoxazine and its derivatives: a state of the art review. Mol Divers 2024; 28:965-1007. [PMID: 36757655 PMCID: PMC9909160 DOI: 10.1007/s11030-023-10619-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Phenoxazines have sparked a lot of interest owing to their numerous applications in material science, organic light-emitting diodes, photoredox catalyst, dye-sensitized solar cells and chemotherapy. Among other things, they have antioxidant, antidiabetic, antimalarial, anti-alzheimer, antiviral, anti-inflammatory and antibiotic properties. Actinomycin D, which contains a phenoxazine moiety, functions both as an antibiotic and anticancer agent. Several research groups have worked on various structural modifications over the years in order to develop new phenoxazines with improved properties. Both phenothiazines and phenoxazines have gained prominence in medicine as pharmacological lead structures from their traditional uses as dyes and pigments. Organoelectronics and material sciences have recently found these compounds and their derivatives to be quite useful. Due to this, organic synthesis has been used in an unprecedented amount of exploratory alteration of the parent structures in an effort to create novel derivatives with enhanced biological and material capabilities. As a result, it is critical to conduct more frequent reviews of the work done in this area. Various stages of the synthetic transformation of phenoxazine scaffolds have been depicted in this article. This article aims to provide a state of the art review for the better understanding of the phenoxazine derivatives highlighting the progress and prospects of the same in medicinal and material applications.
Collapse
Affiliation(s)
- Chandrita Sadhu
- Department of Chemistry, Rani Rashmoni Green University, Tarakeswar, Hooghly, West Bengal, India
| | - Amrit Krishna Mitra
- Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, 712409, India.
| |
Collapse
|
5
|
Wang Z, Luo W, Li ZW, Yin K, Wei M, Li L. Synthesis of Bench-stable Polycyclic Organophosphorus Heterocycles via Staudinger-type Annulations of ortho-Azidophenols. Chemistry 2023:e202302834. [PMID: 38141178 DOI: 10.1002/chem.202302834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
The formation of a five- or six-membered ring is known to stabilize unstable molecular structures such as hemiacetals. This idea can also be extended to stabilize other high-coordinated p-block element species. Herein, we synthesized two novel polycyclic organophosphorus heterocycles via Staudinger-type annulations. Reactions of either ortho-phosphinoarenesulfonyl fluorides 1 or ortho-phosphinobenzoic acid methyl esters 4 with ortho-azidophenols 2 gave rise to penta-coordinated P(V) heterocycles, benzo-benzo-1,2,3-thiazaphospholo-1,3,2-oxazaphosphole (B-B-TAP-OAP) 3 and benzo-benzo-1,2-azaphospholo-1,3,2-oxazaphosphol-12-one (B-B-AP-OAP) 5 in satisfactory yields. It is remarkable that heterocycles 3 and 5 are both bench-stable and exhibit considerable stability in a 10 % aqueous tetrahydrofuran solution. Preliminary computational studies disclosed that the formation of nitrogen gas is the key driving force for the annulations. In addition, the formation of a strong Si-F bond is another contributor to the annulation of 1 and 2.
Collapse
Affiliation(s)
- Zhenguo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhi-Wei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Keshu Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Le Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- PCFM Lab and GDHPRC Lab, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Ivan BC, Barbuceanu SF, Hotnog CM, Olaru OT, Anghel AI, Ancuceanu RV, Mihaila MA, Brasoveanu LI, Shova S, Draghici C, Nitulescu GM, Dumitrascu F. Synthesis, Characterization and Cytotoxic Evaluation of New Pyrrolo[1,2- b]pyridazines Obtained via Mesoionic Oxazolo-Pyridazinones. Int J Mol Sci 2023; 24:11642. [PMID: 37511401 PMCID: PMC10380841 DOI: 10.3390/ijms241411642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed by acidification. The structures of the compounds were confirmed by elemental analyses and IR, 1H-NMR, 13C-NMR, and X-ray diffraction data. The regioselectivity of cycloaddition was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were evaluated for their cytotoxicity on plant cells (Triticum aestivum L.) and crustacean animal cells (Artemia franciscana Kellogg and Daphnia magna Straus). The results indicated that the tested compounds exhibited low toxicity on the plant cell (IC50 values higher than 200 µM), while on Artemia nauplii no lethality was observed. Daphnia magna assay showed that pyrrolo[1,2-b]pyridazines 5a and 5c could exhibit toxic effects, whereas, for the other compounds, toxicity was low to moderate. Also, the cytotoxic effects of the compounds were tested on three human adenocarcinoma-derived adherent cell lines (colon LoVo, ovary SK-OV-3, breast MCF-7). The in vitro compound-mediated cytotoxicity assays, performed by the MTS technique, demonstrated dose- and time-dependent cytotoxic activity for several compounds, the highest anti-tumor activity being observed for 5a, 2c, and 5f, especially against colon cancer cells.
Collapse
Affiliation(s)
- Beatrice-Cristina Ivan
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Stefania-Felicia Barbuceanu
- Department of Organic Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Camelia Mia Hotnog
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adriana Iuliana Anghel
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Robert Viorel Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Antonela Mihaila
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology, "Stefan S. Nicolau" Institute of Virology, Romanian Academy, 285 Mihai Bravu Ave., 030304 Bucharest, Romania
| | - Sergiu Shova
- Laboratory of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda, 41A, 700487 Iasi, Romania
- Laboratory of Advanced Materials in Biofarmaceutics and Technics, Moldova State University, 2009 Chişinău, Moldova
| | - Constantin Draghici
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Florea Dumitrascu
- "Costin D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independenței, 060023 Bucharest, Romania
| |
Collapse
|
7
|
Wun BJ, Hu YC, Chi CY, Chuang GJ. Photoinduced Decarbonylative Rearrangement of Diazabicyclo[2.2.2]Octenones: A Photochemical Approach of Diazabicyclo[4.1.0]heptene Skeleton from Masked o-Benzoquinone. J Org Chem 2023; 88:1235-1244. [PMID: 36606370 DOI: 10.1021/acs.joc.2c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a photoinduced decarbonylative rearrangement of diazabicyclo[2.2.2]octenone in the facile synthesis of a functionalized diazabicyclo[4.1.0]heptene skeleton, a unique derivative of the hydropyridazine type structure which could be found in a variety of biologically active natural products. The scope of functional group compatibility in the photoreaction was examined by taking advantage of the easy access of the heterobicyclo[2.2.2] structure from the Diels-Alder reaction of masked o-benzoquinones. 4-Phenyl-1,2,4-triazoline-3,5-dione served as the dienophile which provided the adjacent N-N unit in hexahydropyridazine-type products of subsequent photorearrangement.
Collapse
Affiliation(s)
- Bo-Jyun Wun
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Yung-Chen Hu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Chu-Yun Chi
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| |
Collapse
|
8
|
Shen YB, Hu F, Li SS. Advances in α-C(sp3)–H functionalization of ethers via cascade [1,n]-hydride transfer/cyclization. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Wang JP, Song S, Wu Y, Wang P. Construction of azaheterocycles via Pd-catalyzed migratory cycloannulation reaction of unactivated alkenes. Nat Commun 2022; 13:5059. [PMID: 36030256 PMCID: PMC9420149 DOI: 10.1038/s41467-022-32726-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Azahetereocycles constitute important structural components in many biologically active natural compounds and marketed drugs, and represent the most promising scaffolds in drug discovery. Accordingly, the development of efficient and general synthetic methods for the construction of diverse azaheterocycles is the major goal in synthetic chemistry. Herein, we report the efficient construction of a wide range of azaheterocycles via a Pd-catalyzed migratory cycloannulation strategy with unactivated alkenes. This strategy enables the rapid synthesis of a series of 6-, 7- and 8-membered azaheterocycles in high efficiency, and features a broad substrate scope, excellent functional group tolerance under redox-neutral conditions. The significance of this finding is demonstrated by the efficient synthesis of drug-like molecules with high step-economy. Preliminary mechanistic investigations reveal that this reaction underwent a sequentially migratory insertion to alkenes, metal migration process, and the aza-Michael addition to a quinone methide intermediate.
Collapse
Affiliation(s)
- Jin-Ping Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Shuo Song
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai, 200032, PR China. .,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, PR China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, PR China.
| |
Collapse
|
10
|
Zhu Y, Yang L, Zhang X, Xu W, He J, Wang H, Lang M, Peng S. Copper-Catalyzed Cycloadditions of Diazo Compounds with Imidazolidines/Hexahydropyrimidines for the Syntheses of N-Heterocycles. Org Lett 2022; 24:6443-6448. [PMID: 36017905 DOI: 10.1021/acs.orglett.2c02561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reported herein are the unprecedented copper-catalyzed formal [n + 1]/[n + 3] (n = 5, 6) cycloadditions of diazo compounds with imidazolidines/hexahydropyrimidines, thus providing a general, economical, and efficient route to construct different sized (six- to nine-membered) diaza-heterocycles in moderate to excellent yields under mild reaction conditions. This strategy features the use of copper catalyst to accomplish such diverse annulations and the utilization of imidazolidines/hexahydropyrimidines as stable 1,5-/1,6-dipoles.
Collapse
Affiliation(s)
- Yuqi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Liangliang Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Xue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wendi Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Jieyin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Haiyang Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Ming Lang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Shiyong Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
11
|
Saini P, Bari SS, Thakur S, Garg A, Kumar S, Mandal SK, Bhalla A. Stereoselective synthesis, characterization and mechanistic insights of ortho-/ meta-/ para-(2-benzo[ d]oxazolyl)phenyl substituted trans-β-lactams: Potential synthons for variegated heterocyclic molecules. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Preety Saini
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - S. S. Bari
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Shalu Thakur
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Ankita Garg
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Sandeep Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Sanjay K. Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Aman Bhalla
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Liu H, Li Y, Yang Z, Ge Q, Wu Z, Zhang W. Pd‐Catalyzed Aerobic Intermolecular 1,2‐Diamination of Conjugated Dienes: Regio‐ and Chemoselective Synthesis of Piperazines and 2‐Piperazinones. Chemistry 2022; 28:e202201808. [DOI: 10.1002/chem.202201808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Huikang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yunyi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Qianyi Ge
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research Institute of Pharmacy & Pharmacology School of Pharmaceutical Science Hengyang Medical School University of South China Hengyang Hunan 421001 P. R. China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
13
|
Möhler JS, Beiersdörfer LK, Masina B, Wechsler P, Wennemers H. Tripeptide Organocatalysts for Stereoselective Conjugate Addition Reactions with N‐Heterocyclic Substituents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
The Structure of Biologically Active Functionalized Azoles: NMR Spectroscopy and Quantum Chemistry. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review summarizes the data on the stereochemical structure of functionalized azoles (pyrazoles, imidazoles, triazoles, thiazoles, and benzazoles) and related compounds obtained by multipulse and multinuclear 1H, 13C, 15N NMR spectroscopy and quantum chemistry. The stereochemistry of functionalized azoles is a challenging topic of theoretical research, as the correct interpretation of their chemical behavior and biological activity depends on understanding the factors that determine the stereochemical features and relative stability of their tautomers. NMR spectroscopy, in combination with quantum chemical calculations, is the most convenient and reliable approach to the evaluation of the stereochemical behavior of, in particular, nitrogen-containing heteroaromatic and heterocyclic compounds. Over the last decade, 15N NMR spectroscopy has become almost an express method for the determination of the structure of nitrogen-containing heterocycles.
Collapse
|
15
|
Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Suwal S, Rahman M, O’Brien G, Karambizi VG, Wrotny M, Scott Goodman M. Chemo-selective syntheses of N-t-boc-protected amino ester analogs through Buchwald–Hartwig amination. NEW J CHEM 2022. [DOI: 10.1039/d1nj05596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We showcased a library of amino ester molecules created through the BHA reaction. The product formation is more facile in the esters where nitrogen is present ortho to the halo substituent in the heteroaromatic ring.
Collapse
Affiliation(s)
- Sujit Suwal
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Mahmuda Rahman
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Gregory O’Brien
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Victoire G. Karambizi
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - Matthew Wrotny
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| | - M. Scott Goodman
- Department of Chemistry, SUNY-Buffalo State College, 1300 Elmwood Avenue, Buffalo, NY 14222, USA
| |
Collapse
|
17
|
Shen YB, Zhao JQ, Wang ZH, You Y, Zhou MQ, Yuan WC. DBU-catalyzed dearomative annulation of 2-pyridylacetates with α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones. Org Chem Front 2022. [DOI: 10.1039/d1qo01414e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DBU-catalyzed dearomative [3 + 3] annulation of 2-pyridylacetates and α,β-unsaturated pyrazolamides for the synthesis of multisubstituted 2,3-dihydro-4H-quinolizin-4-ones was developed.
Collapse
Affiliation(s)
- Yao-Bin Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
18
|
Zaib S, Ibrar A, Ramay M, Zahra S, Hökelek T, Simpson J, McAdam CJ, Awwad NS, Ibrahium HA, Frontera A, Khan I. Centroid⋯centroid and hydrogen bond interactions as robust supramolecular units for crystal engineering: X-ray crystallographic, computational and urease inhibitory investigations of 1,2,4-triazolo[3,4-a]phthalazines. CrystEngComm 2022. [DOI: 10.1039/d2ce00351a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antiparallel π-stacked dimer of compound 6 (left) presenting a large dimerization energy (ΔE5 = −11.2 kcal mol−1) and confirming its relevance in the solid state of compound 6. 3D binding mode of 6 (right) docked in the catalytic domain of urease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Life Science, The University of Haripur, KPK 22620, Pakistan
| | - Marriyam Ramay
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Shabab Zahra
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, Beytepe-Ankara, 06800, Turkey
| | - Jim Simpson
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | | | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca Baleares, Spain
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
19
|
Aggile K, Napoleon AA. Synthesis of Novel Substituted Piperazin-1- yl-7H-Pyrrolo[2,3-d] Pyrimidines for C-N Bond Formation via Buchwald Hartwig Coupling Reaction. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1991394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kadirappa Aggile
- School of Advanced Sciences, Department of Chemistry, VIT University, Vellore, India
| | | |
Collapse
|
20
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
21
|
López E, Melis C, Martín R, Petti A, Hoz A, Díaz‐Ortíz Á, Dobbs AP, Lam K, Alcázar J. C(
sp
3
)−C(
sp
3
) Bond Formation
via
Electrochemical Alkoxylation and Subsequent Lewis Acid Promoted Reactions. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Enol López
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Carlo Melis
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Raúl Martín
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Alessia Petti
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Antonio Hoz
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Ángel Díaz‐Ortíz
- Facultad de Ciencias y Tecnologías Químicas Universidad de Castilla-La Mancha Av. Camilo José Cela 10 13071 Ciudad Real Spain
| | - Adrian P. Dobbs
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Kevin Lam
- School of Science The University of Greenwich Chatham Maritime ME4 4TB United Kingdom
| | - Jesús Alcázar
- Lead Discovery Janssen Research and Development Janssen-Cilag, S.A. Jarama 75 A 45007 Toledo Spain
| |
Collapse
|
22
|
Ledovskaya MS, Polynski MV, Ananikov VP. One-Pot and Two-Chamber Methodologies for Using Acetylene Surrogates in the Synthesis of Pyridazines and Their D-Labeled Derivatives. Chem Asian J 2021; 16:2286-2297. [PMID: 34152671 DOI: 10.1002/asia.202100562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Indexed: 01/03/2023]
Abstract
Acetylene surrogates are efficient tools in modern organic chemistry with largely unexplored potential in the construction of heterocyclic cores. Two novel synthetic paths to 3,6-disubstituted pyridazines were proposed using readily available acetylene surrogates through flexible C2 unit installation procedures in a common reaction space mode (one-pot) and distributed reaction space mode (two-chamber): (1) an interaction of 1,2,4,5-tetrazine and its acceptor-functionalized derivatives with a CaC2 -H2 O mixture performed in a two-chamber reactor led to the corresponding pyridazines in quantitative yields; (2) [4+2] cycloaddition of 1,2,4,5-tetrazines to benzyl vinyl ether can be considered a universal synthetic path to a wide range of pyridazines. Replacing water with D2 O and vinyl ether with its trideuterated analog in the developed procedures, a range of 4,5-dideuteropyridazines of 95-99% deuteration degree was synthesized for the first time. Quantum chemical modeling allowed to quantify the substituent effect in both synthetic pathways.
Collapse
Affiliation(s)
- Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia
| | - Mikhail V Polynski
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Saint Petersburg, 198504, Russia.,N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow, 119991, Russia
| |
Collapse
|
23
|
Ye ZP, Hu YZ, Guan JP, Chen K, Liu F, Gao J, Xiao JA, Xiang HY, Chen XQ, Yang H. Photocatalytic Cyclization/Defluorination Domino Sequence to Access 3-Fluoro-1,5-dihydro-2 H-pyrrol-2-one Scaffold. Org Lett 2021; 23:4754-4758. [PMID: 34061549 DOI: 10.1021/acs.orglett.1c01477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We herein report an unprecedented photoinduced cyclization/defluorination domino process of N-allylbromodifluoroacetamide with cyclic secondary amines. Consequently, a wide array of valuable 3-fluoro-1,5-dihydro-2H-pyrrol-2-ones were facilely prepared from readily available starting materials under mild conditions. Preliminary mechanistic investigations suggest that a radical chain propagation and amine-promoted defluorination pathway are presumably involved in this transformation.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, Guangxi, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
24
|
Salehpour M, Azizian J. Exploration of interaction behavior between spiro[indene-2,2'-[1,3,5]oxathiazine]-1,3-diones and DNA with the help of DFT, molecular docking, and MD simulations. J Biomol Struct Dyn 2021; 40:9194-9213. [PMID: 33998964 DOI: 10.1080/07391102.2021.1924266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A detailed computational study covering density functional theory (DFT), molecular docking, and molecular dynamics (MD) simulations of some spirocyclic compounds interacting with a B-DNA has been performed. DFT calculations were performed using the B3LYP functional with 6-311++G(d,p) basis set and were used to identify the electrophilic and nucleophilic centers in electrostatic forces. NMR results were in agreement with previous experimental data and approved the reliability of the used method and basis set. The in silico screening results showed that spirocyclic compounds fulfill the Lipinski's rule of five and can be developed as potential oral bioavailable drug candidates. Based on molecular docking results, the binding affinities follow the 4c < 4d < 4a = 4b < 4e < 4g < 4f order and ranged from -8.6 to -9.7 kcal/mol indicating a reasonably favorable interaction between DNA and investigated compounds. The adducts were stabilized by hydrophobic and hydrogen bonding interactions. The MD simulations performed for 100 ns and the results are reported in terms of variables such as root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), center of mass (COM) separation distance between DNA and ligands, intermolecular hydrogen bonds, and radial distribution functions (RDF). The MD simulations demonstrated that compounds 4a and 4d bind into the minor groove of 1BNA and may act as potential biological probes for B-DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahboobeh Salehpour
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Azizian
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Zhou JS, Huang X, Teng S, Chi YR. Nickel-catalyzed Heck reaction of cycloalkenes using aryl sulfonates and pivalates. Chem Commun (Camb) 2021; 57:3933-3936. [PMID: 33871493 DOI: 10.1039/d1cc00634g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel-catalyzed Heck reaction of cycloalkenes delivers unusual conjugated arylated isomers. Nickel(0) catalysts ligated by chelating dialkylphosphines effectively activate not only aryl triflates as electrophiles, but also less reactive aryl mesylates, tosylates and pivalates. The omission of bases allows nickel hydride species to exist long enough to perform in situ olefin isomerization of initial Heck adducts.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan, Shenzhen 518055, China.
| | - Xiaolei Huang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
26
|
Teng S, Chi YR, Zhou JS. Enantioselective Three-Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021; 60:4491-4495. [PMID: 33259131 DOI: 10.1002/anie.202014781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Asymmetric coupling proceeds efficiently between propargylic acetates, cycloalkenes and electron-rich heteroarenes including indoles, pyrroles, activated furans and thiophenes. 2,3-Disubstituted tetrahydrofurans and pyrrolidines are produced in trans configuration and excellent enantiomeric ratios. The reaction proceeds via Wacker-type attack of nucleophilic heteroarenes on alkenes activated by allenyl PdII species.
Collapse
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F-312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
27
|
Teng S, Chi YR, Zhou JS. Enantioselective Three‐Component Coupling of Heteroarenes, Cycloalkenes and Propargylic Acetates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shenghan Teng
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F-312 2199 Lishui Road, Nanshan District Shenzhen 518055 China
| |
Collapse
|
28
|
Zhang X, Qi D, Jiao C, Zhang Z, Liu X, Zhang G. Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01217g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first example of iminoalkynylation of unactivated olefins with terminal alkynes was achieved by a nickel-catalyzed iminyl-radical cyclization/Sonogashira-type coupling sequence.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang, Henan 453007, China
| |
Collapse
|
29
|
Coetzee LCC, Muller AJ, Adeyinka AS, Sonopo MS, Williams DBG. Synthesis, characterisation and DFT studies of [3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl](phenyl)methanone derivatives. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Luo W, Wang Z, Cao X, Liang D, Wei M, Yin K, Li L. Construction of Benzo-1,2,3-thiazaphosphole Heterocycles by Annulations of ortho-Phosphinoarenesulfonyl Fluorides with Trimethylsilyl Azide. J Org Chem 2020; 85:14785-14794. [PMID: 32885966 DOI: 10.1021/acs.joc.0c01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Annulations of ortho-phosphinoarenesulfonyl fluorides with trimethylsilyl azide were developed to access an unprecedented benzo-1,2,3-thiazaphosphole heterocycle. A corresponding reaction mechanism was proposed and further elucidated by experimental and computational studies. The reaction proceeds through a Staudinger-type iminophosphorane intermediate followed by intramolecular trapping with sulfonyl fluoride.
Collapse
Affiliation(s)
- Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Wang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Keshu Yin
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
31
|
Bai D, Li L, Li X, Lu Y, Wu Y, Rajendra Prasad Reddy B, Ning Y. Fluorocyclization of Vinyl Azides for the Formation of 3‐Azido Heterocycles. Chem Asian J 2020; 15:4038-4042. [DOI: 10.1002/asia.202001175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/22/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Diangang Bai
- School of Chemistry and School of Chemistry and Life Science Anshan Normal University Anshan 114005 P. R. China
| | - Linxuan Li
- Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Xiaomeng Li
- Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ying Lu
- Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yong Wu
- Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | | | - Yongquan Ning
- School of Chemistry and School of Chemistry and Life Science Anshan Normal University Anshan 114005 P. R. China
- Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
32
|
Zaib S, Khan I. Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200726230848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Achieving challenging molecular diversity in contemporary chemical synthesis
remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic
pharmacophores for drug design and pharmaceutical applications. The coupling methods that
combine a diverse range of readily accessible and commercially available pools of substrates
under the action of earth-abundant first row transition metal catalysts have certainly matured
into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis.
This minireview highlights the successful utilization of the catalytic ability of the first
row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle,
ubiquitously present in numerous alkaloids, commercial medicines and is associated with a
diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the
targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation
will also be exemplified with mechanistic studies as long as they are deemed necessary.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
33
|
Rapelli C, Sridhar B, Subba Reddy BV. Tandem Prins cyclization for the synthesis of indole fused spiro-1,4-diazocane scaffolds. Org Biomol Chem 2020; 18:6710-6715. [PMID: 32820793 DOI: 10.1039/d0ob01384f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A novel strategy has been developed for the synthesis of indole fused spiro-1,4-diazocane derivatives. Using a tandem Prins cyclization, this is the first report on the synthesis of eight-membered spirodiazocane scaffolds, which are less accessible due to ring strain but more relevant to drug discovery.
Collapse
|
34
|
Fernandes FS, Santos H, Lima SR, Conti C, Rodrigues MT, Zeoly LA, Ferreira LLG, Krogh R, Andricopulo AD, Coelho F. Discovery of highly potent and selective antiparasitic new oxadiazole and hydroxy-oxindole small molecule hybrids. Eur J Med Chem 2020; 201:112418. [PMID: 32590115 DOI: 10.1016/j.ejmech.2020.112418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
Abstract
A series of highly active hybrids were discovered as novel antiparasitic agents. Two heterocyclic scaffolds (1,2,4-oxadiazole and 3-hydroxy-2-oxindole) were linked, and the resulting compounds showed in vitro activities against intracellular amastigotes of two protozoan parasites, Trypanosoma cruzi and Leishmania infantum. Their cytotoxicity was assessed using HFF-1 fibroblasts and HepG2 hepatocytes. Compounds 5b, 5d, 8h and 8o showed selectivity against L. infantum (IC50 values of 3.89, 2.38, 2.50 and 2.85 μM, respectively). Compounds 4c, 4q, 8a and 8k were the most potent against T. cruzi, exhibiting IC50 values of 6.20, 2.20, 2.30 and 2.20 μM, respectively. Additionally, the most potent anti-T. cruzi compounds showed in vitro efficacies comparable or superior to that of benznidazole. These easy-to-synthesize molecules represent novel chemotypes for the design of potent and selective lead compounds for Chagas disease and leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Fábio S Fernandes
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Hugo Santos
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Samia R Lima
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Caroline Conti
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Manoel T Rodrigues
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Lucas A Zeoly
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of Sao Carlos, University of Sao Paulo, Avenida Joao Dagnone, 1100, 13563-120, Sao Carlos, SP, Brazil.
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
35
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020; 59:19222-19228. [DOI: 10.1002/anie.202007825] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
36
|
Liang W, Jiang K, Du F, Yang J, Shuai L, Ouyang Q, Chen Y, Wei Y. Iron‐Catalyzed, Iminyl Radical‐Triggered Cascade 1,5‐Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five‐Atom Assembling Unit. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wu Liang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Kun Jiang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Fei Du
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Jie Yang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Li Shuai
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ying‐Chun Chen
- College of Pharmacy Army Medical University Chongqing 400038 China
| | - Ye Wei
- College of Pharmacy Army Medical University Chongqing 400038 China
| |
Collapse
|
37
|
Relationship among structure, cytotoxicity, and Michael acceptor reactivity of quinocidin. Bioorg Med Chem 2020; 28:115308. [PMID: 31956051 DOI: 10.1016/j.bmc.2020.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/21/2022]
Abstract
Quinocidin (QCD) is a cytotoxic antibiotic with an unusual 3,4-dihydroquinolizinium skeleton. We previously found that QCD captures thiols in neutral aqueous media via a Michael addition-type reaction. However, it remains unclear whether the Michael acceptor reactivity of QCD is responsible for its cytotoxicity. In this study, we synthesized thirteen analogs of QCD to examine the relationship among its structure, cytotoxicity, and reactivity toward thiols. Thiol-trapping experiments and cytotoxicity tests collectively suggested that the Michael acceptor function of QCD is independent of its cytotoxic activity, and that the pyridinium moiety with the hydrophobic side chain is a key structural factor for cytotoxicity. These findings further led us to demonstrate that incorporation of an amide group into the side chain of QCD significantly reduced its toxicity but hardly affected the Michael acceptor function. The present study lays the foundation for QCD-based drug design and highlights the potential of QCD as a unique electrophile for use in the development of covalent inhibitors and protein-labeling probes.
Collapse
|
38
|
Efimov VV, Neupokoeva EV, Peterson IV, Lyubyashkin AV, Suboch GA, Tovbis MS. Heterocyclization Reactions of Isonitroso β-Diketones with Hydrazine Hydrate and Alkylhydrazines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019080037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Bakthadoss M, Vinayagam V, Agarwal V, Sharada DS. Three Component, One‐Pot Synthesis of Multifunctional Quinolinopyranpyrazoles
via
Catalyst‐Free Multicomponent Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Varathan Vinayagam
- Department of Organic ChemistryUniversity of MadrasGuindy Campus Chennai 600025, Tamilnadu India
| | - Vishal Agarwal
- Department of ChemistryPondicherry University Pondicherry – 605014 India
| | - Duddu S. Sharada
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi- 502285, Sangareddy, Telangana India
| |
Collapse
|
40
|
De Oliveira Silva A, McQuade J, Szostak M. Recent Advances in the Synthesis and Reactivity of Isothiazoles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900072] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - James McQuade
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry Ministry of Education Shaanxi University of Science and Technology Xi'an 710021 People's Republic of China
- Department of Chemistry Rutgers University 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
41
|
Pantaine LRE, Milligan JA, Matsui JK, Kelly CB, Molander GA. Photoredox Radical/Polar Crossover Enables Construction of Saturated Nitrogen Heterocycles. Org Lett 2019; 21:2317-2321. [PMID: 30860849 PMCID: PMC6452489 DOI: 10.1021/acs.orglett.9b00602] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoredox-mediated radical/polar crossover (RPC) processes offer new avenues for the synthesis of cyclic molecules. This process has been realized for the construction of medium-sized saturated nitrogen heterocycles. Photocatalytically generated alkyl radicals possessing pendant leaving groups engage imines in C-C bond formation, and subsequent reduction of the intermediate nitrogen-centered radical triggers anionic ring closure. With the aid of visible light irradiation, substituted pyrrolidines, piperidines, and azepanes can be prepared under mild, redox-neutral conditions.
Collapse
Affiliation(s)
- Loiïc R. E. Pantaine
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - John A. Milligan
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Jennifer K. Matsui
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Christopher B. Kelly
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006 Richmond, VA 23284-9069, United States
- Medicines for All Institute, Virginia Commonwealth University, Biotech 8 737 N. 5 Street, Richmond, VA 23219-1441
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania, 19104-6323, United States
| |
Collapse
|
42
|
Min XL, Sun C, He Y. Synthesis of 1-Amino-2H-quinolizin-2-one Scaffolds by Tandem Silver Catalysis. Org Lett 2019; 21:724-728. [DOI: 10.1021/acs.orglett.8b03935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-Long Min
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Chao Sun
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| |
Collapse
|
43
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Yarie M, Zolfigol MA, Baghery S, Alonso DA, Khoshnood A, Bayat Y, Asgari A. Triphenyl(3-sulfopropyl)phosphonium trinitromethanide as a novel nanosized molten salt: Catalytic activity at the preparation of dihydropyrano[2,3-c]pyrazoles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
45
|
Maertens G, Saavedra OM, Vece V, Reyes MAV, Hocine S, Öney E, Goument B, Mirguet O, Le Tiran A, Gloanec P, Hanessian S. Design and synthesis of bridged piperidine and piperazine isosteres. Bioorg Med Chem Lett 2018; 28:2627-2630. [PMID: 29937060 DOI: 10.1016/j.bmcl.2018.06.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/17/2018] [Indexed: 01/11/2023]
Abstract
We have developed versatile methods toward the synthesis of a variety of piperidine/piperazine bridged isosteres of pridopidine. The compounds were assessed against the D2 receptor in agonist and antagonist modes and against the D4 receptor in agonist mode. hERG Binding and the ADME profiles were studied.
Collapse
Affiliation(s)
- Gaëtan Maertens
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Oscar M Saavedra
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Vito Vece
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Miguel A Vilchis Reyes
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Esat Öney
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada
| | - Bertrand Goument
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Olivier Mirguet
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Arnaud Le Tiran
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Philippe Gloanec
- Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128 Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
46
|
Das BK, Pradhan S, Punniyamurthy T. Stereospecific Ring Opening and Cycloisomerization of Aziridines with Propargylamines: Synthesis of Functionalized Piperazines and Tetrahydropyrazines. Org Lett 2018; 20:4444-4448. [DOI: 10.1021/acs.orglett.8b01723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sourav Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
47
|
Reig M, Bosque R, Font-Bardía M, Calvis C, Messeguer R, Baldomà L, Badía J, Velasco D, López C. A study of the properties, reactivity and anticancer activity of novel N-methylated-3-thiazolyl or 3-thienyl carbazoles and their Pd(II) and Pt(II) complexes. J Inorg Biochem 2018; 184:134-145. [DOI: 10.1016/j.jinorgbio.2018.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 01/16/2023]
|
48
|
Ye Z, Adhikari S, Xia Y, Dai M. Expedient syntheses of N-heterocycles via intermolecular amphoteric diamination of allenes. Nat Commun 2018; 9:721. [PMID: 29459667 PMCID: PMC5818626 DOI: 10.1038/s41467-018-03085-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
Saturated 1,4-diazo heterocycles including piperazines, 1,4-diazepanes, and 1,4-diazocanes, are highly important for therapeutic development, but their syntheses are often tedious. We describe here an amphoteric diamination strategy to unite readily available 1,2-, 1,3- or 1,4-diamine derivatives with electron-deficient allenes via a formal [n + 2] (n = 4, 5, 6) cyclization mode to produce the corresponding 1,4-diazo heterocycles in just one step. This strategy features mild reaction conditions, high functional group tolerance, and scalability (gram scale). The reagents used are cheap and readily available and no transition metal catalysts are needed. More sophisticated products containing trifluoromethyl group or bicyclic ring systems can be accessed via a one-pot procedure as well. Our mechanistic studies support that formation of mono-iodinated or chlorinated diamine intermediates is important for the desired transformation and the commonly proposed chloride-iodide exchange process and a radical N-C bond formation is unlikely when the combination of NCS/KI is used.
Collapse
Affiliation(s)
- Zhishi Ye
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Sarju Adhikari
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yu Xia
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
49
|
Iwanejko J, Wojaczyńska E. Cyclic imines – preparation and application in synthesis. Org Biomol Chem 2018; 16:7296-7314. [DOI: 10.1039/c8ob01874j] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic imines, available from various nitrogen-containing reactants, serve as versatile synthetic intermediates for biologically active compounds.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| | - Elżbieta Wojaczyńska
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| |
Collapse
|
50
|
|