1
|
Rai SN, Dutta T. A novel ionizing radiation-induced small RNA, DrsS, promotes the detoxification of reactive oxygen species in Deinococcus radiodurans. Appl Environ Microbiol 2024; 90:e0153823. [PMID: 38587394 PMCID: PMC11107164 DOI: 10.1128/aem.01538-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.
Collapse
Affiliation(s)
- Shiv Narayan Rai
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
2
|
Nasreen M, Ellis D, Hosmer J, Essilfie AT, Fantino E, Sly P, McEwan AG, Kappler U. The DmsABC S-oxide reductase is an essential component of a novel, hypochlorite-inducible system of extracellular stress defense in Haemophilus influenzae. Front Microbiol 2024; 15:1359513. [PMID: 38638903 PMCID: PMC11024254 DOI: 10.3389/fmicb.2024.1359513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Defenses against oxidative damage to cell components are essential for survival of bacterial pathogens during infection, and here we have uncovered that the DmsABC S-/N-oxide reductase is essential for virulence and in-host survival of the human-adapted pathogen, Haemophilus influenzae. In several different infection models, H. influenzae ΔdmsA strains showed reduced immunogenicity as well as lower levels of survival in contact with host cells. Expression of DmsABC was induced in the presence of hypochlorite and paraquat, closely linking this enzyme to defense against host-produced antimicrobials. In addition to methionine sulfoxide, DmsABC converted nicotinamide- and pyrimidine-N-oxide, precursors of NAD and pyrimidine for which H. influenzae is an auxotroph, at physiologically relevant concentrations, suggesting that these compounds could be natural substrates for DmsABC. Our data show that DmsABC forms part of a novel, periplasmic system for defense against host-induced S- and N-oxide stress that also comprises the functionally related MtsZ S-oxide reductase and the MsrAB peptide methionine sulfoxide reductase. All three enzymes are induced following exposure of the bacteria to hypochlorite. MsrAB is required for physical resistance to HOCl and protein repair. In contrast, DmsABC was required for intracellular colonization of host cells and, together with MtsZ, contributed to resistance to N-Chlorotaurine. Our work expands and redefines the physiological role of DmsABC and highlights the importance of different types of S-oxide reductases for bacterial virulence.
Collapse
Affiliation(s)
- Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Daniel Ellis
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Peter Sly
- Child Health Research Centre, South Brisbane, QLD, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Martinelli F, Thiele I. Microbial metabolism marvels: a comprehensive review of microbial drug transformation capabilities. Gut Microbes 2024; 16:2387400. [PMID: 39150897 PMCID: PMC11332652 DOI: 10.1080/19490976.2024.2387400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/18/2024] Open
Abstract
This comprehensive review elucidates the pivotal role of microbes in drug metabolism, synthesizing insights from an exhaustive analysis of over two hundred papers. Employing a structural classification system grounded in drug atom involvement, the review categorizes the microbiome-mediated drug-metabolizing capabilities of over 80 drugs. Additionally, it compiles pharmacodynamic and enzymatic details related to these reactions, striving to include information on encoding genes and specific involved microorganisms. Bridging biochemistry, pharmacology, genetics, and microbiology, this review not only serves to consolidate diverse research fields but also highlights the potential impact of microbial drug metabolism on future drug design and in silico studies. With a visionary outlook, it also lays the groundwork for personalized medicine interventions, emphasizing the importance of interdisciplinary collaboration for advancing drug development and enhancing therapeutic strategies.
Collapse
Affiliation(s)
- Filippo Martinelli
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- The Ryan Institute, University of Galway, Galway, Ireland
- School of Microbiology, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
4
|
Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A, McGuire S, Kreth J, Merritt J. The prevalence of Fusobacterium nucleatum subspecies in the oral cavity stratifies by local health status. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563997. [PMID: 37961321 PMCID: PMC10634819 DOI: 10.1101/2023.10.25.563997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The ubiquitous inflammophilic pathobiont Fusobacterium nucleatum is widely recognized for its strong association with a variety of human dysbiotic diseases such as periodontitis and oral/extraoral abscesses, as well as multiple types of cancer. F. nucleatum is currently subdivided into four subspecies: F. nucleatum subspecies nucleatum (Fn. nucleatum), animalis (Fn. animalis), polymorphum (Fn. polymorphum), and vincentii/fusiforme (Fn. vincentii). Although these subspecies have been historically considered as functionally interchangeable in the oral cavity, direct clinical evidence is largely lacking for this assertion. Consequently, we assembled a collection of oral clinical specimens to determine whether F. nucleatum subspecies prevalence in the oral cavity stratifies by local oral health status. Patient-matched clinical specimens of both disease-free dental plaque and odontogenic abscess were analyzed with newly developed culture-dependent and culture-independent approaches using 44 and 60 oral biofilm/tooth abscess paired specimens, respectively. Most oral cavities were found to simultaneously harbor multiple F. nucleatum subspecies, with a greater diversity present within dental plaque compared to abscesses. In dental plaque, Fn. polymorphum is clearly the dominant organism, but this changes dramatically within odontogenic abscesses where Fn. animalis is heavily favored over all other fusobacteria. Surprisingly, the most commonly studied F. nucleatum subspecies, Fn. nucleatum, is only a minor constituent in the oral cavity. To gain further insights into the genetic basis for these phenotypes, we subsequently performed pangenome, phylogenetic, and functional enrichment analyses of oral fusobacterial genomes using the Anvi'o platform, which revealed significant genotypic distinctions among F. nucleatum subspecies. Accordingly, our results strongly support a taxonomic reassignment of each F. nucleatum subspecies into distinct Fusobacterium species. Of these, Fn. animalis should be considered as the most clinically relevant at sites of active inflammation, despite being among the least characterized oral fusobacteria.
Collapse
Affiliation(s)
- Madeline Krieger
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Yasser M. AbdelRahman
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Dongseok Choi
- Department of Community Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- School of Public Health, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Elizabeth A. Palmer
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Anna Yoo
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Sean McGuire
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Division of Pediatric Dentistry, Department of Regenerative and Reconstructive Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
5
|
Gonzalez LN, Cabeza MS, Robello C, Guerrero SA, Iglesias AA, Arias DG. Biochemical characterization of GAF domain of free-R-methionine sulfoxide reductase from Trypanosoma cruzi. Biochimie 2023; 213:190-204. [PMID: 37423556 DOI: 10.1016/j.biochi.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.
Collapse
Affiliation(s)
- Lihue N Gonzalez
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías S Cabeza
- Laboratorio de Micología y Diagnóstico Molecular. Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Parasitología y Micología. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Cátedra de Bioquímica Básica de Macromoléculas. Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
6
|
Polland L, Rydén H, Su Y, Paulsson M. In vivo gene expression profile of Haemophilus influenzae during human pneumonia. Microbiol Spectr 2023; 11:e0163923. [PMID: 37707456 PMCID: PMC10581191 DOI: 10.1128/spectrum.01639-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
Haemophilus influenzae is a major cause of community-acquired pneumonia. While studied extensively in various laboratory models, less is known about the cell function while inside the human lung. We present the first analysis of the global gene expression of H. influenzae while the bacteria are in the lung during pneumonia (in vivo conditions) and contrast it with bacterial isolates that have been cultured under standard laboratory conditions (in vitro conditions). Patients with pneumonia were recruited from emergency departments and intensive care units during 2018-2020 (n = 102). Lower respiratory samples were collected for bacterial culture and RNA extraction. Patient samples with H. influenzae (n = 8) and colonies from bacterial cultures (n = 6) underwent RNA sequencing. The reads were then pseudo-aligned to core and pan genomes created from 15 reference strains. While bacteria cultured in vitro clustered tightly by principal component analysis of core genome (n = 1067) gene expression, bacteria in the patient samples had more diverse transcriptomic signatures and did not group with their lab-cultured counterparts. In total, 328 core genes were significantly differentially expressed between in vitro and in vivo conditions. The most highly upregulated genes in vivo included tbpA and fbpA, which are involved in the acquisition of iron from transferrin, and the stress response gene msrAB. The biosynthesis of nucleotides/purines and molybdopterin-scavenging processes were also significantly enriched in vivo. In contrast, major metabolic pathways and iron-sequestering genes were downregulated under this condition. In conclusion, extensive transcriptomic differences were found between bacteria while in the human lung and bacteria that were cultured in vitro. IMPORTANCE The human-specific pathogen Haemophilus influenzae is generally not well suited for studying in animal models, and most laboratory models are unlikely to approximate the diverse environments encountered by bacteria in the human airways accurately. Thus, we have examined the global gene expression of H. influenzae during pneumonia. Extensive differences in the global gene expression profiles were found in H. influenzae while in the human lung compared to bacteria that were grown in the laboratory. In contrast, the gene expression profiles of isolates collected from different patients were found to cluster together when grown under the same laboratory conditions. Interesting observations were made of how H. influenzae acquires and uses iron and molybdate, endures oxidative stress, and regulates central metabolism while in the lung. Our results indicate important processes during infection and can guide future research on genes and pathways that are relevant in the pathogenesis of H. influenzae pneumonia.
Collapse
Affiliation(s)
- Linnea Polland
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Hanna Rydén
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
- Experimental Infection Medicine, Department of Translational Medicine, Medical Faculty, Lund, Sweden
| | - Yi Su
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Magnus Paulsson
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
7
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
8
|
Vincent MS, Ezraty B. Methionine oxidation in bacteria: A reversible post-translational modification. Mol Microbiol 2023; 119:143-150. [PMID: 36350090 DOI: 10.1111/mmi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Methionine is a sulfur-containing residue found in most proteins which are particularly susceptible to oxidation. Although methionine oxidation causes protein damage, it can in some cases activate protein function. Enzymatic systems reducing oxidized methionine have evolved in most bacterial species and methionine oxidation proves to be a reversible post-translational modification regulating protein activity. In this review, we inspect recent examples of methionine oxidation provoking protein loss and gain of function. We further speculate on the role of methionine oxidation as a multilayer endogenous antioxidant system and consider its potential consequences for bacterial virulence.
Collapse
Affiliation(s)
- Maxence S Vincent
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| | - Benjamin Ezraty
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, CNRS, Marseille, France
| |
Collapse
|
9
|
Tierney BT, Singh NK, Simpson AC, Hujer AM, Bonomo RA, Mason CE, Venkateswaran K. Multidrug-resistant Acinetobacter pittii is adapting to and exhibiting potential succession aboard the International Space Station. MICROBIOME 2022; 10:210. [PMID: 36503581 PMCID: PMC9743659 DOI: 10.1186/s40168-022-01358-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/11/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Monitoring the adaptation of microorganisms to the extreme environment of the International Space Station (ISS) is crucial to understanding microbial evolution and infection prevention. Acinetobacter pittii is an opportunistic nosocomial pathogen, primarily impacting immunocompromised patients, that was recently isolated from two missions aboard the ISS. RESULTS Here, we report how ISS-associated A. pittii (n = 20 genomes) has formed its own genetically and functionally discrete clade distinct from most Earth-bound isolates (n = 291 genomes). The antimicrobial susceptibility testing of ISS strains and two related clinical isolates demonstrated that ISS strains acquired more resistance, specifically with regard to expanded-spectrum cephalosporins, despite no prediction of increased resistance based on genomic analysis of resistance genes. By investigating 402 longitudinal environmental and host-associated ISS metagenomes, we observed that viable A. pittii is increasing in relative abundance and therefore potentially exhibiting succession, being identified in >2X more metagenomic samples in back-to-back missions. ISS strains additionally contain functions that enable them to survive in harsh environments, including the transcriptional regulator LexA. Via a genome-wide association study, we identified a high level of mutational burden in methionine sulfoxide reductase genes relative to the most closely related Earth strains. CONCLUSIONS Overall, these results indicated a step forward in understanding how microorganisms might evolve and alter their antibiotic resistance phenotype in extreme, resource-limited, human-built environments. Video Abstract.
Collapse
Affiliation(s)
- Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Nitin K Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Anna C Simpson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Departments of Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, 44106, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
| |
Collapse
|
10
|
Nasreen M, Nair RP, McEwan AG, Kappler U. The Peptide Methionine Sulfoxide Reductase (MsrAB) of Haemophilus influenzae Repairs Oxidatively Damaged Outer Membrane and Periplasmic Proteins Involved in Nutrient Acquisition and Virulence. Antioxidants (Basel) 2022; 11:antiox11081557. [PMID: 36009276 PMCID: PMC9404787 DOI: 10.3390/antiox11081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfoxide-damage repair mechanisms are emerging as essential for the virulence of bacterial pathogens, and in the human respiratory pathogen Haemophilus influenzae the periplasmic MsrAB peptide methionine sulfoxide reductase is necessary for resistance to reactive chlorine species such as hypochlorite. Additionally, this enzyme has a role in modulating the host immune response to infection. Here, we have analysed the enzymatic properties of MsrAB, which revealed that both domains of the protein are catalytically active, with the turnover number of the MsrA domain being 50% greater than that for the MsrB domain. MsrAB was active with small molecular sulfoxides as well as oxidised calmodulin, and maximal activity was observed at 30°C, a temperature close to that found in the natural niche of H. influenzae, the nasopharynx. Analyses of differential methionine oxidation identified 29 outer membrane and periplasmic proteins that are likely substrates for MsrAB. These included the LldD lactate dehydrogenase and the lipoprotein eP4 that is involved in NAD and hemin metabolism in H. influenzae. Subsequent experiments showed that H. influenzae MsrAB can repair oxidative damage to methionines in purified eP4 with up to 100% efficiency. Our work links MsrAB to the maintenance of different adhesins and essential metabolic processes in the H. influenzae, such as NAD metabolism and access to L-lactate, which is a key growth substrate for H. influenzae during infection.
Collapse
|
11
|
A Novel Small RNA, DsrO, in Deinococcus radiodurans Promotes Methionine Sulfoxide Reductase ( msrA) Expression for Oxidative Stress Adaptation. Appl Environ Microbiol 2022; 88:e0003822. [PMID: 35575549 PMCID: PMC9195949 DOI: 10.1128/aem.00038-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.
Collapse
|
12
|
Sobel M, Navas-Acien A, Powers M, Grau-Perez M, Goessler W, Best LG, Umans J, Oelsner EC, Podolanczuk A, Sanchez TR. Environmental-level exposure to metals and metal-mixtures associated with spirometry-defined lung disease in American Indian adults: Evidence from the Strong Heart Study. ENVIRONMENTAL RESEARCH 2022; 207:112194. [PMID: 34653410 PMCID: PMC8810711 DOI: 10.1016/j.envres.2021.112194] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND American Indians have a higher burden of chronic lung disease compared to the US average. Several metals are known to induce chronic lung disease at high exposure levels; however, less is known about the role of environmental-level metal exposure. We investigated respiratory effects of exposure to single metals and metal-mixtures in American Indians who participated in the Strong Heart Study. METHODS We included 2077 participants with data on 6 metals (As, Cd, Mo, Se, W, Zn) measured from baseline urine samples (1989-1991) and who underwent spirometry testing at follow-up (1993-1995). We used generalized linear regression to assess associations of single metals with spirometry-defined measures of airflow limitation and restrictive ventilatory pattern, and continuous spirometry. We used Bayesian Kernel Machine Regression to investigate the joint effects of the metal-mixture. Sensitivity analyses included stratifying by smoking status and diabetes. RESULTS Participants were 40% male, with median age 55 years. 21% had spirometry-defined airflow limitation, and 14% had a restrictive ventilatory pattern. In individual metal analyses, Cd was associated with higher odds of airflow limitation and lower FEV1 and FEV1/FVC. Mo was associated with higher odds of restrictive ventilatory pattern and lower FVC. Metal-mixtures analyses confirmed these models. In smoking stratified analyses, the overall metal-mixture was linearly and positively associated with airflow limitation among non-smokers; Cd was the strongest contributor. For restrictive ventilatory pattern, the association with the overall metal-mixture was strong and linear among participants with diabetes and markedly attenuated among participants without diabetes. Among those with diabetes, Mo and Zn were the major contributors. CONCLUSIONS Environmental-level exposure to several metals was associated with higher odds of spirometry-defined lung disease in an American Indian population. Exposure to multiple metals, including Cd and Mo, may have an under-recognized adverse role on the respiratory system.
Collapse
Affiliation(s)
- Marisa Sobel
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| | - Martha Powers
- Department of Sociology and Anthropology, Northeastern University, 1135 Tremont Street, 900 Renaissance Park, Boston, MA, 02115, USA.
| | - Maria Grau-Perez
- Biomedical Research Institute of Valencia (INCLIVA), C. de Menéndez y Pelayo, 4, 46010, Valencia, Spain.
| | - Walter Goessler
- Institute of Chemistry, Universität Graz, Universitätsplatz 3, 8010, Graz, Austria.
| | - Lyle G Best
- Missouri Breaks Industries Research, 118 South Willow St, Eagle Butte, SD, 57625, USA.
| | - Jason Umans
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University Medical Center, 3800 Reservoir Road, N.W, Washington, D.C, USA.
| | - Elizabeth C Oelsner
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, 622 W 168th St, New York, NY, 10032, USA.
| | - Anna Podolanczuk
- Pulmonary Critical Care Medicine, Weill Cornell Medicine, 425 E 61st St, New York, NY, 10065, USA.
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, 722 West 168th St. NY, NY, 10032, USA.
| |
Collapse
|
13
|
The Fused Methionine Sulfoxide Reductase MsrAB Promotes Oxidative Stress Defense and Bacterial Virulence in Fusobacterium nucleatum. mBio 2022; 13:e0302221. [PMID: 35420473 PMCID: PMC9239216 DOI: 10.1128/mbio.03022-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fusobacterium nucleatum, an anaerobic Gram-negative bacterium frequently found in the human oral cavity and some extra-oral sites, is implicated in several important diseases: periodontitis, adverse pregnancy outcomes, and colorectal cancer. To date, how this obligate anaerobe copes with oxidative stress and host immunity within multiple human tissues remains unknown. Here, we uncovered a critical role in this process of a multigene locus encoding a single, fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin (Trx)- and cytochrome c (CcdA)-like proteins, which are induced when fusobacterial cells are exposed to hydrogen peroxide. Comparative transcriptome analysis revealed that the response regulator ModR regulates a large regulon that includes trx, ccdA, and many metabolic genes. Significantly, specific mutants of the msrAB locus, including msrAB, are sensitive to reactive oxygen species and defective in adherence/invasion of colorectal epithelial cells. Strikingly, the msrAB mutant is also defective in survival in macrophages, and it is severely attenuated in virulence in a mouse model of preterm birth, consistent with its failure to spread to the amniotic fluid and colonize the placenta. Clearly, the MsrAB system regulated by the two-component system ModRS represents a major oxidative stress defense pathway that protects fusobacteria against oxidative damage in immune cells and confers virulence by enabling attachment and invasion of multiple target tissues. IMPORTANCE F. nucleatum colonizes various human tissues, including oral cavity, placenta, and colon. How this obligate anaerobe withstands oxidative stress in host immune cells has not been described. We report here that F. nucleatum possesses a five-gene locus encoding a fused methionine sulfoxide reductase (MsrAB), a two-component signal transduction system (ModRS), and thioredoxin- and cytochrome c-like proteins. Regulated by ModRS, MsrAB is essential for resistance to reactive oxygen species, adherence/invasion of colorectal epithelial cells, and survival in macrophage. Unable to colonize placenta and spread to amniotic fluid, the msrAB mutant failed to induce preterm birth in a murine model.
Collapse
|
14
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
15
|
Struwe MA, Kalimuthu P, Luo Z, Zhong Q, Ellis D, Yang J, Khadanand KC, Harmer JR, Kirk ML, McEwan AG, Clement B, Bernhardt PV, Kobe B, Kappler U. Active site architecture reveals coordination sphere flexibility and specificity determinants in a group of closely related molybdoenzymes. J Biol Chem 2021; 296:100672. [PMID: 33887324 PMCID: PMC8166771 DOI: 10.1016/j.jbc.2021.100672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/27/2022] Open
Abstract
MtsZ is a molybdenum-containing methionine sulfoxide reductase that supports virulence in the human respiratory pathogen Haemophilus influenzae (Hi). HiMtsZ belongs to a group of structurally and spectroscopically uncharacterized S-/N-oxide reductases, all of which are found in bacterial pathogens. Here, we have solved the crystal structure of HiMtsZ, which reveals that the HiMtsZ substrate-binding site encompasses a previously unrecognized part that accommodates the methionine sulfoxide side chain via interaction with His182 and Arg166. Charge and amino acid composition of this side chain–binding region vary and, as indicated by electrochemical, kinetic, and docking studies, could explain the diverse substrate specificity seen in closely related enzymes of this type. The HiMtsZ Mo active site has an underlying structural flexibility, where dissociation of the central Ser187 ligand affected catalysis at low pH. Unexpectedly, the two main HiMtsZ electron paramagnetic resonance (EPR) species resembled not only a related dimethyl sulfoxide reductase but also a structurally unrelated nitrate reductase that possesses an Asp–Mo ligand. This suggests that contrary to current views, the geometry of the Mo center and its primary ligands, rather than the specific amino acid environment, is the main determinant of the EPR properties of mononuclear Mo enzymes. The flexibility in the electronic structure of the Mo centers is also apparent in two of three HiMtsZ EPR-active Mo(V) species being catalytically incompetent off-pathway forms that could not be fully oxidized.
Collapse
Affiliation(s)
- Michel A Struwe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Zhenyao Luo
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Qifeng Zhong
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Daniel Ellis
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - K C Khadanand
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | - Martin L Kirk
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Alastair G McEwan
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Bernd Clement
- Pharmazeutisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia
| | - Bostjan Kobe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Ulrike Kappler
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, Australia.
| |
Collapse
|
16
|
Sasoni N, Hartman MD, Guerrero SA, Iglesias AA, Arias DG. Functional characterization of methionine sulfoxide reductases from Leptospira interrogans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140575. [PMID: 33242654 DOI: 10.1016/j.bbapap.2020.140575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine (Met) oxidation leads to a racemic mixture of R and S forms of methionine sulfoxide (MetSO). Methionine sulfoxide reductases (Msr) are enzymes that can reduce specifically each isomer of MetSO, both free and protein-bound. The Met oxidation could change the structure and function of many proteins, not only of those redox-related but also of others involved in different metabolic pathways. Until now, there is no information about the presence or function of Msrs enzymes in Leptospira interrogans. METHODS We identified genes coding for putative MsrAs (A1 and A2) and MsrB in L. interrogans serovar Copenhageni strain Fiocruz L1-130 genome project. From these, we obtained the recombinant proteins and performed their functional characterization. RESULTS The recombinant L. interrogans MsrB catalyzed the reduction of Met(R)SO using glutaredoxin and thioredoxin as reducing substrates and behaves like a 1-Cys Msr (without resolutive Cys residue). It was able to partially revert the in vitro HClO-dependent inactivation of L. interrogans catalase. Both recombinant MsrAs reduced Met(S)SO, being the recycle mediated by the thioredoxin system. LinMsrAs were more efficient than LinMsrB for free and protein-bound MetSO reduction. Besides, LinMsrAs are enzymes involving a Cys triad in their catalytic mechanism. LinMsrs showed a dual localization, both in cytoplasm and periplasm. CONCLUSIONS AND GENERAL SIGNIFICANCE This article brings new knowledge about redox metabolism in L. interrogans. Our results support the occurrence of a metabolic pathway involved in the critical function of repairing oxidized macromolecules in this pathogen.
Collapse
Affiliation(s)
- Natalia Sasoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Matías D Hartman
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
17
|
Arias DG, Cabeza MS, Echarren ML, Faral-Tello P, Iglesias AA, Robello C, Guerrero SA. On the functionality of a methionine sulfoxide reductase B from Trypanosoma cruzi. Free Radic Biol Med 2020; 158:96-114. [PMID: 32682073 DOI: 10.1016/j.freeradbiomed.2020.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/20/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methionine is an amino acid susceptible to be oxidized to give a racemic mixture of R and S forms of methionine sulfoxide (MetSO). This posttranslational modification has been reported to occur in vivo under either normal or stress conditions. The reduction of MetSO to methionine is catalyzed by methionine sulfoxide reductases (MSRs), thiol-dependent enzymes present in almost all organisms. These enzymes can reduce specifically one or another of the isomers of MetSO (free and protein-bound). This redox modification could change the structure and function of many proteins, either concerned in redox or other metabolic pathways. The study of antioxidant systems in Trypanosoma cruzi has been mainly focused on the involvement of trypanothione, a specific redox component for these organisms. Though, little information is available concerning mechanisms for repairing oxidized methionine residues in proteins, which would be relevant for the survival of these pathogens in the different stages of their life cycle. METHODS We report an in vitro functional and in vivo cellular characterization of methionine sulfoxide reductase B (MSRB, specific for protein-bound MetSO R-enantiomer) from T. cruzi strain Dm28c. RESULTS MSRB exhibited both cytosolic and mitochondrial localization in epimastigote cells. From assays involving parasites overexpressing MSRB, we observed the contribution of this protein to increase the general resistance against oxidative damage, the infectivity of trypomastigote cells, and intracellular replication of the amastigote stage. Also, we report that epimastigotes overexpressing MSRB exhibit inhibition of the metacyclogenesis process; this suggesting the involvement of the proteins as negative modulators in this cellular differentiation. CONCLUSIONS AND GENERAL SIGNIFICANCE This report contributes to novel insights concerning redox metabolism in T. cruzi. Results herein presented support the importance of enzymatic steps involved in the metabolism of L-Met and in repairing oxidized macromolecules in this parasite.
Collapse
Affiliation(s)
- Diego G Arias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina.
| | - Matías S Cabeza
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María L Echarren
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Paula Faral-Tello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Robello
- Laboratorio de Interacción Hospedero-Patógeno, UBM, Instituto Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica - Facultad de Medicina - Universidad de la República, Montevideo, Uruguay
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular - Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas - Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
18
|
Reduction of Protein Bound Methionine Sulfoxide by a Periplasmic Dimethyl Sulfoxide Reductase. Antioxidants (Basel) 2020; 9:antiox9070616. [PMID: 32674377 PMCID: PMC7402097 DOI: 10.3390/antiox9070616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 01/16/2023] Open
Abstract
In proteins, methionine (Met) can be oxidized into Met sulfoxide (MetO). The ubiquitous methionine sulfoxide reductases (Msr) A and B are thiol-oxidoreductases reducing MetO. Reversible Met oxidation has a wide range of consequences, from protection against oxidative stress to fine-tuned regulation of protein functions. Bacteria distinguish themselves by the production of molybdenum-containing enzymes reducing MetO, such as the periplasmic MsrP which protects proteins during acute oxidative stress. The versatile dimethyl sulfoxide (DMSO) reductases were shown to reduce the free amino acid MetO, but their ability to reduce MetO within proteins was never evaluated. Here, using model oxidized proteins and peptides, enzymatic and mass spectrometry approaches, we showed that the Rhodobacter sphaeroides periplasmic DorA-type DMSO reductase reduces protein bound MetO as efficiently as the free amino acid L-MetO and with catalytic values in the range of those described for the canonical Msrs. The identification of this fourth type of enzyme able to reduce MetO in proteins, conserved across proteobacteria and actinobacteria, suggests that organisms employ enzymatic systems yet undiscovered to regulate protein oxidation states.
Collapse
|
19
|
Nasreen M, Dhouib R, Hosmer J, Wijesinghe HGS, Fletcher A, Mahawar M, Essilfie AT, Blackall PJ, McEwan AG, Kappler U. Peptide Methionine Sulfoxide Reductase from Haemophilus influenzae Is Required for Protection against HOCl and Affects the Host Response to Infection. ACS Infect Dis 2020; 6:1928-1939. [PMID: 32492342 DOI: 10.1021/acsinfecdis.0c00242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide methionine sulfoxide reductases (Msrs) are enzymes that repair ROS-damage to sulfur-containing amino acids such as methionine, ensuring functional integrity of cellular proteins. Here we have shown that unlike the majority of pro- and eukaryotic Msrs, the peptide methionine sulfoxide reductase (MsrAB) from the human pathobiont Haemophilus influenzae (Hi) is required for the repair of hypochlorite damage to cell envelope proteins, but more importantly, we were able to demonstrate that MsrAB plays a role in modulating the host immune response to Hi infection. Loss of MsrAB resulted in >1000-fold increase in sensitivity of Hi to HOCl-mediated killing, and also reduced biofilm formation and in-biofilm survival. Expression of msrAB was also induced by hydrogen peroxide and paraquat, but a Hi2019ΔmsrAB strain was not susceptible to killing by these ROS in vitro. Hi2019ΔmsrAB fitness in infection models was low, with a 3-fold reduction in intracellular survival in bronchial epithelial cells, increased susceptibility to neutrophil killing, and a 10-fold reduction in survival in a mouse model of lung infection. Interestingly, infection with Hi2019ΔmsrAB led to specific changes in the antibacterial response of human host cells, with genes encoding antimicrobial peptides (BPI, CAMP) upregulated between 4 and 9 fold compared to infection with Hi2019WT, and reduction in expression of two proteins with antiapoptotic functions (BIRC3, XIAP). Modulation of host immune responses is a novel role for an enzyme of this type and provides first insights into mechanisms by which MsrAB supports Hi survival in vivo.
Collapse
Affiliation(s)
- Marufa Nasreen
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rabeb Dhouib
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer Hosmer
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hewa Godage Sithija Wijesinghe
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Aidan Fletcher
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Manish Mahawar
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Ama-Tawiah Essilfie
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Patrick J. Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alastair G. McEwan
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ulrike Kappler
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|