1
|
Korhonen PK, Wang T, Young ND, Byrne JJ, Campos TL, Chang BC, Taki AC, Gasser RB. Analysis of Haemonchus embryos at single cell resolution identifies two eukaryotic elongation factors as intervention target candidates. Comput Struct Biotechnol J 2024; 23:1026-1035. [PMID: 38435301 PMCID: PMC10907403 DOI: 10.1016/j.csbj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Advances in single cell technologies are allowing investigations of a wide range of biological processes and pathways in animals, such as the multicellular model organism Caenorhabditis elegans - a free-living nematode. However, there has been limited application of such technology to related parasitic nematodes which cause major diseases of humans and animals worldwide. With no vaccines against the vast majority of parasitic nematodes and treatment failures due to drug resistance or inefficacy, new intervention targets are urgently needed, preferably informed by a deep understanding of these nematodes' cellular and molecular biology - which is presently lacking for most worms. Here, we created the first single cell atlas for an early developmental stage of Haemonchus contortus - a highly pathogenic, C. elegans-related parasitic nematode. We obtained and curated RNA sequence (snRNA-seq) data from single nuclei from embryonating eggs of H. contortus (150,000 droplets), and selected high-quality transcriptomic data for > 14,000 single nuclei for analysis, and identified 19 distinct clusters of cells. Guided by comparative analyses with C. elegans, we were able to reproducibly assign seven cell clusters to body wall muscle, hypodermis, neuronal, intestinal or seam cells, and identified eight genes that were transcribed in all cell clusters/types, three of which were inferred to be essential in H. contortus. Two of these genes (i.e. Hc-eef-1A and Hc-eef1G), coding for eukaryotic elongation factors (called Hc-eEF1A and Hc-eEF1G), were also demonstrated to be transcribed and expressed in all key developmental stages of H. contortus. Together with these findings, sequence- and structure-based comparative analyses indicated the potential of Hc-eEF1A and/or Hc-eEF1G as intervention targets within the protein biosynthesis machinery of H. contortus. Future work will focus on single cell studies of all key developmental stages and tissues of H. contortus, and on evaluating the suitability of the two elongation factor proteins as drug targets in H. contortus and related nematodes, with a view to finding new nematocidal drug candidates.
Collapse
Affiliation(s)
- Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tulio L. Campos
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
De Jesús-Martínez X, Rivero-Pérez N, Zamilpa A, González-Cortazar M, Olivares-Pérez J, Zaragoza-Bastida A, Mendoza-de Gives P, Villa-Mancera A, Olmedo-Juárez A. In vitro ovicidal and larvicidal activity of a hydroalcoholic extract and its fractions from Cyrtocarpa procera fruits on Haemonchus contortus. Exp Parasitol 2024; 262:108777. [PMID: 38735520 DOI: 10.1016/j.exppara.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
This study describes the in vitro anthelmintic effect of a hydroalcoholic extract (HA-E) and its fractions from Cyrtocarpa procera fruits against Haemonchus contortus eggs and infective larvae. The HA-E was subjected to bipartition using ethyl acetate, which resulted in an aqueous fraction (Aq-F) and an organic fraction (EtOAc-F). The HA-E and both fractions were tested using the egg hatching inhibition assay (EHIA) and the larval mortality test (LMT). Fractionation of the EtOAc-F was achieved using different chromatographic processes, i.e., open glass column and HPLC analysis. Fractionation of the EtOAc-F gave 18 subfractions (C1R1-C1R18), and those that showed the highest yields (C1R15, C1R16, C1R17 and C1R18) were subjected to anthelmintic assays. The HA-E and the EtOAc-F displayed 100% egg hatching inhibition at 3 and 1 mg/mL, respectively, whereas Aq-F exhibited 92.57% EHI at 3 mg/mL. All subfractions tested showed ovicidal effect. Regarding the larval mortality test, HA-E and EtOAc-F exhibited a larvicidal effect higher than 50% at 50 and 30 mg/mL, respectively. The subfractions that showed the highest larval mortality against H. contortus were C1R15 and C1R17, with larval mortalities of 53.57% and 60.23% at 10 mg/mL, respectively. Chemical analysis of these bioactive subfractions (C1R15 and C1R17) revealed the presence of gallic acid, protocatechuic acid, and ellagic acid. This study shows evidence about the ovicidal and larvicidal properties of C. procera fruits that could make these plant products to be considered as a natural potential anthelmintic agents for controlling haemonchosis in goats and sheep.
Collapse
Affiliation(s)
- Xochitl De Jesús-Martínez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Nallely Rivero-Pérez
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No.1 Col, Centro, CP 62790, Xochitepec, Morelos, Mexico
| | - Manases González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No.1 Col, Centro, CP 62790, Xochitepec, Morelos, Mexico.
| | - Jaime Olivares-Pérez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Guerrero, Ciudad Altamirano, Guerreo, Mexico
| | - Adrian Zaragoza-Bastida
- Instituto de Ciencias Agropecuarias, Área Académica de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Hidalgo, Rancho Universitario Av. Universidad km 1, Ex-Hda. de Aquetzalpa, Tulancingo, C.P. 43600, Hidalgo, Mexico
| | - Pedro Mendoza-de Gives
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534/Col. Progreso, Jiutepec, C.P. 62550, Morelos, Mexico
| | - Abel Villa-Mancera
- Facultad de Medicina Veterinaria y Zootecnia, Benemérita Universidad Autónoma de Puebla, Tecamachalco Puebla, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID SAI-INIFAP), Carretera Federal Cuernavaca-Cuautla No. 8534/Col. Progreso, Jiutepec, C.P. 62550, Morelos, Mexico.
| |
Collapse
|
3
|
Campos TL, Korhonen PK, Young ND, Wang T, Song J, Marhoefer R, Chang BCH, Selzer PM, Gasser RB. Inference of Essential Genes of the Parasite Haemonchus contortus via Machine Learning. Int J Mol Sci 2024; 25:7015. [PMID: 39000124 PMCID: PMC11240989 DOI: 10.3390/ijms25137015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic-phenomic, genomic, transcriptomic, and proteomic data sets have enabled the discovery and characterisation of genes that are crucial for life, called 'essential genes'. Recently, we investigated the feasibility of inferring essential genes from such data sets using advanced bioinformatics and showed that a machine learning (ML)-based workflow could be used to extract or engineer features from DNA, RNA, protein, and/or cellular data/information to underpin the reliable prediction of essential genes both within and between C. elegans and D. melanogaster. As these are two distantly related species within the Ecdysozoa, we proposed that this ML approach would be particularly well suited for species that are within the same phylum or evolutionary clade. In the present study, we cross-predicted essential genes within the phylum Nematoda (evolutionary clade V)-between C. elegans and the pathogenic parasitic nematode H. contortus-and then ranked and prioritised H. contortus proteins encoded by these genes as intervention (e.g., drug) target candidates. Using strong, validated predictors, we inferred essential genes of H. contortus that are involved predominantly in crucial biological processes/pathways including ribosome biogenesis, translation, RNA binding/processing, and signalling and which are highly transcribed in the germline, somatic gonad precursors, sex myoblasts, vulva cell precursors, various nerve cells, glia, or hypodermis. The findings indicate that this in silico workflow provides a promising avenue to identify and prioritise panels/groups of drug target candidates in parasitic nematodes for experimental validation in vitro and/or in vivo.
Collapse
Affiliation(s)
- Túlio L Campos
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
- Bioinformatics Core Facility, Aggeu Magalhães Institute (Fiocruz), Recife 50740-465, PE, Brazil
| | - Pasi K Korhonen
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Neil D Young
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tao Wang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, VIC 3800, Australia
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, Clayton, VIC 3800, Australia
| | - Richard Marhoefer
- Boehringer Ingelheim Animal Health, Binger Strasse 173, 55216 Ingelheim am Rhein, Germany
| | - Bill C H Chang
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Strasse 173, 55216 Ingelheim am Rhein, Germany
| | - Robin B Gasser
- Department of Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Shanley HT, Taki AC, Nguyen N, Wang T, Byrne JJ, Ang CS, Leeming MG, Nie S, Williamson N, Zheng Y, Young ND, Korhonen PK, Hofmann A, Wells TNC, Jabbar A, Sleebs BE, Gasser RB. Structure activity relationship and target prediction for ABX464 analogues in Caenorhabditis elegans. Bioorg Med Chem 2024; 98:117540. [PMID: 38134663 DOI: 10.1016/j.bmc.2023.117540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Global challenges with treatment failures and/or widespread resistance in parasitic worms against commercially available anthelmintics lend impetus to the development of new anthelmintics with novel mechanism(s) of action. The free-living nematode Caenorhabditis elegans is an important model organism used for drug discovery, including the screening and structure-activity investigation of new compounds, and target deconvolution. Previously, we conducted a whole-organism phenotypic screen of the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) and identified a hit compound, called ABX464, with activity against C. elegans and a related, parasitic nematode, Haemonchus contortus. Here, we tested a series of 44 synthesized analogues to explore the pharmacophore of activity on C. elegans and revealed five compounds whose potency was similar or greater than that of ABX464, but which were not toxic to human hepatoma (HepG2) cells. Subsequently, we employed thermal proteome profiling (TPP), protein structure prediction and an in silico-docking algorithm to predict ABX464-target candidates. Taken together, the findings from this study contribute significantly to the early-stage drug discovery of a new nematocide based on ABX464. Future work is aimed at validating the ABX464-protein interactions identified here, and at assessing ABX464 and associated analogues against a panel of parasitic nematodes, towards developing a new anthelmintic with a mechanism of action that is distinct from any of the compounds currently-available commercially.
Collapse
Affiliation(s)
- Harrison T Shanley
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Aya C Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; National Reference Centre for Authentic Food, Max Rubner-Institut, 95326 Kulmbach, Germany
| | - Tim N C Wells
- Medicines for Malaria Venture (MMV), 1215 Geneva, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia; Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
5
|
Montagnini DL, Katchborian-Neto A, Tahan MPM, Oliveira ND, Magalhães LG, Januário AH, Pauletti PM, Cavallari PSSR, Cunha WR, Araujo OP, Soares MG, Ferreira MS, Andrade JV, Miranda GS, Santos MFC, Silva MLAE. The schistosomicidal activity of ethanolic extracts from branches, leaves, flowers and fruits of Handroanthus impetiginosus (Mart. ex DC.) Mattos (Bignoniaceae) plant and metabolic profile characterization by UPLC-ESI-QTOF analysis. BRAZ J BIOL 2023; 83:e275824. [PMID: 37970906 DOI: 10.1590/1519-6984.275824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023] Open
Abstract
Schistosomiasis, caused by Schistosoma mansoni Sambon, 1907, is a severe and widely distributed parasitic disease, affecting about 200 million people worldwide. The disease is recognized by elevated mortality rates, especially among those living in areas of poor sanitation. Currently, the chemotherapeutic treatment is solely based on using the praziquantel drug. Therefore, there is a need for the discovery of new medicines for the treatment of this parasitosis. Thus, this work aimed to evaluate the schistosomicidal activity of ethanolic crude extracts from the branches, leaves, flowers, and fruits of Handroanthus impetiginosus (Mart ex DC.) Masttos and characterize its metabolic profile by UPLC-ESI-QTOF analysis. Evaluation of plant extract on S. mansoni was carried out in adult worms in vitro, in which the mortality rate was quantified, and the damages in the tegument of the worms were monitored. All extracts induced changes in the viability of adult males of S. mansoni, causing the death of the parasites, which was directly dependent of the concentration.
Collapse
Affiliation(s)
| | - A Katchborian-Neto
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Química, Alfenas, MG, Brasil
| | - M P M Tahan
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | - N D Oliveira
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | - L G Magalhães
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | - A H Januário
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | - P M Pauletti
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | | | - W R Cunha
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| | - O P Araujo
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Coordenadoria de Ciências Biológicas, Alegre, ES, Brasil
| | - M G Soares
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Química, Alfenas, MG, Brasil
| | - M S Ferreira
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Química, Alfenas, MG, Brasil
| | - J V Andrade
- Universidade Federal do Espírito Santo - Ufes, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Química e Física, Alegre, ES, Brasil
| | - G S Miranda
- Universidade Federal do Espírito Santo - Ufes, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Alegre, ES, Brasil
| | - M F C Santos
- Universidade Federal do Espírito Santo - Ufes, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Química e Física, Alegre, ES, Brasil
| | - M L A E Silva
- Universidade de Franca - UNIFRAN, Franca, SP, Brasil
| |
Collapse
|
6
|
Habibi S, Nazareth K, Nichols J, Varley S, Forrester SG. The Haemonchus contortus LGC-39 subunit is a novel subtype of an acetylcholine-gated chloride channel. Int J Parasitol Drugs Drug Resist 2023; 22:20-26. [PMID: 37054482 PMCID: PMC10122009 DOI: 10.1016/j.ijpddr.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
The nematode genome exhibits a vast array of Cys-loop receptors that are activated by a diverse set of neurotransmitters and anthelmintic drugs such as ivermectin and levamisole. While many Cys-loop receptors have been functionally and pharmacologically characterized, there remains a large subset of orphan receptors where the agonist remains unknown. We have identified an orphan Cys-loop receptor, LGC-39, from the parasitic nematode Haemonchus contortus that is a novel type of cholinergic-sensitive ligand-gated chloride channel. This receptor groups outside of the acetylcholine-gated chloride channel family, in the previously named GGR-1 (GABA/Glycine Receptor-1) group of Cys-loop receptors. We found that LGC-39 forms a functional homomeric receptor when expressed in Xenopus laevis oocytes and is activated by several cholinergic ligands including acetylcholine, methacholine and surprisingly, atropine with an EC50 for atropine on the low μM range. A homology model was generated which revealed some key features of the LGC-39 ligand-binding pocket that may explain some of the elements important for atropine recognition of the LGC-39 receptor. Overall these results suggest that the GGR-1 family (now called LGC-57) of Cys-loop receptors includes novel acetylcholine-gated chloride channel subtypes and may represent important future drug targets.
Collapse
Affiliation(s)
- Sarah Habibi
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Kristen Nazareth
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Jennifer Nichols
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Sierra Varley
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Sean G Forrester
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada.
| |
Collapse
|
7
|
Sebai E, Abidi A, Benyedem H, Dhibi M, Hammemi I, Akkari H. Phytochemical profile and anthelmintic effects of Laurus nobilis essential oil against the ovine nematode Haemonchus contortus and the murine helminth model Heligmosomoides polygyrus. Vet Parasitol 2022; 312:109835. [PMID: 36306627 DOI: 10.1016/j.vetpar.2022.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Small ruminant production in tropical and temperate countries faced substantial anthelmintic resistance due to the intensive use of commercial anthelmintic drugs. Therefore, alternative treatments including natural bioactive compounds with anthelmintic potential have been investigated looking for its successfully use in the parasite control. In the present study, we describe the chemical profile of Laurus nobilis essential oil (EO), the in vitro anthelmintic activity of L. nobilis EO against Haemonchus contortus and its in vivo anthelmintic effect against the murine helminth parasite model Heligmosomoides polygyrus. Chromatographic profile of L. nobilis (EO) extracted from the leaves of L. nobilis have shown the presence of monterpens 1,8-cineol (Eucalyptol) (29.47%), D-Limonène (18.51%) and Linalool (10.84%) in high fractions. The in vitro anthelmintic potential was expressed by an ovicidal effect against H. contortus egg hatching with inhibition value of 1.72 mg/mL and 87.5% of immobility of adult worms after 8 h of exposure to 4 mg/mL of L. nobilis EO. Regarding, the in vivo anthelmintic potential, L. nobilis (EO) at 2400 mg/kg bw completely eliminated the egg output of H. polygyrus after 7 days of oral treatment, together with a 79.2% of reduction in total worm counts. Based on the obtained results, L. nobilis EO showed promising in vitro and in vivo anthelmintic capacities against gastrointestinal parasites.
Collapse
Affiliation(s)
- Essia Sebai
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Manar II Tunis, Tunisia.
| | - Amel Abidi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia; Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Manar II Tunis, Tunisia
| | - Hayet Benyedem
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Mokhtar Dhibi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Ines Hammemi
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| | - Hafidh Akkari
- Laboratory of Parasitology, University of Manouba, National School of Veterinary Medicine of Sidi Thabet, 2020 Sidi Thabet, Tunisia
| |
Collapse
|
8
|
Taki AC, Wang T, Nguyen NN, Ang CS, Leeming MG, Nie S, Byrne JJ, Young ND, Zheng Y, Ma G, Korhonen PK, Koehler AV, Williamson NA, Hofmann A, Chang BCH, Häberli C, Keiser J, Jabbar A, Sleebs BE, Gasser RB. Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868. Front Pharmacol 2022; 13:1014804. [PMID: 36313370 PMCID: PMC9616048 DOI: 10.3389/fphar.2022.1014804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber’s pole worm, and in other socioeconomically important parasitic nematodes. The “hit-to-target” workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nghi N. Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ching-Seng Ang
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Shuai Nie
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Yuanting Zheng
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Anson V. Koehler
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas A. Williamson
- Melbourne Mass Spectrometry and Proteomics Facility, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Cécile Häberli
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Brad E. Sleebs, ; Robin B. Gasser,
| |
Collapse
|
9
|
Repurposing of a human antibody-based microarray to explore conserved components of the signalome of the parasitic nematode Haemonchus contortus. Parasit Vectors 2022; 15:273. [PMID: 35907892 PMCID: PMC9338626 DOI: 10.1186/s13071-022-05400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gaining insight into molecular signalling pathways of socioeconomically important parasitic nematodes has implications for understanding their molecular biology and for developing novel anthelmintic interventions. METHODS Here, we evaluated the use of a human antibody-based microarray to explore conserved elements of the signalome in the barber's pole worm Haemonchus contortus. To do this, we prepared extracts from mixed-sex (female and male) adult worms and third-stage larvae (L3s), incubated these extracts on the antibody microarray and then measured the amounts of antibody-bound proteins ('signal intensity'). RESULTS In total, 878 signals were classified into two distinct categories: signals that were higher for adults than for larvae of H. contortus (n = 376), and signals that were higher for larvae than for adults of this species (n = 502). Following a data-filtering step, high confidence ('specific') signals were obtained for subsequent analyses. In total, 39 pan-specific signals (linked to antibodies that recognise target proteins irrespective of their phosphorylation status) and 65 phosphorylation-specific signals were higher in the adult stage, and 82 pan-specific signals and 183 phosphorylation-specific signals were higher in L3s. Thus, notably more signals were higher in L3s than in the adult worms. Using publicly available information, we then inferred H. contortus proteins that were detected (with high confidence) by specific antibodies directed against human homologues, and revealed relatively high structural conservation between the two species, with some variability for select proteins. We also in silico-matched 763 compound structures (listed in the DrugBank and Kinase SARfari public databases) to four H. contortus proteins (designated HCON_00005760, HCON_00079680, HCON_00013590 and HCON_00105100). CONCLUSIONS We conclude that the present antibody-based microarray provides a useful tool for comparative analyses of signalling pathways between/among developmental stages and/or species, as well as opportunities to explore nematocidal target candidates in H. contortus and related parasites.
Collapse
|
10
|
Žofka M, Thuy Nguyen L, Mašátová E, Matoušková P. Image recognition based on deep learning in Haemonchus contortus motility assays. Comput Struct Biotechnol J 2022; 20:2372-2380. [PMID: 35664223 PMCID: PMC9127531 DOI: 10.1016/j.csbj.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022] Open
Abstract
Poor efficacy of some anthelmintics and rising concerns about the widespread drug resistance have highlighted the need for new drug discovery. The parasitic nematode Haemonchus contortus is an important model organism widely used for studies of drug resistance and drug screening with the current gold standard being the motility assay. We applied a deep learning approach Mask R-CNN for analysing motility videos containing varying rates of motile worms and compared it to other commonly used algorithms with different levels of complexity, namely the Wiggle Index and the Wide Field-of-View Nematode Tracking Platform. Mask R-CNN consistently outperformed the other algorithms in terms of the detection of worms as well as the precision of motility forecasts, having a mean absolute percentage error of 7.6% and a mean absolute error of 5.6% for the detection and motility forecasts, respectively. Using Mask R-CNN for motility assays confirmed the common problem with algorithms that use non-maximum suppression in detecting overlapping objects, which negatively impacts the overall precision. The use of intersect over union as a measure of the classification of motile / non-motile instances had an overall accuracy of 89%, indicating that it is a viable alternative to previously used methods based on movement characteristics, such as body bends. In comparison to the existing methods evaluated here, Mask R-CNN performed better and we anticipate that this method will broaden the number of possible approaches to video analysis of worm motility.
Collapse
|
11
|
A High-Throughput Phenotypic Screen of the 'Pandemic Response Box' Identifies a Quinoline Derivative with Significant Anthelmintic Activity. Pharmaceuticals (Basel) 2022; 15:ph15020257. [PMID: 35215369 PMCID: PMC8874578 DOI: 10.3390/ph15020257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022] Open
Abstract
Parasitic nematodes cause diseases in livestock animals and major economic losses to the agricultural industry worldwide. Nematodes of the order Strongylida, including Haemonchus contortus, are particularly important. The excessive use of anthelmintic compounds to treat infections and disease has led to widespread resistance to these compounds in nematodes, such that there is a need for new anthelmintics with distinctive mechanisms of action. With a focus on discovering new anthelmintic entities, we screened 400 chemically diverse compounds within the 'Pandemic Response Box' (from Medicines for Malaria Venture, MMV) for activity against H. contortus and its free-living relative, Caenorhabditis elegans-a model organism. Using established phenotypic assays, test compounds were evaluated in vitro for their ability to inhibit the motility and/or development of H. contortus and C. elegans. Dose-response evaluations identified a compound, MMV1581032, that significantly the motility of H. contortus larvae (IC50 = 3.4 ± 1.1 μM) and young adults of C. elegans (IC50 = 7.1 ± 4.6 μM), and the development of H. contortus larvae (IC50 = 2.2 ± 0.7 μM). The favourable characteristics of MMV1581032, such as suitable physicochemical properties and an efficient, cost-effective pathway to analogue synthesis, indicates a promising candidate for further evaluation as a nematocide. Future work will focus on a structure-activity relationship investigation of this chemical scaffold, a toxicity assessment of potent analogues and a mechanism/mode of action investigation.
Collapse
|
12
|
Ramage KS, Taki AC, Lum KY, Hayes S, Byrne JJ, Wang T, Hofmann A, Ekins MG, White JM, Jabbar A, Davis RA, Gasser RB. Dysidenin from the Marine Sponge Citronia sp. Affects the Motility and Morphology of Haemonchus contortus Larvae In Vitro. Mar Drugs 2021; 19:md19120698. [PMID: 34940697 PMCID: PMC8708643 DOI: 10.3390/md19120698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
High-throughput screening of the NatureBank marine extract library (n = 7616) using a phenotypic assay for the parasitic nematode Haemonchus contortus identified an active extract derived from the Australian marine sponge Citronia sp. Bioassay-guided fractionation of the CH2Cl2/MeOH extract from Citronia sp. resulted in the purification of two known hexachlorinated peptides, dysidenin (1) and dysideathiazole (2). Compound 1 inhibited the growth/development of H. contortus larvae and induced multiple phenotypic changes, including a lethal evisceration (Evi) phenotype and/or somatic cell and tissue destruction. This is the first report of anthelmintic activity for these rare and unique polychlorinated peptides.
Collapse
Affiliation(s)
- Kelsey S. Ramage
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.S.R.); (K.Y.L.); (S.H.); (M.G.E.)
| | - Aya C. Taki
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.S.R.); (K.Y.L.); (S.H.); (M.G.E.)
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.S.R.); (K.Y.L.); (S.H.); (M.G.E.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 95326 Kulmbach, Germany
| | - Merrick G. Ekins
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.S.R.); (K.Y.L.); (S.H.); (M.G.E.)
- Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Jonathan M. White
- School of Chemistry and Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
| | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.S.R.); (K.Y.L.); (S.H.); (M.G.E.)
- Correspondence: (R.A.D.); (R.B.G.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (A.H.); (A.J.)
- Correspondence: (R.A.D.); (R.B.G.)
| |
Collapse
|
13
|
Taki AC, Byrne JJ, Jabbar A, Lum KY, Hayes S, Addison RS, Ramage KS, Hofmann A, Ekins MG, Wang T, Chang BCH, Davis RA, Gasser RB. High Throughput Screening of the NatureBank 'Marine Collection' in a Haemonchus Bioassay Identifies Anthelmintic Activity in Extracts from a Range of Sponges from Australian Waters. Molecules 2021; 26:5846. [PMID: 34641389 PMCID: PMC8512444 DOI: 10.3390/molecules26195846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/04/2022] Open
Abstract
Widespread resistance in parasitic nematodes to most classes of anthelmintic drugs demands the discovery and development of novel compounds with distinct mechanisms of action to complement strategic or integrated parasite control programs. Products from nature-which assume a diverse 'chemical space'-have significant potential as a source of anthelmintic compounds. In the present study, we screened a collection of extracts (n = 7616) derived from marine invertebrates sampled from Australian waters in a high throughput bioassay for in vitro anti-parasitic activity against the barber's pole worm (Haemonchus contortus)-an economically important parasitic nematode of livestock animals. In this high throughput screen (HTS), we identified 58 active extracts that reduced larval motility by ≥70% (at 90 h), equating to an overall 'hit rate' of ~0.8%. Of these 58 extracts, 16 also inhibited larval development by ≥80% (at 168 h) and/or induced 'non-wild-type' (abnormal) larval phenotypes with reference to 'wild-type' (normal) larvae not exposed to extract (negative controls). Most active extracts (54 of 58) originated from sponges, three from chordates (tunicates) and one from a coral; these extracts represented 37 distinct species/taxa of 23 families. An analysis of samples by 1H NMR fingerprinting was utilised to dereplicate hits and to prioritise a set of 29 sponge samples for future chemical investigation. Overall, these results indicate that a range of sponge species from Australian waters represents a rich source of natural compounds with nematocidal or nematostatic properties. Our plan now is to focus on in-depth chemical investigations of the sample set prioritised herein.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Kah Yean Lum
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
| | - Sasha Hayes
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
| | - Russell S. Addison
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
| | - Kelsey S. Ramage
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Merrick G. Ekins
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
- Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Bill C. H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| | - Rohan A. Davis
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia; (K.Y.L.); (S.H.); (R.S.A.); (K.S.R.); (M.G.E.); (R.A.D.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (A.J.); (A.H.); (T.W.); (B.C.H.C.)
| |
Collapse
|
14
|
Taki AC, Byrne JJ, Wang T, Sleebs BE, Nguyen N, Hall RS, Korhonen PK, Chang BC, Jackson P, Jabbar A, Gasser RB. High-Throughput Phenotypic Assay to Screen for Anthelmintic Activity on Haemonchus contortus. Pharmaceuticals (Basel) 2021; 14:ph14070616. [PMID: 34206910 PMCID: PMC8308562 DOI: 10.3390/ph14070616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Parasitic worms cause very significant diseases in animals and humans worldwide, and their control is critical to enhance health, well-being and productivity. Due to widespread drug resistance in many parasitic worms of animals globally, there is a major, continuing demand for the discovery and development of anthelmintic drugs for use to control these worms. Here, we established a practical, cost-effective and semi-automated high throughput screening (HTS) assay, which relies on the measurement of motility of larvae of the barber’s pole worm (Haemonchus contortus) using infrared light-interference. Using this assay, we screened 80,500 small molecules and achieved a hit rate of 0.05%. We identified three small molecules that reproducibly inhibited larval motility and/or development (IC50 values of ~4 to 41 µM). Future work will critically assess the potential of selected hits as candidates for subsequent optimisation or repurposing against parasitic nematodes. This HTS assay has a major advantage over most previous assays in that it achieves a ≥ 10-times higher throughput (i.e., 10,000 compounds per week), and is thus suited to the screening of libraries of tens of thousands to hundreds of thousands of compounds for subsequent hit-to-lead optimisation or effective repurposing and development. The current assay should be adaptable to many socioeconomically important parasitic nematodes, including those that cause neglected tropical diseases (NTDs). This aspect is of relevance, given the goals of the World Health Organization (WHO) Roadmap for NTDs 2021–2030, to develop more effective drugs and drug combinations to improve patient outcomes and circumvent the ineffectiveness of some current anthelmintic drugs and possible drug resistance.
Collapse
Affiliation(s)
- Aya C. Taki
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Joseph J. Byrne
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Brad E. Sleebs
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nghi Nguyen
- Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross S. Hall
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Bill C.H. Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Paul Jackson
- Johnson & Johnson, Global Public Health, Janssen Research and Development, San Diego, CA 92121, USA;
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (A.C.T.); (J.J.B.); (T.W.); (B.E.S.); (R.S.H.); (P.K.K.); (B.C.H.C.); (A.J.)
- Correspondence:
| |
Collapse
|
15
|
Three Small Molecule Entities (MPK18, MPK334 and YAK308) with Activity against Haemonchus contortus In Vitro. Molecules 2021; 26:molecules26092819. [PMID: 34068691 PMCID: PMC8126080 DOI: 10.3390/molecules26092819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/03/2022] Open
Abstract
Due to widespread multi-drug resistance in parasitic nematodes of livestock animals, there is an urgent need to discover new anthelmintics with distinct mechanisms of action. Extending previous work, here we screened a panel of 245 chemically-diverse small molecules for anti-parasitic activity against Haemonchus contortus—an economically important parasitic nematode of livestock. This panel was screened in vitro against exsheathed third-stage larvae (xL3) of H. contortus using an established phenotypic assay, and the potency of select compounds to inhibit larval motility and development assessed in dose-response assays. Of the 245 compounds screened, three—designated MPK18, MPK334 and YAK308—induced non-wildtype larval phenotypes and repeatedly inhibited xL3-motility, with IC50 values of 45.2 µM, 17.1 µM and 52.7 µM, respectively; two also inhibited larval development, with IC50 values of 12.3 µM (MPK334) and 6.5 µM (YAK308), and none of the three was toxic to human liver cells (HepG2). These findings suggest that these compounds deserve further evaluation as nematocidal candidates. Future work should focus on structure–activity relationship (SAR) studies of these chemical scaffolds, and assess the in vitro and in vivo efficacies and safety of optimised compounds against adults of H. contortus.
Collapse
|
16
|
Ma G, Gasser RB, Wang T, Korhonen PK, Young ND. Toward integrative 'omics of the barber's pole worm and related parasitic nematodes. INFECTION GENETICS AND EVOLUTION 2020; 85:104500. [PMID: 32795511 DOI: 10.1016/j.meegid.2020.104500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
Advances in nucleic acid sequencing, mass spectrometry and computational biology have facilitated the identification, annotation and analysis of genes, transcripts, proteins and metabolites in model nematodes (Caenorhabditis elegans and Pristionchus pacificus) and socioeconomically important parasitic nematodes (Clades I, III, IV and V). Significant progress has been made in genomics and transcriptomics as well as in the proteomics and lipidomics of Haemonchus contortus (the barber's pole worm) - one of the most pathogenic representatives of the order Strongylida. Here, we review salient aspects of genomics, transcriptomics, proteomics, lipidomics, glycomics and functional genomics, and discuss the rise of integrative 'omics of this economically important parasite. Although our knowledge of the molecular biology, genetics and biochemistry of H. contortus and related species has progressed significantly, much remains to be explored, particularly in areas such as drug resistance, unique/unknown genes, host-parasite interactions, parasitism and the pathogenesis of disease, by integrating the use of multiple 'omics methods. This approach should lead to a better understanding of H. contortus and its relatives at a 'systems biology' level, and should assist in developing new interventions against these parasites.
Collapse
Affiliation(s)
- Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Natural Compounds from the Marine Brown Alga Caulocystis cephalornithos with Potent In Vitro-Activity against the Parasitic Nematode Haemonchus contortus. Pathogens 2020; 9:pathogens9070550. [PMID: 32659883 PMCID: PMC7400099 DOI: 10.3390/pathogens9070550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Eight secondary metabolites (1 to 8) were isolated from a marine sponge, a marine alga and three terrestrial plants collected in Australia and subsequently chemically characterised. Here, these natural product-derived compounds were screened for in vitro-anthelmintic activity against the larvae and adult stages of Haemonchus contortus (barber's pole worm)-a highly pathogenic parasitic nematode of ruminants. Using an optimised, whole-organism screening system, compounds were tested on exsheathed third-stage larvae (xL3s) and fourth-stage larvae (L4s). Anthelmintic activity was initially evaluated on these stages based on the inhibition of motility, development and/or changes in morphology (phenotype). We identified two compounds, 6-undecylsalicylic acid (3) and 6-tridecylsalicylic acid (4) isolated from the marine brown alga, Caulocystis cephalornithos, with inhibitory effects on xL3 and L4 motility and larval development, and the induction of a "skinny-straight" phenotype. Subsequent testing showed that these two compounds had an acute nematocidal effect (within 1-12 h) on adult males and females of H. contortus. Ultrastructural analysis of adult worms treated with compound 4 revealed significant damage to subcuticular musculature and associated tissues and cellular organelles including mitochondria. In conclusion, the present study has discovered two algal compounds possessing acute anthelmintic effects and with potential for hit-to-lead progression. Future work should focus on undertaking a structure-activity relationship study and on elucidating the mode(s) of action of optimised compounds.
Collapse
|