1
|
Gunawan CA. Severe knowlesi malaria with acute neurocognitive impairment: A case report. IJID REGIONS 2025; 14:100513. [PMID: 39850332 PMCID: PMC11754819 DOI: 10.1016/j.ijregi.2024.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/25/2025]
Abstract
Plasmodium knowlesi infection in Indonesia has been reported from Sumatera and Kalimantan Island. P. knowlesi has the shortest asexual replication cycle of all Plasmodium species, leading to rapidly increased parasitemia levels; however, it usually does not cause high parasitemia. It was reported a severe knowlesi malaria case in a 41-year-old male patient in Samarinda, East Kalimantan Province, Indonesia. The patient was admitted to the hospital with fever and decrease in level of consciousness. Malarial blood smear showed trophozoites and ring forms of P. knowlesi, with parasite count 52,000/µl blood, and confirmed by polymerase chain reaction test. The patient was diagnosed as having severe knowlesi malaria with a high parasitemia level, accompanied by acute neurocognitive impairments, including moderate weakness, disorientation, and partial loss of memory that lasted for approximately 3 weeks.
Collapse
Affiliation(s)
- Carta Agrawanto Gunawan
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Abdoel Wahab Sjahranie General Hospital/Mulawarman University Faculty of Medicine, Samarinda, Indonesia
| |
Collapse
|
2
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KKA, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi Infection Is Associated With Elevated Circulating Biomarkers of Brain Injury and Endothelial Activation. J Infect Dis 2024:jiae553. [PMID: 39658124 DOI: 10.1093/infdis/jiae553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a noncomatose, fatal case of knowlesi infection, but the potential impact of this malaria species on the brain remains unexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. METHODS Archived plasma samples from 19 Malaysian patients with symptomatic knowlesi infection and 19 healthy, age-matched controls were analyzed. Fifty-two biomarkers of brain injury, inflammation, and vascular activation were measured. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. RESULTS Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (P < .0001), Tau (P = .0007), UCH-L1 (P < .0001), αSyn (P < .0001), Park7 (P = .0006), NRGN (P = .0022), and TDP-43 (P = .005). Compared to controls, levels were lower in the infected group for BDNF (P < .0001), CaBD (P < .0001), CNTN1 (P < .0001), NCAM-1 (P < .0001), GFAP (P = .0013), and KLK6 (P = .0126). Hierarchical clustering revealed distinct group profiles for brain injury and vascular activation biomarkers. CONCLUSIONS Our findings highlight for the first time a potential impact of P knowlesi infection on the brain, with specific changes in cerebral injury and endothelial activation biomarker profiles. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered markers, through neuroimaging and long-term neurocognitive assessments.
Collapse
Affiliation(s)
- Cesc Bertran-Cobo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Psychiatry and Mental Health, University of Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, South Africa
| | - Elin Dumont
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Naqib Rafieqin Noordin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Meng-Yee Lai
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - William Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Sanjeev Krishna
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Gabon
- Clinical Academic Group in Institute for Infection and Immunity, St George's University of London, United Kingdom
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
3
|
Bertran-Cobo C, Dumont E, Noordin NR, Lai MY, Stone W, Tetteh KK, Drakeley C, Krishna S, Lau YL, Wassmer SC. Plasmodium knowlesi infection is associated with elevated circulating biomarkers of brain injury and endothelial activation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306382. [PMID: 38712121 PMCID: PMC11071568 DOI: 10.1101/2024.04.25.24306382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Introduction Malaria remains a major public health concern with substantial morbidity and mortality worldwide. In Malaysia, the emergence of Plasmodium knowlesi has led to a surge in zoonotic malaria cases and deaths in recent years. Signs of cerebral involvement have been observed in a non-comatose, fatal case of severe knowlesi infection, but the potential impact of this malaria species on the brain remains underexplored. To address this gap, we investigated circulating levels of brain injury, inflammation, and vascular biomarkers in a cohort of knowlesi-infected patients and controls. Methods Archived plasma samples from 19 patients with confirmed symptomatic knowlesi infection and 19 healthy, age-matched controls from Peninsular Malaysia were analysed. A total of 52 plasma biomarkers of brain injury, inflammation, and vascular activation were measured using Luminex and SIMOA assays. Wilcoxon tests were used to examine group differences, and biomarker profiles were explored through hierarchical clustering heatmap analysis. Results Bonferroni-corrected analyses revealed significantly elevated brain injury biomarker levels in knowlesi-infected patients, including S100B (p<0.0001), Tau (p=0.0007), UCH-L1 (p<0.0001), αSyn (p<0.0001), Park7 (p=0.0006), NRGN (p=0.0022), and TDP-43 (p=0.005). Compared to controls, levels were lower in the infected group for BDNF (p<0.0001), CaBD (p<0.0001), CNTN1 (p<0.0001), NCAM-1 (p<0.0001), GFAP (p=0.0013), and KLK6 (p=0.0126). Hierarchical clustering revealed distinct group profiles for circulating levels of brain injury and vascular activation biomarkers. Conclusions Our findings highlight for the first time the impact of Plasmodium knowlesi infection on the brain, with distinct alterations in cerebral injury and endothelial activation biomarker profiles compared to healthy controls. Further studies are warranted to investigate the pathophysiology and clinical significance of these altered surrogate markers, through both neuroimaging and long-term neurocognitive assessments.
Collapse
|
4
|
Sun Y, Xin J, Xu Y, Wang X, Zhao F, Niu C, Liu S. Research Progress on Sesquiterpene Compounds from Artabotrys Plants of Annonaceae. Molecules 2024; 29:1648. [PMID: 38611927 PMCID: PMC11013193 DOI: 10.3390/molecules29071648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive biological significance and medicinal potential. The genus's sesquiterpene compounds have attracted considerable interest from the scientific community due to their structural complexity and diverse biological activities. These compounds exhibit a range of biological activities, including antimalarial, antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising candidates for medical applications. This review aims to summarize the current knowledge on the variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms, offering a comprehensive foundation for future research.
Collapse
Affiliation(s)
- Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (Y.X.); (X.W.)
| |
Collapse
|
5
|
Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, Rajahram GS, Grigg MJ, Flegg JA, Price DJ, Shearer FM. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. PLoS Negl Trop Dis 2024; 18:e0011570. [PMID: 38252650 PMCID: PMC10833542 DOI: 10.1371/journal.pntd.0011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. METHODS & RESULTS We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. DISCUSSION Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.
Collapse
Affiliation(s)
- Ruarai J. Tobin
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lucinda E. Harrison
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Meg K. Tully
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Inke N. D. Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rintis Noviyanti
- Eijkman Research Center for Molecular Biology, BRIN, Jakarta, Indonesia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Giri S. Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah, Menzies School of Health Research, Clinical Research Unit, Hospital Queen Elizabeth II, and Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - David J. Price
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia
| | - Freya M. Shearer
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Infectious Disease Ecology and Modelling Group, Telethon Kids Institute, Perth, Australia
| |
Collapse
|
6
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
7
|
Tobin RJ, Harrison LE, Tully MK, Lubis IND, Noviyanti R, Anstey NM, Rajahram GS, Grigg MJ, Flegg JA, Price DJ, Shearer FM. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.04.23293633. [PMID: 37609228 PMCID: PMC10441477 DOI: 10.1101/2023.08.04.23293633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Plasmodium knowlesi is a zoonotic parasite that causes malaria in humans. The pathogen has a natural host reservoir in certain macaque species and is transmitted to humans via mosquitoes of the Anopheles Leucosphyrus Group. The risk of human P. knowlesi infection varies across Southeast Asia and is dependent upon environmental factors. Understanding this geographic variation in risk is important both for enabling appropriate diagnosis and treatment of the disease and for improving the planning and evaluation of malaria elimination. However, the data available on P. knowlesi occurrence are biased towards regions with greater surveillance and sampling effort. Predicting the spatial variation in risk of P. knowlesi malaria requires methods that can both incorporate environmental risk factors and account for spatial bias in detection. Methods & Results We extend and apply an environmental niche modelling framework as implemented by a previous mapping study of P. knowlesi transmission risk which included data up to 2015. We reviewed the literature from October 2015 through to March 2020 and identified 264 new records of P. knowlesi, with a total of 524 occurrences included in the current study following consolidation with the 2015 study. The modelling framework used in the 2015 study was extended, with changes including the addition of new covariates to capture the effect of deforestation and urbanisation on P. knowlesi transmission. Discussion Our map of P. knowlesi relative transmission suitability estimates that the risk posed by the pathogen is highest in Malaysia and Indonesia, with localised areas of high risk also predicted in the Greater Mekong Subregion, The Philippines and Northeast India. These results highlight areas of priority for P. knowlesi surveillance and prospective sampling to address the challenge the disease poses to malaria elimination planning.
Collapse
Affiliation(s)
- Ruarai J Tobin
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Lucinda E Harrison
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Meg K Tully
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Inke N D Lubis
- Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rintis Noviyanti
- Eijkman Research Center for Molecular Biology, BRIN, Jakarta, Indonesia
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Giri S Rajahram
- Infectious Diseases Society Kota Kinabalu Sabah, Menzies School of Health Research Clinical Research Unit, Hospital Queen Elizabeth II, and Clinical Research Centre, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - David J Price
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Melbourne, Australia
| | - Freya M Shearer
- Infectious Disease Dynamics Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Infectious Disease Ecology Modelling Group, Telethon Kids Institute, Perth, Australia
| |
Collapse
|
8
|
T. Thurai Rathnam J, Grigg MJ, Dini S, William T, Sakam SS, Cooper DJ, Rajahram GS, Barber BE, Anstey NM, Haghiri A, Rajasekhar M, Simpson JA. Quantification of parasite clearance in Plasmodium knowlesi infections. Malar J 2023; 22:54. [PMID: 36782162 PMCID: PMC9926767 DOI: 10.1186/s12936-023-04483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The incidence of zoonotic Plasmodium knowlesi infections in humans is rising in Southeast Asia, leading to clinical studies to monitor the efficacy of anti-malarial treatments for knowlesi malaria. One of the key outcomes of anti-malarial drug efficacy is parasite clearance. For Plasmodium falciparum, parasite clearance is typically estimated using a two-stage method, that involves estimating parasite clearance for individual patients followed by pooling of individual estimates to derive population estimates. An alternative approach is Bayesian hierarchical modelling which simultaneously analyses all parasite-time patient profiles to determine parasite clearance. This study compared these methods for estimating parasite clearance in P. knowlesi treatment efficacy studies, with typically fewer parasite measurements per patient due to high susceptibility to anti-malarials. METHODS Using parasite clearance data from 714 patients with knowlesi malaria and enrolled in three trials, the Worldwide Antimalarial Resistance Network (WWARN) Parasite Clearance Estimator (PCE) standard two-stage approach and Bayesian hierarchical modelling were compared. Both methods estimate the parasite clearance rate from a model that incorporates a lag phase, slope, and tail phase for the parasitaemia profiles. RESULTS The standard two-stage approach successfully estimated the parasite clearance rate for 678 patients, with 36 (5%) patients excluded due to an insufficient number of available parasitaemia measurements. The Bayesian hierarchical estimation method was applied to the parasitaemia data of all 714 patients. Overall, the Bayesian method estimated a faster population mean parasite clearance (0.36/h, 95% credible interval [0.18, 0.65]) compared to the standard two-stage method (0.26/h, 95% confidence interval [0.11, 0.46]), with better model fits (compared visually). Artemisinin-based combination therapy (ACT) is more effective in treating P. knowlesi than chloroquine, as confirmed by both methods, with a mean estimated parasite clearance half-life of 2.5 and 3.6 h, respectively using the standard two-stage method, and 1.8 and 2.9 h using the Bayesian method. CONCLUSION For clinical studies of P. knowlesi with frequent parasite measurements, the standard two-stage approach (WWARN's PCE) is recommended as this method is straightforward to implement. For studies with fewer parasite measurements per patient, the Bayesian approach should be considered. Regardless of method used, ACT is more efficacious than chloroquine, confirming the findings of the original trials.
Collapse
Affiliation(s)
- Jeyamalar T. Thurai Rathnam
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Matthew J. Grigg
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Saber Dini
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Sitti Saimah Sakam
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Daniel J. Cooper
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.5335.00000000121885934Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Giri S. Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.415759.b0000 0001 0690 5255Clinical Research Centre, Queen Elizabeth II Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Bridget E. Barber
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia ,grid.1049.c0000 0001 2294 1395QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas M. Anstey
- grid.1043.60000 0001 2157 559XMenzies School of Health Research and Charles Darwin University, Darwin, NT Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Ali Haghiri
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Megha Rajasekhar
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julie A. Simpson
- grid.1008.90000 0001 2179 088XCentre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Ikerionwu C, Ugwuishiwu C, Okpala I, James I, Okoronkwo M, Nnadi C, Orji U, Ebem D, Ike A. Application of machine and deep learning algorithms in optical microscopic detection of Plasmodium: A malaria diagnostic tool for the future. Photodiagnosis Photodyn Ther 2022; 40:103198. [PMID: 36379305 DOI: 10.1016/j.pdpdt.2022.103198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Machine and deep learning techniques are prevalent in the medical discipline due to their high level of accuracy in disease diagnosis. One such disease is malaria caused by Plasmodium falciparum and transmitted by the female anopheles mosquito. According to the World Health Organisation (WHO), millions of people are infected annually, leading to inevitable deaths in the infected population. Statistical records show that early detection of malaria parasites could prevent deaths and machine learning (ML) has proved helpful in the early detection of malarial parasites. Human error is identified to be a major cause of inaccurate diagnostics in the traditional microscopy malaria diagnosis method. Therefore, the method would be more reliable if human expert dependency is restricted or entirely removed, and thus, the motivation of this paper. This study presents a systematic review to understand the prevalent machine learning algorithms applied to a low-cost, portable optical microscope in the automation of blood film interpretation for malaria parasite detection. Peer-reviewed papers were downloaded from selected reputable databases eg. Elsevier, IEEExplore, Pubmed, Scopus, Web of Science, etc. The extant literature suggests that convolutional neural network (CNN) and its variants (deep learning) account for 41.9% of the microscopy malaria diagnosis using machine learning with a prediction accuracy of 99.23%. Thus, the findings suggest that early detection of the malaria parasite has improved through the application of CNN and other ML algorithms on microscopic malaria parasite detection.
Collapse
Affiliation(s)
- Charles Ikerionwu
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Software Engineering, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Chikodili Ugwuishiwu
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Izunna Okpala
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Information Technology, University of Cincinnati, USA
| | - Idara James
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, Akwa Ibom State University, Nigeria
| | - Matthew Okoronkwo
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Charles Nnadi
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Deprtment of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ugochukwu Orji
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Deborah Ebem
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Computer Science, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Ike
- Machine Learning on Disease Diagnosis Research Group, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
10
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
11
|
Abstract
Severe malaria is a medical emergency. It is a major cause of preventable childhood death in tropical countries. Severe malaria justifies considerable global investment in malaria control and elimination yet, increasingly, international agencies, funders and policy makers are unfamiliar with it, and so it is overlooked. In sub-Saharan Africa, severe malaria is overdiagnosed in clinical practice. Approximately one third of children diagnosed with severe malaria have another condition, usually sepsis, as the cause of their severe illness. But these children have a high mortality, contributing substantially to the number of deaths attributed to 'severe malaria'. Simple well-established tests, such as examination of the thin blood smear and the full blood count, improve the specificity of diagnosis and provide prognostic information in severe malaria. They should be performed more widely. Early administration of artesunate and broad-spectrum antibiotics to all children with suspected severe malaria would reduce global malaria mortality.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Abacha YZ, Forkuo AD, Gbedema SY, Mittal N, Ottilie S, Rocamora F, Winzeler EA, van Schalkwyk DA, Kelly JM, Taylor MC, Reader J, Birkholtz LM, Lisgarten DR, Cockcroft JK, Lisgarten JN, Palmer RA, Talbert RC, Shnyder SD, Wright CW. Semi-Synthetic Analogues of Cryptolepine as a Potential Source of Sustainable Drugs for the Treatment of Malaria, Human African Trypanosomiasis, and Cancer. Front Pharmacol 2022; 13:875647. [PMID: 35600849 PMCID: PMC9119314 DOI: 10.3389/fphar.2022.875647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The prospect of eradicating malaria continues to be challenging in the face of increasing parasite resistance to antimalarial drugs so that novel antimalarials active against asexual, sexual, and liver-stage malaria parasites are urgently needed. In addition, new antimalarials need to be affordable and available to those most in need and, bearing in mind climate change, should ideally be sustainable. The West African climbing shrub Cryptolepis sanguinolenta is used traditionally for the treatment of malaria; its principal alkaloid, cryptolepine (1), has been shown to have antimalarial properties, and the synthetic analogue 2,7-dibromocryptolepine (2) is of interest as a lead toward new antimalarial agents. Cryptolepine (1) was isolated using a two-step Soxhlet extraction of C. sanguinolenta roots, followed by crystallization (yield 0.8% calculated as a base with respect to the dried roots). Semi-synthetic 7-bromo- (3), 7, 9-dibromo- (4), 7-iodo- (5), and 7, 9-dibromocryptolepine (6) were obtained in excellent yields by reaction of 1 with N-bromo- or N-iodosuccinimide in trifluoroacetic acid as a solvent. All compounds were active against Plasmodia in vitro, but 6 showed the most selective profile with respect to Hep G2 cells: P. falciparum (chloroquine-resistant strain K1), IC50 = 0.25 µM, SI = 113; late stage, gametocytes, IC50 = 2.2 µM, SI = 13; liver stage, P. berghei sporozoites IC50 = 6.13 µM, SI = 4.6. Compounds 3-6 were also active against the emerging zoonotic species P. knowlesi with 5 being the most potent (IC50 = 0.11 µM). In addition, 3-6 potently inhibited T. brucei in vitro at nM concentrations and good selectivity with 6 again being the most selective (IC50 = 59 nM, SI = 478). These compounds were also cytotoxic to wild-type ovarian cancer cells as well as adriamycin-resistant and, except for 5, cisplatin-resistant ovarian cancer cells. In an acute oral toxicity test in mice, 3-6 did not exhibit toxic effects at doses of up to 100 mg/kg/dose × 3 consecutive days. This study demonstrates that C. sanguinolenta may be utilized as a sustainable source of novel compounds that may lead to the development of novel agents for the treatment of malaria, African trypanosomiasis, and cancer.
Collapse
Affiliation(s)
- Yabalu Z. Abacha
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,Department of Pharmacognosy, Faculty of Pharmacy, University of Maiduguri, Maiduguri, Nigeria
| | - Arnold Donkor Forkuo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Stephen Y. Gbedema
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, KNUST, Kumasi, Ghana
| | - Nimisha Mittal
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Sabine Ottilie
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frances Rocamora
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A. Winzeler
- Malaria Drug Accelerator (MalDA) Consortium, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Donelly A. van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - David R. Lisgarten
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Jeremy K. Cockcroft
- Department of Chemistry, Christopher Ingold Laboratories, University College London, London, United Kingdom
| | | | - Rex A. Palmer
- Department of Crystallography, Biochemical Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Rosemary C. Talbert
- Biomolecular Research Group, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| | - Steven D. Shnyder
- School of Pharmacy and Medical Sciences, Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Colin W. Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom,*Correspondence: Colin W. Wright,
| |
Collapse
|