1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Desai D, Shende P. Dual-action of colloidal ISCOMs: an optimized approach using Box-Behnken design for the management of breast cancer. Biomed Microdevices 2022; 24:28. [DOI: 10.1007/s10544-022-00625-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 12/09/2022]
|
3
|
Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts 2022; 13:175-182. [DOI: 10.1515/bmc-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
The photodynamic treatment for antimicrobial applications or anticancer therapy relies on reactive oxygen species generated by photosensitizing molecules after absorption of visible or near-infrared light. If the photosensitizing molecule is in close vicinity of the microorganism or the malignant cell, a photocytotoxic action is exerted. Therefore, the effectiveness of photosensitizing compounds strongly depends on their capability to target microbial or cancer-specific proteins. In this study, we report on the preparation and preliminary characterization of human recombinant myoglobin fused to the vasoactive intestinal peptide to target vasoactive intestinal peptide receptor (VPAC) receptors. Fe-protoporphyrin IX was replaced by the photosensitizing compound Zn-protoporphyrin IX. Taking advantage of the fluorescence emission by Zn-protoporphyrin IX, we show that the construct can bind prostate cancer cells where the VPAC receptors are expressed.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marilena Margiotta
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Marco Cozzolino
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Paolo Bianchini
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Alberto Diaspro
- DIFILAB, Dipartimento di Fisica, Università di Genova , Genova , Italy
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza , Piacenza , Italy
| | - Massimiliano Tognolini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma , Parma , Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma , Parma , Italy
| |
Collapse
|
4
|
Hou X, Yang D, Yang G, Li M, Zhang J, Zhang J, Zhang Y, Liu Y. Therapeutic potential of vasoactive intestinal peptide and its receptor VPAC2 in type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:984198. [PMID: 36204104 PMCID: PMC9531956 DOI: 10.3389/fendo.2022.984198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Owing to the increasing prevalence of type 2 diabetes, the development of novel hypoglycemic drugs has become a research hotspot, with the ultimate goal of developing therapeutic drugs that stimulate glucose-induced insulin secretion without inducing hypoglycemia. Vasoactive intestinal peptide (VIP), a 28-amino-acid peptide, can stimulate glucose-dependent insulin secretion, particularly by binding to VPAC2 receptors. VIP also promotes islet β-cell proliferation through the forkhead box M1 pathway, but the specific molecular mechanism remains to be studied. The clinical application of VIP is limited because of its short half-life and wide distribution in the human body. Based on the binding properties of VIP and VPAC2 receptors, VPAC2-selective agonists have been developed to serve as novel hypoglycemic drugs. This review summarizes the physiological significance of VIP in glucose homeostasis and the potential therapeutic value of VPAC2-selective agonists in type 2 diabetes.
Collapse
Affiliation(s)
- Xintong Hou
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Dan Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guimei Yang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Mengnan Li
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jian Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiaxin Zhang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Yi Zhang, ; Yunfeng Liu,
| |
Collapse
|
5
|
Shankar J, K.M G, Wilson B. Potential applications of nanomedicine for treating Parkinson's disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Desai D, Shende P. Monodispersed cyclodextrin-based nanocomplex of neuropeptide Y for targeting MCF-7 cells using a central composite design. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Manchanda R, Fernandez-Fernandez A, Paluri SLA, Smith BR. Nanomaterials to target immunity. ADVANCES IN PHARMACOLOGY 2021; 91:293-335. [PMID: 34099112 DOI: 10.1016/bs.apha.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Critical advances have recently been made in the field of immunotherapy, contributing to an improved understanding of how to harness and balance the power of immune responses in the treatment of diseases such as cancer, cardiovascular disease, infectious diseases, and autoimmune diseases. Combining nanomedicine with immunotherapy provides the opportunity for customization, rational design, and targeting to minimize side effects and maximize efficacy. This review highlights current developments in the design and utilization of nano-based immunotherapy systems, including how rationally-designed nanosystems can target and modify immune cells to modulate immune responses in a therapeutic manner. We discuss the following topics: targeted immuno-engineered nanoformulations, commercial formulations, clinical applicability, challenges associated with current approaches, and future directions.
Collapse
Affiliation(s)
- Romila Manchanda
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Alicia Fernandez-Fernandez
- Dr. Pallavi Patel College of Health Care Sciences, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sesha Lakshmi Arathi Paluri
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
8
|
Iwasaki M, Akiba Y, Kaunitz JD. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: focus on the gastrointestinal system. F1000Res 2019; 8. [PMID: 31559013 PMCID: PMC6743256 DOI: 10.12688/f1000research.18039.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Vasoactive intestinal peptide (VIP), a gut peptide hormone originally reported as a vasodilator in 1970, has multiple physiological and pathological effects on development, growth, and the control of neuronal, epithelial, and endocrine cell functions that in turn regulate ion secretion, nutrient absorption, gut motility, glycemic control, carcinogenesis, immune responses, and circadian rhythms. Genetic ablation of this peptide and its receptors in mice also provides new insights into the contribution of VIP towards physiological signaling and the pathogenesis of related diseases. Here, we discuss the impact of VIP on gastrointestinal function and diseases based on recent findings, also providing insight into its possible therapeutic application to diabetes, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Mari Iwasaki
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, USA.,Departments of Medicine and Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
9
|
Gomariz RP, Juarranz Y, Carrión M, Pérez-García S, Villanueva-Romero R, González-Álvaro I, Gutiérrez-Cañas I, Lamana A, Martínez C. An Overview of VPAC Receptors in Rheumatoid Arthritis: Biological Role and Clinical Significance. Front Endocrinol (Lausanne) 2019; 10:729. [PMID: 31695683 PMCID: PMC6817626 DOI: 10.3389/fendo.2019.00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The axis comprised by the Vasoactive Intestinal Peptide (VIP) and its G protein-coupled receptors (GPCRs), VPAC1, and VPAC2, belong to the B1 family and signal through Gs or Gq proteins. VPAC receptors seem to preferentially interact with Gs in inflammatory cells, rather than Gq, thereby stimulating adenylate cyclase activity. cAMP is able to trigger various downstream pathways, mainly the canonical PKA pathway and the non-canonical cAMP-activated guanine nucleotide exchange factor (EPAC) pathway. Classically, the presence of VPACs has been confined to the plasma membrane; however, VPAC1 location has been described in the nuclear membrane in several cell types such as activated Th cells, where they are also functional. VPAC receptor signaling modulates a number of biological processes by tipping the balance of inflammatory mediators in macrophages and other innate immune cells, modifying the expression of TLRs, and inhibiting MMPs and the expression of adhesion molecules. Receptor signaling also downregulates coagulation factors and acute-phase proteins, promotes Th2 over Th1, stimulates Treg abundance, and finally inhibits a pathogenic Th17 profile. Thus, the VIP axis signaling regulates both the innate and adaptive immune responses in several inflammatory/autoimmune diseases. Rheumatoid arthritis (RA) is a complex autoimmune disease that develops on a substrate of genetically susceptible individuals and under the influence of environmental factors, as well as epigenetic mechanisms. It is a heterogeneous disease with different pathogenic mechanisms and variable clinical forms between patients with the same diagnosis. The knowledge of VIP signaling generated in both animal models and human ex vivo studies can potentially be translated to clinical reality. Most recently, the beneficial effects of nanoparticles of VIP self-associated with sterically stabilized micelles have been reported in a murine model of RA. Another novel research area is beginning to define the receptors as biomarkers in RA, with their expression levels shown to be associated with the activity of the disease and patients-reported impairment. Therefore, VPAC expression together VIP genetic variants could allow patients to be stratified at the beginning of the disease with the purpose of guiding personalized treatment decisions.
Collapse
Affiliation(s)
- Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Rosa P. Gomariz
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
10
|
The Intriguing Role of Neuropeptides at the Ocular Surface. Ocul Surf 2017; 15:2-14. [DOI: 10.1016/j.jtos.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/05/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
|