1
|
Huber AD, Lin W, Poudel S, Miller DJ, Chen T. PROTAC-mediated activation, rather than degradation, of a nuclear receptor reveals complex ligand-receptor interaction network. Structure 2024:S0969-2126(24)00385-X. [PMID: 39389062 DOI: 10.1016/j.str.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules containing a ligand for a protein of interest linked to an E3 ubiquitin ligase ligand that induce protein degradation through E3 recruitment to the target protein. Small changes in PROTAC linkers can have drastic consequences, including loss of degradation activity, but the structural mechanisms governing such changes are unclear. To study this phenomenon, we screened PROTACs of diverse targeting modalities and identified dTAG-13 as an activator of the xenobiotic-sensing pregnane X receptor (PXR), which promiscuously binds various ligands. Characterization of dTAG-13 analogs and precursors revealed interplay between the PXR-binding moiety, linker, and E3 ligand that altered PXR activity without inducing degradation. A crystal structure of PXR ligand binding domain bound to a precursor ligand showed ligand-induced binding pocket distortions and a linker-punctured tunnel to the protein exterior at a region incompatible with E3 complex formation, highlighting the effects of linker environment on PROTAC activity.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1000, Memphis, TN 38105-3678, USA.
| |
Collapse
|
2
|
Zhan J, Harwood F, Have ST, Lamond A, Phillips AH, Kriwacki RW, Halder P, Cardone M, Grosveld GC. Assembly of mTORC3 Involves Binding of ETV7 to Two Separate Sequences in the mTOR Kinase Domain. Int J Mol Sci 2024; 25:10042. [PMID: 39337528 PMCID: PMC11432197 DOI: 10.3390/ijms251810042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
mTOR plays a crucial role in cell growth by controlling ribosome biogenesis, metabolism, autophagy, mRNA translation, and cytoskeleton organization. It is a serine/threonine kinase that is part of two distinct extensively described protein complexes, mTORC1 and mTORC2. We have identified a rapamycin-resistant mTOR complex, called mTORC3, which is different from the canonical mTORC1 and mTORC2 complexes in that it does not contain the Raptor, Rictor, or mLST8 mTORC1/2 components. mTORC3 phosphorylates mTORC1 and mTORC2 targets and contains the ETS transcription factor ETV7, which binds to mTOR and is essential for mTORC3 assembly in the cytoplasm. Tumor cells that assemble mTORC3 have a proliferative advantage and become resistant to rapamycin, indicating that inhibiting mTORC3 may have a therapeutic impact on cancer. Here, we investigate which domains or amino acid residues of ETV7 and mTOR are involved in their mutual binding. We found that the mTOR FRB and LBE sequences in the kinase domain interact with the pointed (PNT) and ETS domains of ETV7, respectively. We also found that forced expression of the mTOR FRB domain in the mTORC3-expressing, rapamycin-resistant cell line Karpas-299 out-competes mTOR for ETV7 binding and renders these cells rapamycin-sensitive in vivo. Our data provide useful information for the development of molecules that prevent the assembly of mTORC3, which may have therapeutic value in the treatment of mTORC3-positive cancer.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Frank Harwood
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Sara Ten Have
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Angus Lamond
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK; (S.T.H.); (A.L.)
| | - Aaron H. Phillips
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.H.P.); (R.W.K.)
| | - Priyanka Halder
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Monica Cardone
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| | - Gerard C. Grosveld
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (F.H.); (P.H.); (M.C.)
| |
Collapse
|
3
|
Huber AD, Poudel S, Wu J, Miller DJ, Lin W, Yang L, Bwayi MN, Rimmer MA, Gee RRF, Seetharaman J, Chai SC, Chen T. A bromodomain-independent mechanism of gene regulation by the BET inhibitor JQ1: direct activation of nuclear receptor PXR. Nucleic Acids Res 2024; 52:1661-1676. [PMID: 38084912 PMCID: PMC10899790 DOI: 10.1093/nar/gkad1175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/29/2024] Open
Abstract
Bromodomain and extraterminal (BET) proteins are extensively studied in multiple pathologies, including cancer. BET proteins modulate transcription of various genes, including those synonymous with cancer, such as MYC. Thus, BET inhibitors are a major area of drug development efforts. (+)-JQ1 (JQ1) is the prototype inhibitor and is a common tool to probe BET functions. While showing therapeutic promise, JQ1 is not clinically usable, partly due to metabolic instability. Here, we show that JQ1 and the BET-inactive (-)-JQ1 are agonists of pregnane X receptor (PXR), a nuclear receptor that transcriptionally regulates genes encoding drug-metabolizing enzymes such as CYP3A4, which was previously shown to oxidize JQ1. A PXR-JQ1 co-crystal structure identified JQ1's tert-butyl moiety as a PXR anchor and explains binding by (-)-JQ1. Analogs differing at the tert-butyl lost PXR binding, validating our structural findings. Evaluation in liver cell models revealed both PXR-dependent and PXR-independent modulation of CYP3A4 expression by BET inhibitors. We have characterized a non-BET JQ1 target, a mechanism of physiological JQ1 instability, a biological function of (-)-JQ1, and BET-dependent transcriptional regulation of drug metabolism genes.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah N Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Mary Ashley Rimmer
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Huber AD, Poudel S, Li Y, Lin W, Wu J, Miller DJ, Chen T. Ligand flexibility and binding pocket malleability cooperate to allow selective PXR activation by analogs of a promiscuous nuclear receptor ligand. Structure 2023; 31:1545-1555.e9. [PMID: 37729916 PMCID: PMC10872772 DOI: 10.1016/j.str.2023.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023]
Abstract
The human nuclear receptor (NR) family of transcription factors contains 48 proteins that bind lipophilic molecules. Approved NR therapies have had immense success treating various diseases, but lack of selectivity has hindered efforts to therapeutically target the majority of NRs due to unpredictable off-target effects. The synthetic ligand T0901317 was originally discovered as a potent agonist of liver X receptors (LXRα/β) but subsequently found to target additional NRs, with activation of pregnane X receptor (PXR) being as potent as that of LXRs. We previously showed that directed rigidity reduces PXR binding by T0901317 derivatives through unfavorable protein remodeling. Here, we use a similar approach to achieve selectivity for PXR over other T0901317-targeted NRs. One molecule, SJPYT-318, accomplishes selectivity by favorably utilizing PXR's flexible binding pocket and surprisingly binding in a new mode distinct from the parental T0901317. Our work provides a structure-guided framework to achieve NR selectivity from promiscuous compounds.
Collapse
Affiliation(s)
- Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
5
|
Fan S, Yan Y, Xia Y, Zhou Z, Luo L, Zhu M, Han Y, Yao D, Zhang L, Fang M, Peng L, Yu J, Liu Y, Gao X, Guan H, Li H, Wang C, Wu X, Zhu H, Cao Y, Huang C. Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions. Nat Commun 2023; 14:3368. [PMID: 37291126 PMCID: PMC10250385 DOI: 10.1038/s41467-023-39118-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Citrus fruit has long been considered a healthy food, but its role and detailed mechanism in lifespan extension are not clear. Here, by using the nematode C. elegans, we identified that nomilin, a bitter-taste limoloid that is enriched in citrus, significantly extended the animals' lifespan, healthspan, and toxin resistance. Further analyses indicate that this ageing inhibiting activity depended on the insulin-like pathway DAF-2/DAF-16 and nuclear hormone receptors NHR-8/DAF-12. Moreover, the human pregnane X receptor (hPXR) was identified as the mammalian counterpart of NHR-8/DAF-12 and X-ray crystallography showed that nomilin directly binds with hPXR. The hPXR mutations that prevented nomilin binding blocked the activity of nomilin both in mammalian cells and in C. elegans. Finally, dietary nomilin supplementation improved healthspan and lifespan in D-galactose- and doxorubicin-induced senescent mice as well as in male senescence accelerated mice prone 8 (SAMP8) mice, and induced a longevity gene signature similar to that of most longevity interventions in the liver of bile-duct-ligation male mice. Taken together, we identified that nomilin may extend lifespan and healthspan in animals via the activation of PXR mediated detoxification functions.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yingxuan Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Xia
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China
| | - Zhenyu Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongli Han
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Deqiang Yao
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Lijun Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Gao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongli Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojun Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, 200125, China.
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
6
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
7
|
A FRET-based assay for the quantitation of the thrombin-factor XI interaction. Thromb Res 2022; 214:23-28. [DOI: 10.1016/j.thromres.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
|
8
|
Shizu R, Nishiguchi H, Tashiro S, Sato T, Sugawara A, Kanno Y, Hosaka T, Sasaki T, Yoshinari K. Helix 12 stabilization contributes to basal transcriptional activity of PXR. J Biol Chem 2021; 297:100978. [PMID: 34284062 PMCID: PMC8390552 DOI: 10.1016/j.jbc.2021.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Pregnane X receptor (PXR) plays an important role in xenobiotic metabolism. While ligand binding induces PXR-dependent gene transcription, PXR shows constitutive transcriptional activity in the absence of ligands when expressed in cultured cells. This constitutive activity sometimes hampers investigation of PXR activation by compounds of interest. In this study, we investigated the molecular mechanism of PXR activation. In the reported crystal structures of unliganded PXR, helix 12 (H12), including a coactivator binding motif, was stabilized, while it is destabilized in the unliganded structures of other nuclear receptors, suggesting a role for H12 stabilization in the basal activity of PXR. Since Phe420, located in the loop between H11 and H12, is thought to interact with Leu411 and Ile414 to stabilize H12, we substituted alanine at Phe420 (PXR-F420A) and separately inserted three alanine residues directly after Phe420 (PXR-3A) and investigated their influence on PXR-mediated transcription. Reporter gene assays demonstrated that the mutants showed drastically reduced basal activity and enhanced responses to various ligands, which was further enhanced by coexpression of the coactivator peroxisome proliferator-activated receptor gamma coactivator 1α. Mutations of both Leu411 and Ile414 to alanine also suppressed basal activity. Mammalian two-hybrid assays showed that PXR-F420A and PXR-3A bound to corepressors and coactivators in the absence and presence of ligands, respectively. We conclude that the intramolecular interactions of Phe420 with Leu411 and Ile414 stabilize H12 to recruit coactivators even in the absence of ligands, contributing to the basal transcriptional activity of PXR. We propose that the generated mutants might be useful for PXR ligand screening.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Hikaru Nishiguchi
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sarii Tashiro
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takumi Sato
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ayaka Sugawara
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
9
|
Lin W, Chen T. General Stepwise Approach to Optimize a TR-FRET Assay for Characterizing the BRD/PROTAC/CRBN Ternary Complex. ACS Pharmacol Transl Sci 2021; 4:941-952. [PMID: 33860212 DOI: 10.1021/acsptsci.1c00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) degrade target proteins by engaging the ubiquitin-proteasome system. Assays detecting target-PROTAC-E3 ligase ternary complexes are critical for PROTAC development. Both time-resolved fluorescence energy transfer (TR-FRET) assays and amplified luminescent proximity homogeneous assays can characterize ternary complexes and assess PROTAC efficacy; stepwise optimization protocols for these assays are lacking. To identify assay conditions that can be applied to various targets and PROTACs, we used a stepwise approach to optimize a TR-FRET assay of BRD2(BD1)/PROTACs/CRBN ternary complexes. This assay is sensitive and specific and responds to the bivalent PROTACs dBET1, PROTAC BET Degrader-1, and PROTAC BET Degrader-2 but not to non-PROTAC ligands of BRD2(BD1) or CRBN. The activity rank order of dBET1, PROTAC BET Degrader-1, and PROTAC BET Degrader-2 in the TR-FRET assay corresponded with previously reported cell growth inhibition assays, indicating the effectiveness of our assay for predicting PROTAC cellular activity. The TR-FRET ternary complex formation assay for BRD2(BD1)/PROTAC/CRBN can be configured to characterize the binding activities of BRD2(BD1) and CRBN ligands with the same compound activity rank order as that of previously reported binary binding assays for individual targets but with the advantage of simultaneously assessing the ligand activities for both targets. Our assay is modular in nature, as BRD2(BD1) can be replaced with other BRDs and successfully detect ternary complexes without modifying other assay conditions. Therefore, the TR-FRET ternary complex assay for BRDs provides a general assay protocol for establishing assays for other targets and bivalent molecules.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
10
|
Lin W, Li Y, Yang L, Chen T. Development of BODIPY FL VH032 as a High-Affinity and Selective von Hippel-Lindau E3 Ligase Fluorescent Probe and Its Application in a Time-Resolved Fluorescence Resonance Energy-Transfer Assay. ACS OMEGA 2021; 6:680-695. [PMID: 33458521 PMCID: PMC7807814 DOI: 10.1021/acsomega.0c05221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 05/06/2023]
Abstract
The von Hippel-Lindau (VHL) tumor suppressor associates with transcription factors elongin-C and elongin-B to form the VHL-elongin-C-elongin-B protein complex and carry out its functions, such as degradation of hypoxia-inducible factors. VHL ligands are used not only to modulate hypoxia-signaling pathways and potentially treat chronic anemia or ischemia but also to form bivalent ligands as proteolysis-targeting chimeras to degrade proteins for potential therapeutic applications. Sensitive and selective VHL-based binding assays are critical for identifying and characterizing VHL ligands with high-throughput screening approaches. VHL ligand-binding assays, such as isothermal titration calorimetry, surface plasmon resonance, and fluorescence polarization assays, are reported but with limitations. Isothermal titration calorimetry requires higher protein concentrations with a lower throughput than fluorescence-based assays do. Surface plasmon resonance requires protein immobilization, which introduces variation and is not suitable for testing a large number of ligands. Fluorescence polarization can be sensitive with high-throughput capability but is susceptible to assay interference, and small-molecule-based fluorescent probes are not available. We developed the first small-molecule-based high-affinity VHL fluorescent probe BODIPY FL VH032 (5), with a K d of 3.01 nM, for a time-resolved fluorescence resonance energy-transfer assay. This new assay is sensitive, selective, resistant to assay interference, and capable of characterizing VHL ligands with a wide range of affinities. It is also suitable for VHL ligand identification and characterization with high-throughput screening.
Collapse
|
11
|
Valtonen S, Vuorinen E, Kariniemi T, Eskonen V, Le Quesne J, Bushell M, Härmä H, Kopra K. Nanomolar Protein-Protein Interaction Monitoring with a Label-Free Protein-Probe Technique. Anal Chem 2020; 92:15781-15788. [PMID: 33237744 PMCID: PMC7745204 DOI: 10.1021/acs.analchem.0c02823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions (PPIs) are an essential part of correct cellular functionality, making them increasingly interesting drug targets. While Förster resonance energy transfer-based methods have traditionally been widely used for PPI studies, label-free techniques have recently drawn significant attention. These methods are ideal for studying PPIs, most importantly as there is no need for labeling of either interaction partner, reducing potential interferences and overall costs. Already, several different label-free methods are available, such as differential scanning calorimetry and surface plasmon resonance, but these biophysical methods suffer from low to medium throughput, which reduces suitability for high-throughput screening (HTS) of PPI inhibitors. Differential scanning fluorimetry, utilizing external fluorescent probes, is an HTS compatible technique, but high protein concentration is needed for experiments. To improve the current concepts, we have developed a method based on time-resolved luminescence, enabling PPI monitoring even at low nanomolar protein concentrations. This method, called the protein probe technique, is based on a peptide conjugated with Eu3+ chelate, and it has already been applied to monitor protein structural changes and small molecule interactions at elevated temperatures. Here, the applicability of the protein probe technique was demonstrated by monitoring single-protein pairing and multiprotein complexes at room and elevated temperatures. The concept functionality was proven by using both artificial and multiple natural protein pairs, such as KRAS and eIF4A together with their binding partners, and C-reactive protein in a complex with its antibody.
Collapse
Affiliation(s)
- Salla Valtonen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Emmiliisa Vuorinen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Taru Kariniemi
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Ville Eskonen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - John Le Quesne
- University
of Cambridge, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 7HB, U.K.
| | - Martin Bushell
- Cancer
Research U.K. Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K.
- Institute
of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, U.K.
| | - Harri Härmä
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Kari Kopra
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| |
Collapse
|
12
|
Lin W, Li Y, Min J, Liu J, Yang L, Lee RE, Chen T. Development of BODIPY FL Thalidomide As a High-Affinity Fluorescent Probe for Cereblon in a Time-Resolved Fluorescence Resonance Energy Transfer Assay. Bioconjug Chem 2020; 31:2564-2575. [PMID: 33070611 DOI: 10.1021/acs.bioconjchem.0c00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligands for cereblon, a component of a functional E3 ligase complex that targets proteins for proteolysis, are critical for developing molecular glues and proteolysis-targeting chimeras (PROTACs), which have therapeutic implications for various diseases. However, the lack of sensitivity of previously reported assays limits characterization of cereblon ligands. To address this shortcoming, we developed BODIPY FL thalidomide (10) as a high-affinity fluorescent probe for the human cereblon protein, with a Kd value of 3.6 nM. We then used BODIPY FL thalidomide (10) to develop a cereblon time-resolved fluorescence resonance energy transfer (TR-FRET) binding assay. The IC50 values of the cereblon ligand pomalidomide (8) were 6.4 nM in our cereblon TR-FRET binding assay, 264.8 nM in a previously reported Cy5-conjugated thalidomide (7)-mediated fluorescence polarization (FP) assay, and 1.2 μM in a previously reported Cy5-conjugated cereblon modulator (compound 7) (9)-mediated TR-FRET assay, indicating that our cereblon TR-FRET binding assay is 41- and 187-fold more sensitive than these two previously published assays. With our cereblon TR-FRET binding assay, we detected binding of cereblon ligands but not binding of bromodomain-containing protein 4 or von Hippel-Lindau ligands, thereby demonstrating its selectivity. Our cereblon TR-FRET binding assay was very stable and detected changes in phthalimide activity due to thalidomide isomerization. Therefore, the BODIPY FL thalidomide (10)-mediated cereblon TR-FRET binding assay we designed is highly sensitive, selective, and stable and will aid the development and characterization of novel cereblon ligands.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
13
|
Busby SA, Carbonneau S, Concannon J, Dumelin CE, Lee Y, Numao S, Renaud N, Smith TM, Auld DS. Advancements in Assay Technologies and Strategies to Enable Drug Discovery. ACS Chem Biol 2020; 15:2636-2648. [PMID: 32880443 DOI: 10.1021/acschembio.0c00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Assays drive drug discovery from the exploratory phases to the clinical testing of drug candidates. As such, numerous assay technologies and methodologies have arisen to support drug discovery efforts. Robust identification and characterization of tractable chemical matter requires biochemical, biophysical, and cellular approaches and often benefits from high-throughput methods. To increase throughput, efforts have been made to provide assays in miniaturized volumes which can be arrayed in microtiter plates to support the testing of as many as 100,000 samples/day. Alongside these efforts has been the growth of microtiter plate-free formats with encoded libraries that can support the screening of billions of compounds, a hunt for new drug modalities, as well as emphasis on more disease relevant formats using complex cell models of disease states. This review will focus on recent developments in high-throughput assay technologies applied to identify starting points for drug discovery. We also provide recommendations on strategies for implementing various assay types to select high quality leads for drug development.
Collapse
Affiliation(s)
- Scott A. Busby
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Seth Carbonneau
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - John Concannon
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | | | - YounKyoung Lee
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Shin Numao
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nicole Renaud
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Thomas M. Smith
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| | - Douglas S. Auld
- Novartis Institutes for Biomedical Research, Chemical Biology and Therapeutics, Cambridge, Massachusetts, United States
| |
Collapse
|
14
|
Lin W, Bwayi M, Wu J, Li Y, Chai SC, Huber AD, Chen T. CITCO Directly Binds to and Activates Human Pregnane X Receptor. Mol Pharmacol 2020; 97:180-190. [PMID: 31882411 PMCID: PMC6978709 DOI: 10.1124/mol.119.118513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
The xenobiotic receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are activated by structurally diverse chemicals to regulate the expression of target genes, and they have overlapping regulation in terms of ligands and target genes. Receptor-selective agonists are, therefore, critical for studying the overlapping function of PXR and CAR. An early effort identified 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) as a selective human CAR (hCAR) agonist, and this has since been widely used to distinguish the function of hCAR from that of human PXR (hPXR). The selectivity was demonstrated in a green monkey kidney cell line, CV-1, in which CITCO displayed >100-fold selectivity for hCAR over hPXR. However, whether the selectivity observed in CV-1 cells also represented CITCO activity in liver cell models was not hitherto investigated. In this study, we showed that CITCO: 1) binds directly to hPXR; 2) activates hPXR in HepG2 cells, with activation being blocked by an hPXR-specific antagonist, SPA70; 3) does not activate mouse PXR; 4) depends on tryptophan-299 to activate hPXR; 5) recruits steroid receptor coactivator 1 to hPXR; 6) activates hPXR in HepaRG cell lines even when hCAR is knocked out; and 7) activates hPXR in primary human hepatocytes. Together, these data indicate that CITCO binds directly to the hPXR ligand-binding domain to activate hPXR. As CITCO has been widely used, its confirmation as a dual agonist for hCAR and hPXR is important for appropriately interpreting existing data and designing future experiments to understand the regulation of hPXR and hCAR. SIGNIFICANCE STATEMENT: The results of this study demonstrate that 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime (CITCO) is a dual agonist for human constitutive androstane receptor (hCAR) and human pregnane X receptor (hPXR). As CITCO has been widely used to activate hCAR, and hPXR and hCAR have distinct and overlapping biological functions, these results highlight the value of receptor-selective agonists and the importance of appropriately interpreting data in the context of receptor selectivity of such agonists.
Collapse
Affiliation(s)
- Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yongtao Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
15
|
Balaguer P, Delfosse V, Bourguet W. Mechanisms of endocrine disruption through nuclear receptors and related pathways. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coemr.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep 2019; 9:8233. [PMID: 31160659 PMCID: PMC6547726 DOI: 10.1038/s41598-019-44650-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
FRET (Fluorescence Resonance Energy Transfer) measurements are commonly applied to proof protein-protein interactions. However, standard methods of live cell FRET microscopy and signal normalization only allow a principle assessment of mutual binding and are unable to deduce quantitative information of the interaction. We present an evaluation and normalization procedure for 3-filter FRET measurements, which reflects the process of complex formation by plotting FRET-saturation curves. The advantage of this approach relative to traditional signal normalizations is demonstrated by mathematical simulations. Thereby, we also identify the contribution of critical parameters such as the total amount of donor and acceptor molecules and their molar ratio. When combined with a fitting procedure, this normalization facilitates the extraction of key properties of protein complexes such as the interaction stoichiometry or the apparent affinity of the binding partners. Finally, the feasibility of our method is verified by investigating three exemplary protein complexes. Altogether, our approach offers a novel method for a quantitative analysis of protein interactions by 3-filter FRET microscopy, as well as flow cytometry. To facilitate the application of this method, we created macros and routines for the programs ImageJ, R and MS-Excel, which we make publicly available.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Markus Kunze
- Medical University Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Vienna, Austria
| | - Bernhard Moser
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Johannes A Schmid
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria.
| |
Collapse
|
17
|
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discov Today 2019; 24:906-915. [PMID: 30731240 PMCID: PMC6421094 DOI: 10.1016/j.drudis.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are ligand-activated nuclear receptors (NRs) that are notorious for their role in drug metabolism, causing unintended drug-drug interactions and decreasing drug efficacy. They control the xenobiotic detoxification system by regulating the expression of an array of drug-metabolizing enzymes and transporters that excrete exogenous chemicals and maintain homeostasis of endogenous metabolites. Much effort has been invested in recognizing potential drugs for clinical use that can activate PXR and CAR to enhance the expression of their target genes, and in identifying PXR and CAR inhibitors that can be used as co-therapeutics to prevent adverse effects. Here, we present current technologies and assays used in the quest to characterize PXR and CAR modulators, which range from biochemical to cell-based and animal models.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|