1
|
Tangpradubkiat P, Chayanupatkul M, Werawatganone P, Somanawat K, Siriviriyakul P, Klaikeaw N, Werawatganon D. Gardenia jasminoides extract mitigates acetaminophen-induced liver damage in mice. BMC Complement Med Ther 2024; 24:371. [PMID: 39427207 PMCID: PMC11490086 DOI: 10.1186/s12906-024-04676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced hepatotoxicity is a potentially life-threatening condition. Gardenia jasminoides fruit extract (GJE), which contains geniposide (Gen) as its major active constituent, possesses anti-inflammatory and antioxidant properties and may help address the underlying pathogenesis of APAP-induced hepatotoxicity. This study aimed to evaluate the effects of GJE in a mouse model of APAP-induced hepatotoxicity. METHODS Twenty-four male ICR mice were divided into 4 groups (n = 6/group): [1] Control group, mice were given distilled water; [2] APAP group, mice received a single dose of 600 mg/kg APAP; [3] APAP + low-dose GJE group, mice received APAP followed 30 min later by 2 doses of low-dose GJE (0.44 g/kg/dose, containing Gen 100 mg/kg/dose) 8 h apart; [4] APAP + high-dose GJE group, mice received APAP followed by 2 doses of high-dose GJE (0.88 g/kg/dose, containing Gen 200 mg/kg/dose). All mice were euthanized 24 h after APAP administration. Liver tissue was used for histological examination and to measure glutathione (GSH) and malondialdehyde (MDA) levels. Serum was used to determine levels of ALT and inflammatory cytokines (tumor necrosis factor- α (TNF-α) and interleukin-6 (IL-6)). RESULTS Liver histopathology showed moderate to severe hepatic necroinflammation in the APAP group, whereas only mild necroinflammation was observed in both treatment groups. Serum ALT levels were significantly elevated in the APAP group compared to the control group but were significantly reduced after low- and high-dose GJE treatment. Serum TNF- α levels were significantly higher in the APAP group than in the control group and were significantly lower after high-dose GJE treatment (135.5 ± 477.2 vs. 35.5 ± 25.8 vs. 74.7 ± 47.2 vs. 41.4 ± 50.8 pg/mL, respectively). Serum IL-6 followed a similar pattern. Hepatic GSH levels were significantly lower in the APAP group compared to the control group but significantly increased after both low- and high-dose GJE treatment (19.9 ± 4.5 vs. 81.5 ± 12.4 vs. 71.4 ± 7.8 vs. 82.6 ± 6.6 nmol/mg protein, respectively). Conversely, hepatic MDA levels were significantly elevated in the APAP group compared with the control group but significantly decreased after high-dose GJE treatment (108.6 ± 201.5 vs. 40.5 ± 18.0 vs. 40.5 ± 16.8 nmol/mg protein, respectively). CONCLUSIONS Treatment with G. jasminoides fruit extract can alleviate APAP-induced hepatotoxicity, likely through its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Peenaprapa Tangpradubkiat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chayanupatkul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pornpen Werawatganone
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kanjana Somanawat
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasong Siriviriyakul
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Naruemon Klaikeaw
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Duangporn Werawatganon
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Lambrecht R, Jansen J, Rudolf F, El-Mesery M, Caporali S, Amelio I, Stengel F, Brunner T. Drug-induced oxidative stress actively prevents caspase activation and hepatocyte apoptosis. Cell Death Dis 2024; 15:659. [PMID: 39245717 PMCID: PMC11381522 DOI: 10.1038/s41419-024-06998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Cell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation. Here, we studied this paradoxical form of cell death and revealed that APAP not only fails to activate caspases but also strongly impedes their activation upon classical apoptosis induction, thereby shifting apoptosis to necrosis. While APAP intoxication results in massive drop in mitochondrial respiration, low cellular ATP levels could be excluded as an underlying cause of missing apoptosome formation and caspase activation. In contrast, we identified oxidative stress as a key factor in APAP-induced caspase inhibition. Importantly, caspase inhibition and the associated switch from apoptotic to necrotic cell death was reversible through the administration of antioxidants. Thus, exemplified by APAP-induced cell death, our study stresses that cellular redox status is a critical component in the decision-making between apoptotic and necrotic cell death, as it directly affects caspase activity.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Mohamed El-Mesery
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sabrina Caporali
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Collaborative Research Center TRR 353, Konstanz, Germany
- Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
- Collaborative Research Center TRR 353, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
- Collaborative Research Center TRR 353, Konstanz, Germany.
| |
Collapse
|
3
|
Hinz K, Niu M, Ni HM, Ding WX. Targeting Autophagy for Acetaminophen-Induced Liver Injury: An Update. LIVERS 2024; 4:377-387. [PMID: 39301093 PMCID: PMC11412313 DOI: 10.3390/livers4030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Acetaminophen (APAP) overdose can induce hepatocyte necrosis and acute liver failure in experimental rodents and humans. APAP is mainly metabolized via hepatic cytochrome P450 enzymes to generate the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which forms acetaminophen protein adducts (APAP-adducts) and damages mitochondria, triggering necrosis. APAP-adducts and damaged mitochondria can be selectively removed by autophagy. Increasing evidence implies that the activation of autophagy may be beneficial for APAP-induced liver injury (AILI). In this minireview, we briefly summarize recent progress on autophagy, in particular, the pharmacological targeting of SQSTM1/p62 and TFEB in AILI.
Collapse
Affiliation(s)
- Kaitlyn Hinz
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Zeng FL, Zhang Y, Wang ZH, Zhang H, Meng XT, Wu YQ, Qian ZZ, Ding YH, Li J, Ma TT, Huang C. Neutrophil extracellular traps promote acetaminophen-induced acute liver injury in mice via AIM2. Acta Pharmacol Sin 2024; 45:1660-1672. [PMID: 38589685 PMCID: PMC11272772 DOI: 10.1038/s41401-024-01239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/06/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive acetaminophen (APAP) can induce neutrophil activation and hepatocyte death. Along with hepatocyte dysfunction and death, NETosis (a form of neutrophil-associated inflammation) plays a vital role in the progression of acute liver injury (ALI) induced by APAP overdose. It has been shown that activated neutrophils tend to migrate towards the site of injury and participate in inflammatory processes via formation of neutrophil extracellular traps (NETs). In this study we investigated whether NETs were involved in hepatocyte injury and contributed to APAP-induced ALI progression. ALI mouse model was established by injecting overdose (350 mg/kg) of APAP. After 24 h, blood and livers were harvested for analyses. We showed that excessive APAP induced multiple programmed cell deaths of hepatocytes including pyroptosis, apoptosis and necroptosis, accompanied by significantly increased NETs markers (MPO, citH3) in the liver tissue and serum. Preinjection of DNase1 (10 U, i.p.) for two consecutive days significantly inhibited NETs formation, reduced PANoptosis and consequently alleviated excessive APAP-induced ALI. In order to clarify the communication between hepatocytes and neutrophils, we induced NETs formation in isolated neutrophils, and treated HepaRG cells with NETs. We found that NETs treatment markedly increased the activation of GSDMD, caspase-3 and MLKL, while pre-treatment with DNase1 down-regulated the expression of these proteins. Knockdown of AIM2 (a cytosolic innate immune receptor) abolished NETs-induced PANoptosis in HepaRG cells. Furthermore, excessive APAP-associated ALI was significantly attenuated in AIM2KO mice, and PANoptosis occurred less frequently. Upon restoring AIM2 expression in AIM2KO mice using AAV9 virus, both hepatic injury and PANoptosis was aggravated. In addition, we demonstrated that excessive APAP stimulated mtROS production and mitochondrial DNA (mtDNA) leakage, and mtDNA activated the TLR9 pathway to promote NETs formation. Our results uncover a novel mechanism of NETs and PANoptosis in APAP-associated ALI, which might serve as a therapeutic target.
Collapse
Affiliation(s)
- Fan-le Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhong-Hao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hui Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xue-Teng Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yi-Qin Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhen-Zhen Qian
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yu-Hao Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Tao-Tao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
5
|
Jaeschke H, Ramachandran A. Central Mechanisms of Acetaminophen Hepatotoxicity: Mitochondrial Dysfunction by Protein Adducts and Oxidant Stress. Drug Metab Dispos 2024; 52:712-721. [PMID: 37567742 PMCID: PMC11257690 DOI: 10.1124/dmd.123.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Acetaminophen (APAP) is an analgesic and antipyretic drug used worldwide, which is safe at therapeutic doses. However, an overdose can induce liver injury and even liver failure. Mechanistic studies in mice beginning with the seminal papers published by B.B. Brodie's group in the 1970s have resulted in important insight into the pathophysiology. Although the metabolic activation of APAP with generation of a reactive metabolite, glutathione depletion, and protein adduct formation are critical initiating events, more recently, mitochondria have come into focus as an important target and decision point of cell death. This review provides a comprehensive overview of the induction of mitochondrial superoxide and peroxynitrite formation and its propagation through a mitogen-activated protein kinase cascade, the mitochondrial permeability transition pore opening caused by iron-catalyzed protein nitration, and the mitochondria-dependent nuclear DNA fragmentation. In addition, the role of adaptive mechanisms that can modulate the pathophysiology, including autophagy, mitophagy, nuclear erythroid 2 p45-related factor 2 activation, and mitochondrial biogenesis, are discussed. Importantly, it is outlined how the mechanisms elucidated in mice translate to human hepatocytes and APAP overdose patients, and how this mechanistic insight explains the mechanism of action of the clinically approved antidote N-acetylcysteine and led to the recent discovery of a novel compound, fomepizole, which is currently under clinical development. SIGNIFICANCE STATEMENT: Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in western countries. Extensive mechanistic research over the last several decades has revealed a central role of mitochondria in the pathophysiology of APAP hepatotoxicity. This review article provides a comprehensive discussion of a) mitochondrial protein adducts and oxidative/nitrosative stress, b) mitochondria-regulated nuclear DNA fragmentation, c) adaptive mechanisms to APAP-induced cellular stress, d) translation of cell death mechanisms to overdose patients, and e) mechanism-based antidotes against APAP-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
6
|
Umbaugh DS, Nguyen NT, Curry SC, Rule JA, Lee WM, Ramachandran A, Jaeschke H. The chemokine CXCL14 is a novel early prognostic biomarker for poor outcome in acetaminophen-induced acute liver failure. Hepatology 2024; 79:1352-1364. [PMID: 37910653 PMCID: PMC11061265 DOI: 10.1097/hep.0000000000000665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND AIMS Patients with acetaminophen-induced acute liver failure are more likely to die while on the liver transplant waiting list than those with other causes of acute liver failure. Therefore, there is an urgent need for prognostic biomarkers that can predict the need for liver transplantation early after an acetaminophen overdose. APPROACH AND RESULTS We evaluated the prognostic potential of plasma chemokine C-X-C motif ligand 14 (CXCL14) concentrations in patients with acetaminophen (APAP) overdose (n=50) and found that CXCL14 is significantly higher in nonsurviving patients compared to survivors with acute liver failure ( p < 0.001). Logistic regression and AUROC analyses revealed that CXCL14 outperformed the MELD score, better discriminating between nonsurvivors and survivors. We validated these data in a separate cohort of samples obtained from the Acute Liver Failure Study Group (n = 80), where MELD and CXCL14 had similar AUC (0.778), but CXCL14 demonstrated higher specificity (81.2 vs. 52.6) and positive predictive value (82.4 vs. 65.4) for death or need for liver transplantation. Next, combining the patient cohorts and using a machine learning training/testing scheme to mimic the clinical scenario, we found that CXCL14 outperformed MELD based on AUC (0.821 vs. 0.787); however, combining MELD and CXCL14 yielded the best AUC (0.860). CONCLUSIONS We find in 2 independent cohorts of acetaminophen overdose patients that circulating CXCL14 concentration is a novel early prognostic biomarker for poor outcomes, which may aid in guiding decisions regarding patient management. Moreover, our findings reveal that CXCL14 performs best when measured soon after patient presentation to the clinic, highlighting its importance for early warning of poor prognosis.
Collapse
Affiliation(s)
- David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nga T. Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven C. Curry
- Department of Medical Toxicology, Banner – University Medical Center Phoenix, Phoenix, AZ, USA
- Department of Medicine, and Division of Clinical Data Analytics and Decision Support, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | - Jody A. Rule
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William M. Lee
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
7
|
Chen J, Wu J, Bai Y, Yang C, Wang J. Recent advances of single-cell RNA sequencing in toxicology research: Insight into hepatotoxicity and nephrotoxicity. CURRENT OPINION IN TOXICOLOGY 2024; 37:100462. [DOI: 10.1016/j.cotox.2024.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
8
|
Sanchez-Guerrero G, Umbaugh DS, Ramachandran AA, Artigues A, Jaeschke H, Ramachandran A. Translocation of Adenosine A2B Receptor to Mitochondria Influences Cytochrome P450 2E1 Activity after Acetaminophen Overdose. LIVERS 2024; 4:15-30. [PMID: 39007013 PMCID: PMC11245301 DOI: 10.3390/livers4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
The adenosine A2B receptor (A2BAR) is a member of a family of G-protein coupled receptors (GPCRs), which has a low affinity for adenosine and is now implicated in several pathophysiological conditions. We have demonstrated the beneficial effects of A2BAR activation in enhancing recovery after acute liver injury induced by an acetaminophen (APAP) overdose. While receptor trafficking within the cell is recognized to play a role in GPCR signaling, its role in the mediation of A2BAR effects in the context of APAP-induced liver injury is not well understood. This was investigated here, where C57BL/6J mice were subjected to an APAP overdose (300 mg/kg), and the temporal course of A2BAR intracellular localization was examined. The impact of A2BAR activation or inhibition on trafficking was examined by utilizing the A2BAR agonist BAY 60-6583 or antagonist PSB 603. The modulation of A2BAR trafficking via APAP-induced cell signaling was explored by using 4-methylpyrazole (4MP), an inhibitor of Cyp2E1 and JNK activation. Our results indicate that APAP overdose induced the translocation of A2BAR to mitochondria, which was prevented via 4MP treatment. Furthermore, we demonstrated that A2BAR is localized on the mitochondrial outer membrane and interacts with progesterone receptor membrane component 1 (PGRMC1). While the activation of A2BAR enhanced mitochondrial localization, its inhibition decreased PGRMC1 mitochondria levels and blunted mitochondrial Cyp2E1 activity. Thus, our data reveal a hitherto unrecognized consequence of A2BAR trafficking to mitochondria and its interaction with PGRMC1, which regulates mitochondrial Cyp2E1 activity and modulates APAP-induced liver injury.
Collapse
Affiliation(s)
- Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | - David S. Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | - Abhay A. Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | - Antonio Artigues
- Department of Biochemistry, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Lambrecht R, Rudolf F, Ückert AK, Sladky VC, Phan TS, Jansen J, Naim S, Kaufmann T, Keogh A, Kirschnek S, Mangerich A, Stengel F, Leist M, Villunger A, Brunner T. Non-canonical BIM-regulated energy metabolism determines drug-induced liver necrosis. Cell Death Differ 2024; 31:119-131. [PMID: 38001256 PMCID: PMC10781779 DOI: 10.1038/s41418-023-01245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Franziska Rudolf
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Anna-Katharina Ückert
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Jasmin Jansen
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, Bern University Hospital, INO-F, Freiburgstrasse 16C, 3010, Bern, Switzerland
| | - Adrian Keogh
- Visceral and Transplantation Surgery, Department of Clinical Research, Inselspital, Bern University Hospital, 3008, Bern, Switzerland
| | - Susanne Kirschnek
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Aswin Mangerich
- Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Florian Stengel
- Biochemistry and Mass Spectrometry, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Ludwig Boltzman Institute for Rare and Undiagnosed Diseases (LBI-RUD), Lazarettgasse 14, 1090, Vienna, Austria
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany.
| |
Collapse
|
11
|
Lambrecht R, Delgado ME, Gloe V, Schuetz K, Plazzo AP, Franke B, San Phan T, Fleming J, Mayans O, Brunner T. Liver receptor homolog-1 (NR5A2) orchestrates hepatic inflammation and TNF-induced cell death. Cell Rep 2023; 42:113513. [PMID: 38039134 DOI: 10.1016/j.celrep.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.
Collapse
Affiliation(s)
- Rebekka Lambrecht
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - M Eugenia Delgado
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Vincent Gloe
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Karina Schuetz
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Anna Pia Plazzo
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Barbara Franke
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Truong San Phan
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Jennifer Fleming
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Olga Mayans
- Biophysics and Structural Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
| |
Collapse
|
12
|
Kryl’skii ED, Kravtsova SE, Popova TN, Matasova LV, Shikhaliev KS, Medvedeva SM. 6-Hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline Demonstrates Anti-Inflammatory Properties and Reduces Oxidative Stress in Acetaminophen-Induced Liver Injury in Rats. Curr Issues Mol Biol 2023; 45:8321-8336. [PMID: 37886968 PMCID: PMC10605539 DOI: 10.3390/cimb45100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
We examined the effects of 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline on markers of liver injury, oxidative status, and the extent of inflammatory and apoptotic processes in rats with acetaminophen-induced liver damage. The administration of acetaminophen caused the accumulation of 8-hydroxy-2-deoxyguanosine and 8-isoprostane in the liver and serum, as well as an increase in biochemiluminescence indicators. Oxidative stress resulted in the activation of pro-inflammatory cytokine and NF-κB factor mRNA synthesis and increased levels of immunoglobulin G, along with higher activities of caspase-3, caspase-8, and caspase-9. The administration of acetaminophen also resulted in the development of oxidative stress, leading to a decrease in the level of reduced glutathione and an imbalance in the function of antioxidant enzymes. This study discovered that 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline reduced oxidative stress by its antioxidant activity, hence reducing the level of pro-inflammatory cytokine and NF-κB mRNA, as well as decreasing the concentration of immunoglobulin G. These changes resulted in a reduction in the activity of caspase-8 and caspase-9, which are involved in the activation of ligand-induced and mitochondrial pathways of apoptosis and inhibited the effector caspase-3. In addition, 6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline promoted the normalization of antioxidant system function in animals treated with acetaminophen. As a result, the compound being tested alleviated inflammation and apoptosis by decreasing oxidative stress, which led to improved liver marker indices and ameliorated histopathological alterations.
Collapse
Affiliation(s)
- Evgenii D. Kryl’skii
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Svetlana E. Kravtsova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Tatyana N. Popova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Larisa V. Matasova
- Department of Medical Biochemistry, Molecular and Cell Biology, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia; (E.D.K.)
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| | - Svetlana M. Medvedeva
- Department of Organic Chemistry, Voronezh State University, Universitetskaya sq. 1, 394018 Voronezh, Russia
| |
Collapse
|
13
|
Rosalez MN, Farfán-García ED, Badillo-Romero J, Córdova-Chávez RI, Trujillo-Ferrara JG, Morales-González JA, Soriano-Ursúa MA, Martínez-Archundia M. A Boron-Containing Analogue of Acetaminophen Induces Analgesic Effect in Hot Plate Test and Limited Hepatotoxicity. INORGANICS 2023; 11:261. [DOI: 10.3390/inorganics11060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024] Open
Abstract
Acetaminophen is the most sold drug to treat pain. The TRPV1 channel is among its main targets. Due to its over-the-counter availability, its use is known as the main cause of acute liver failure induced by drugs. In addition, boron-containing compounds (BCC) have shown higher efficiency, potency, and affinity than their carbon counterparts. The present study explored the potential analgesic effect and hepatotoxicity of a BCC with a similar chemical structure to acetaminophen. Docking studies were carried out on the TRPV1 channel. In addition, a hot plate test was carried out with three doses of acetaminophen (APAP) and equimolar doses of 4-acetamidophenylboronic acid (4APB) in C57bl/6 mice. These same mice were submitted to a partial hepatectomy and continued compound administration, then they were sacrificed at day seven of treatment to analyze the liver histology and blood chemistry markers. From the in silico assays, it was observed that APAP and 4APB shared interactions with key residues, but 4APB showed a higher affinity on the orthosteric site. Mice administered with 4APB showed a higher latency time than those administered with their equimolar dose of APAP and the control group, with no motor pathway affected. The 4APB groups did not show an increase in hepatic enzyme activity while the APAP did show an increase in activity that was dose-dependent. Although all the experimental groups did show necrosis and inflammation, all APAP groups showed a greater cellular damage than their 4APB counterparts. In addition, the LD50 of 4APB is 409 mg/kg (against APAP-LD50 of 338 mg/kg). Thus, in the current evaluation, 4APB was a better analgesic and safer than APAP.
Collapse
Affiliation(s)
- Melvin Nadir Rosalez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Eunice D. Farfán-García
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Jesús Badillo-Romero
- Department of Anatomical Pathology, Hospital General de Zona 2A, Troncoso. Añil 144, Granjas México, Iztacalco, Mexico City 08400, Mexico
| | - Ricardo Iván Córdova-Chávez
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José G. Trujillo-Ferrara
- Academy of Biochemistry & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marvin A. Soriano-Ursúa
- Academy of Physiology & Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| | - Marlet Martínez-Archundia
- Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Postgraduate and Research Section, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Diaz Miron S/N, Mexico City 11340, Mexico
| |
Collapse
|
14
|
Park SY, Gurung R, Hwang JH, Kang JH, Jung HJ, Zeb A, Hwang JI, Park SJ, Maeng HJ, Shin D, Oh SH. Development of KEAP1-targeting PROTAC and its antioxidant properties: In vitro and in vivo. Redox Biol 2023; 64:102783. [PMID: 37348157 DOI: 10.1016/j.redox.2023.102783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Oxidative stress due to abnormal accumulation of reactive oxygen species (ROS) is an initiator of a large number of human diseases, and thus, the elimination and prevention of excessive ROS are important aspects of preventing the development of such diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is an essential transcription factor that defends against oxidative stress, and its function is negatively controlled by Kelch-like ECH-associated protein 1 (KEAP1). Therefore, activating NRF2 by inhibiting KEAP1 is viewed as a strategy for combating oxidative stress-related diseases. Here, we generated a cereblon (CRBN)-based proteolysis-targeting chimera (PROTAC), which we named SD2267, that induces the proteasomal degradation of KEAP1 and leads to NRF2 activation. As was intended, SD2267 bound to KEAP1, recruited CRBN, and induced the degradation of KEAP1. Furthermore, the KEAP1 degradation efficacy of SD2267 was diminished by MG132 (a proteasomal degradation inhibitor) but not by chloroquine (an autophagy inhibitor), which suggested that KEAP1 degradation by SD2267 was proteasomal degradation-dependent and autophagy-independent. Following KEAP1 degradation, SD2267 induced the nuclear translocation of NRF2, which led to the expression of NRF2 target genes and attenuated ROS accumulation induced by acetaminophen (APAP) in hepatocytes. Based on in vivo pharmacokinetic study, SD2267 was injected intraperitoneally at 1 or 3 mg/kg in APAP-induced liver injury mouse model. We observed that SD2267 degraded hepatic KEAP1 and attenuated APAP-induced liver damage. Summarizing, we described the synthesis of a KEAP1-targeting PROTAC (SD2267) and its efficacy and mode of action in vitro and in vivo. The results obtained suggest that SD2267 could be used to treat hepatic diseases related to oxidative stress.
Collapse
Affiliation(s)
- Se Yong Park
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Raju Gurung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jung Ho Hwang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Mitochondria are critical organelles responsible for the maintenance of cellular energy homeostasis. Thus, their dysfunction can have severe consequences in cells responsible for energy-intensive metabolic function, such as hepatocytes. Extensive research over the last decades have identified compromised mitochondrial function as a central feature in the pathophysiology of liver injury induced by an acetaminophen (APAP) overdose, the most common cause of acute liver failure in the United States. While hepatocyte mitochondrial oxidative and nitrosative stress coupled with induction of the mitochondrial permeability transition are well recognized after an APAP overdose, recent studies have revealed additional details about the organelle's role in APAP pathophysiology. This concise review highlights these new advances, which establish the central role of the mitochondria in APAP pathophysiology, and places them in the context of earlier information in the literature. Adaptive alterations in mitochondrial morphology as well as the role of cellular iron in mitochondrial dysfunction and the organelle's importance in liver recovery after APAP-induced injury will be discussed.
Collapse
|
16
|
Yumimoto K, Sugiyama S, Motomura S, Takahashi D, Nakayama KI. Molecular evolution of Keap1 was essential for adaptation of vertebrates to terrestrial life. SCIENCE ADVANCES 2023; 9:eadg2379. [PMID: 37205751 DOI: 10.1126/sciadv.adg2379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) posed a risk for the transition of vertebrates from aquatic to terrestrial life. How ancestral organisms adapted to such ROS exposure has remained a mystery. Here, we show that attenuation of the activity of the ubiquitin ligase CRL3Keap1 for the transcription factor Nrf2 during evolution was key to development of an efficient response to ROS exposure. The Keap1 gene was duplicated in fish to give rise to Keap1A and the only remaining mammalian paralog Keap1B, the latter of which shows a lower affinity for Cul3 and contributes to robust Nrf2 induction in response to ROS exposure. Mutation of mammalian Keap1 to resemble zebrafish Keap1A resulted in an attenuated Nrf2 response, and most knock-in mice expressing such a Keap1 mutant died on exposure as neonates to sunlight-level ultraviolet radiation. Our results suggest that molecular evolution of Keap1 was essential for adaptation to terrestrial life.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigeaki Sugiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Saori Motomura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
He X, Liang SM, Wang HQ, Tao L, Sun FF, Wang Y, Zhang C, Huang YC, Xu DX, Chen X. Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. Toxicol Appl Pharmacol 2023; 465:116452. [PMID: 36894071 DOI: 10.1016/j.taap.2023.116452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Mitochondrial oxidative stress has been a crucial mediator in acetaminophen (APAP)-induced hepatotoxicity. MitoQ, an analog of coenzyme Q10, is targeted towards mitochondria and acts as a potent antioxidant. This study aimed to explore the effect of MitoQ on APAP-induced liver injury and its possible mechanisms. To investigate this, CD-1 mice and AML-12 cells were treated with APAP. Hepatic MDA and 4-HNE, two markers of lipid peroxidation (LPO), were elevated as early as 2 h after APAP. Oxidized lipids were rapidly upregulated in APAP-exposed AML-12 cells. Hepatocyte death and mitochondrial ultrastructure alterations were observed in APAP-induced acute liver injury. The in vitro experiments showed that mitochondrial membrane potentials and OXPHOS subunits were downregulated in APAP-exposed hepatocytes. MtROS and oxidized lipids were elevated in APAP-exposed hepatocytes. We discovered that APAP-induced hepatocyte death and liver injury were ameliorated by attenuation of protein nitration and LPO in MitoQ-pretreated mice. Mechanistically, knockdown of GPX4, a key enzyme for LPO defense systems, exacerbated APAP-induced oxidized lipids, but did not influence the protective effect of MitoQ on APAP-induced LPO and hepatocyte death. Whereas knockdown of FSP1, another key enzyme for LPO defense systems, had little effect on APAP-induced lipid oxidation but partially weakened the protection of MitoQ on APAP-induced LPO and hepatocyte death. These results suggest that MitoQ may alleviate APAP-evoked hepatotoxicity by eliminating protein nitration and suppressing hepatic LPO. MitoQ prevents APAP-induced liver injury partially dependent of FSP1 and independent of GPX4.
Collapse
Affiliation(s)
- Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi-Min Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hong-Qian Wang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li Tao
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Fei-Fei Sun
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Wang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yi-Chao Huang
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| | - Xi Chen
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Heymann F, Mossanen JC, Peiseler M, Niemietz PM, Araujo David B, Krenkel O, Liepelt A, Batista Carneiro M, Kohlhepp MS, Kubes P, Tacke F. Hepatic C-X-C chemokine receptor type 6-expressing innate lymphocytes limit detrimental myeloid hyperactivation in acute liver injury. Hepatol Commun 2023; 7:e0102. [PMID: 36972392 PMCID: PMC10503691 DOI: 10.1097/hc9.0000000000000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is characterized by rapid clinical deterioration and high mortality. Acetaminophen (APAP or paracetamol) overdose is a leading cause of ALF, resulting in hepatocellular necrosis with subsequent inflammation, inflicting further liver damage. Infiltrating myeloid cells are early drivers of liver inflammation. However, the role of the abundant population of liver-resident innate lymphocytes, which commonly express the chemokine receptor CXCR6, is incompletely understood in ALF. METHODS We investigated the role of CXCR6-expressing innate lymphocytes using the model of acute APAP toxicity in mice deficient in CXCR6 (Cxcr6gfp/gfp). RESULTS APAP-induced liver injury was strongly aggravated in Cxcr6gfp/gfp mice compared with wild-type counterparts. Immunophenotyping using flow cytometry revealed a reduction in liver CD4+T cells, natural killer (NK) cells, and most prominently, NKT cells, whereas CXCR6 was dispensable for CD8+ T-cell accumulation. CXCR6-deficient mice exhibited excessive neutrophil and inflammatory macrophage infiltration. Intravital microscopy revealed dense cellular clusters of neutrophils in necrotic liver tissue, with higher numbers of clustering neutrophils in Cxcr6gfp/gfp mice. Gene expression analysis linked hyperinflammation in CXCR6 deficiency to increased IL-17 signaling. Although reduced in overall numbers, CXCR6-deficient mice had a shift in NKT cell subsets with increased RORγt-expressing NKT17 cells as a likely source of IL-17. In patients with ALF, we found a prominent accumulation of IL-17-expressing cells. Accordingly, CXCR6-deficient mice lacking IL-17 (Cxcr6gfp/gfpx Il17-/-) had ameliorated liver damage and reduced inflammatory myeloid infiltrates. CONCLUSIONS Our study identifies a crucial role of CXCR6-expressing liver innate lymphocytes as orchestrators in acute liver injury containing IL-17-mediated myeloid cell infiltration. Hence, strengthening the CXCR6-axis or downstream inhibition of IL-17 could yield novel therapeutics in ALF.
Collapse
Affiliation(s)
- Felix Heymann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Jana C. Mossanen
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Bruna Araujo David
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Matheus Batista Carneiro
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marlene S. Kohlhepp
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
19
|
Targeting IKKβ Activity to Limit Sterile Inflammation in Acetaminophen-Induced Hepatotoxicity in Mice. Pharmaceutics 2023; 15:pharmaceutics15020710. [PMID: 36840032 PMCID: PMC9959252 DOI: 10.3390/pharmaceutics15020710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The kinase activity of inhibitory κB kinase β (IKKβ) acts as a signal transducer in the activating pathway of nuclear factor-κB (NF-κB), a master regulator of inflammation and cell death in the development of numerous hepatocellular injuries. However, the importance of IKKβ activity on acetaminophen (APAP)-induced hepatotoxicity remains to be defined. Here, a derivative of caffeic acid benzylamide (CABA) inhibited the kinase activity of IKKβ, as did IMD-0354 and sulfasalazine which show therapeutic efficacy against inflammatory diseases through a common mechanism: inhibiting IKKβ activity. To understand the importance of IKKβ activity in sterile inflammation during hepatotoxicity, C57BL/6 mice were treated with CABA, IMD-0354, or sulfasalazine after APAP overdose. These small-molecule inhibitors of IKKβ activity protected the APAP-challenged mice from necrotic injury around the centrilobular zone in the liver, and rescued the mice from hepatic damage-associated lethality. From a molecular perspective, IKKβ inhibitors directly interrupted sterile inflammation in the Kupffer cells of APAP-challenged mice, such as damage-associated molecular pattern (DAMP)-induced activation of NF-κB activity via IKKβ, and NF-κB-regulated expression of cytokines and chemokines. However, CABA did not affect the upstream pathogenic events, including oxidative stress with glutathione depletion in hepatocytes after APAP overdose. N-acetyl cysteine (NAC), the only FDA-approved antidote against APAP overdose, replenishes cellular levels of glutathione, but its limited efficacy is concerning in late-presenting patients who have already undergone oxidative stress in the liver. Taken together, we propose a novel hypothesis that chemical inhibition of IKKβ activity in sterile inflammation could mitigate APAP-induced hepatotoxicity in mice, and have the potential to complement NAC treatment in APAP overdoses.
Collapse
|
20
|
The E3 ubiquitin ligase NEDD4-1 protects against acetaminophen-induced liver injury by targeting VDAC1 for degradation. Acta Pharm Sin B 2023; 13:1616-1630. [PMID: 37139424 PMCID: PMC10150139 DOI: 10.1016/j.apsb.2023.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/27/2022] [Accepted: 12/15/2022] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.
Collapse
|
21
|
Mazumder A, Sharma A, Azad MAK. A Comprehensive Review of the Pharmacological Importance of Dietary Flavonoids as Hepatoprotective Agents. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:4139117. [PMID: 37123086 PMCID: PMC10147524 DOI: 10.1155/2023/4139117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
The liver is a crucial organ that is involved in various kinds of metabolic activity and a very stable accessory gland for the digestive system. Long-term or persistent inflammation and oxidative stress due to any reasons have a substantial impact on the beginning and continuation of chronic diseases such as hepatocellular carcinoma, liver cirrhosis, liver fibrosis, and other hepatic conditions. There are many sources which can help the liver to be healthy and enhance its metabolic potential of the liver. Since the diet is rich origin of bioactive along with antioxidant chemicals including flavonoids and polyphenols, it can control different stages of inflammation and hepatic diseases. Numerous food sources, notably vegetables, nuts, fruits, cereals, beverages, and herbal medicinal plants, are rich in bioactive chemicals called flavonoids and their derivatives like Flavones, Anthocyanins, Iso-flavonoid, Flavanones, Flavanols, and Flavan-3-ols. Most recently occurred research on flavonoids has demonstrated that they can regulate hepatoprotective properties. This is because they are essential parts of pharmaceutical and nutraceutical products due to their hepatoprotective, antioxidative, and immune-modulating characteristics. However, the characteristics of their hepatoprotective impact remain unclear. The purpose of this comprehensive review is to survey the flavonoid structure and enriched sources for their hepatoprotective and antioxidant effects concerning liver toxicity or injury.
Collapse
Affiliation(s)
- Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute) 19, Knowledge Park-II, Greater Noida 201306, Uttar Pradesh, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Md. A. K. Azad
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia 1216, Bangladesh
| |
Collapse
|
22
|
Chidiac AS, Buckley NA, Noghrehchi F, Cairns R. Paracetamol (acetaminophen) overdose and hepatotoxicity: mechanism, treatment, prevention measures, and estimates of burden of disease. Expert Opin Drug Metab Toxicol 2023; 19:297-317. [PMID: 37436926 DOI: 10.1080/17425255.2023.2223959] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/05/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Paracetamol is one of the most used medicines worldwide and is the most common important poisoning in high-income countries. In overdose, paracetamol causes dose-dependent hepatotoxicity. Acetylcysteine is an effective antidote, however despite its use hepatotoxicity and many deaths still occur. AREAS COVERED This review summarizes paracetamol overdose and toxicity (including mechanisms, risk factors, risk assessment, and treatment). In addition, we summarize the epidemiology of paracetamol overdose worldwide. A literature search on PubMed for poisoning epidemiology and mortality from 1 January 2017 to 26 October 2022 was performed to estimate rates of paracetamol overdose, liver injury, and deaths worldwide. EXPERT OPINION Paracetamol is widely available and yet is substantially more toxic than other analgesics available without prescription. Where data were available, we estimate that paracetamol is involved in 6% of poisonings, 56% of severe acute liver injury and acute liver failure, and 7% of drug-induced liver injury. These estimates are limited by lack of available data from many countries, particularly in Asia, South America, and Africa. Harm reduction from paracetamol is possible through better identification of high-risk overdoses, and better treatment regimens. Large overdoses and those involving modified-release paracetamol are high-risk and can be targeted through legislative change.
Collapse
Affiliation(s)
- Annabelle S Chidiac
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, Australia
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, Australia
| | - Nicholas A Buckley
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Discipline of Biomedical Informatics and Digital Health, The University of Sydney, Sydney, Australia
| | - Firouzeh Noghrehchi
- Faculty of Medicine and Health, School of Medical Sciences, Discipline of Biomedical Informatics and Digital Health, The University of Sydney, Sydney, Australia
| | - Rose Cairns
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, Australia
- New South Wales Poisons Information Centre, The Children's Hospital at Westmead, Sydney, Australia
| |
Collapse
|
23
|
McCulley DJ, Jensen EA, Sucre JMS, McKenna S, Sherlock LG, Dobrinskikh E, Wright CJ. Racing against time: leveraging preclinical models to understand pulmonary susceptibility to perinatal acetaminophen exposures. Am J Physiol Lung Cell Mol Physiol 2022; 323:L1-L13. [PMID: 35503238 PMCID: PMC9208439 DOI: 10.1152/ajplung.00080.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Over the past decade, clinicians have increasingly prescribed acetaminophen (APAP) for patients in the neonatal intensive care unit (NICU). Acetaminophen has been shown to reduce postoperative opiate burden, and may provide similar efficacy for closure of the patent ductus arteriosus (PDA) as nonsteroidal anti-inflammatory drugs (NSAIDs). Despite these potential benefits, APAP exposures have spread to increasingly less mature infants, a highly vulnerable population for whom robust pharmacokinetic and pharmacodynamic data for APAP are lacking. Concerningly, preclinical studies suggest that perinatal APAP exposures may result in unanticipated adverse effects that are unique to the developing lung. In this review, we discuss the clinical observations linking APAP exposures to adverse respiratory outcomes and the preclinical data demonstrating a developmental susceptibility to APAP-induced lung injury. We show how clinical observations linking perinatal APAP exposures to pulmonary injury have been taken to the bench to produce important insights into the potential mechanisms underlying these findings. We argue that the available data support a more cautious approach to APAP use in the NICU until large randomized controlled trials provide appropriate safety and efficacy data.
Collapse
Affiliation(s)
- David J McCulley
- Division of Neonatology, Department of Pediatrics, University of California, San Diego, California
| | - Erik A Jensen
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | | | - Sarah McKenna
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
24
|
Duan L, Sanchez-Guerrero G, Jaeschke H, Ramachandran A. Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food Chem Toxicol 2022; 163:112911. [PMID: 35292334 PMCID: PMC9018526 DOI: 10.1016/j.fct.2022.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the USA. The short therapeutic window of the current antidote, N-acetylcysteine (NAC) highlights the need for novel late acting therapeutics. The neuronal guidance cue netrin-1 provides delayed protection against APAP hepatotoxicity through the adenosine A2B receptor (A2BAR). The clinical relevance of this mechanism was investigated here by administration of the A2BAR agonist BAY 60-6583, after an APAP overdose (300 or 600 mg/kg) in fasted male and female C57BL/6J mice with assessment of liver injury 6 or 24 h after APAP in comparison to NAC. BAY 60-6583 treatment 1.5 h after APAP overdose (600 mg/kg) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation. Gender independent protection was sustained when BAY 60-6583 was given 6 h after APAP overdose (300 mg/kg), when NAC administration did not show benefit. This protection was accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h, accompanied by a decrease in neutrophil infiltration. Thus, our data emphasize the remarkable therapeutic utility of using an A2BAR agonist, which provides delayed protection long after the standard of care NAC ceased to be effective.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
25
|
Wang P, Cui Y, Wang J, Liu D, Tian Y, Liu K, Wang X, Liu L, He Y, Pei Y, Li L, Sun L, Zhu Z, Chang D, Jia J, You H. Mesenchymal stem cells protect against acetaminophen hepatotoxicity by secreting regenerative cytokine hepatocyte growth factor. Stem Cell Res Ther 2022; 13:94. [PMID: 35246254 PMCID: PMC8895877 DOI: 10.1186/s13287-022-02754-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) overdose is a major cause of the morbidity of acute liver failure. The current clinically approved treatment for APAP poisoning, N-acetylcysteine (NAC), has a limited therapeutic window, and prolonged treatment with NAC delays liver regeneration. Mesenchymal stem cells (MSCs) also have therapeutic effects on APAP-induced mouse liver failure, but whether the effects are comparable to those of NAC has not been determined, and the mechanism still needs further exploration. METHODS Fasted C57BL/6 mice that received 500 mg/kg APAP were treated intravenously with 300 mg/kg NAC or different amounts of MSCs at 2 h after APAP to investigate survival, hepatocyte necrosis and neutrophil/macrophage recruitment. In vitro co-culture was performed to study the anti-necrotic effects of MSCs on the APAP-injured hepatocyte cell line L-O2. RESULTS MSCs dose-dependently rescued the C57BL/6J mice from APAP-induced liver failure, with 87.5% of MSCs (1 × 106) surviving similar to that of NAC (90%). MSC has similar effects on reduced hepatocyte necrosis and granulocytic myeloid-derived suppressor cells (MDSC) infiltration but enhanced the proportion of regenerative monocytic MDSC when compared to NAC. Mechanistically, MSCs attenuate hepatocyte necrosis by secreting hepatocyte growth factor (HGF). When HGF was knocked down, the protective effects of MSCs were reduced on APAP-induced hepatocyte necrosis and mouse liver failure. CONCLUSIONS MSCs are comparable to NAC against APAP-induced liver failure by secreting HGF with less regenerative retardation concerns, thus facilitating the application of MSCs in clinical therapy for APAP liver failure.
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Yan Cui
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Jing Wang
- BOE Regenerative Medicine Technology Co., Ltd., Beijing, 100015, China
| | - Donghua Liu
- BOE Regenerative Medicine Technology Co., Ltd., Beijing, 100015, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Xue Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Yufeng Pei
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China
| | - Liying Sun
- Division of Liver Transplantation Surgery, Department of Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Zhijun Zhu
- Division of Liver Transplantation Surgery, Department of Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Dehua Chang
- Department of Cell Therapy in Regenerative Medicine, University of Tokyo Hospital, Tokyo, 113-8655, Japan.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China. .,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis and National Clinical Research Center for Digestive Diseases, No. 95 Yong-An Road, Beijing, 100050, China. .,Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation and National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
26
|
Dobrinskikh E, Al-Juboori SI, Zarate MA, Zheng L, De Dios R, Balasubramaniyan D, Sherlock LG, Orlicky DJ, Wright CJ. Pulmonary implications of acetaminophen exposures independent of hepatic toxicity. Am J Physiol Lung Cell Mol Physiol 2021; 321:L941-L953. [PMID: 34585971 PMCID: PMC8616618 DOI: 10.1152/ajplung.00234.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
Both preclinical and clinical studies have demonstrated that exposures to acetaminophen (APAP) at levels that cause hepatic injury cause pulmonary injury as well. However, whether exposures that do not result in hepatic injury have acute pulmonary implications is unknown. Thus, we sought to determine how APAP exposures at levels that do not result in significant hepatic injury impact the mature lung. Adult male ICR mice (8-12 wk) were exposed to a dose of APAP known to cause hepatotoxicity in adult mice [280 mg/kg, intraperitoneal (ip)], as well as a lower dose previously reported to not cause hepatic injury (140 mg/kg, ip). We confirm that the lower dose exposures did not result in significant hepatic injury. However, like high dose, lower exposure resulted in increased cellular content of the bronchoalveolar lavage fluid and induced a proinflammatory pulmonary transcriptome. Both the lower and higher dose exposures resulted in measurable changes in lung morphometrics, with the lower dose exposure causing alveolar wall thinning. Using RNAScope, we were able to detect dose-dependent, APAP-induced pulmonary Cyp2e1 expression. Finally, using FLIM we determined that both APAP exposures resulted in acute pulmonary metabolic changes consistent with mitochondrial overload in lower doses and a shift to glycolysis at a high dose. Our findings demonstrate that APAP exposures that do not cause significant hepatic injury result in acute inflammatory, morphometric, and metabolic changes in the mature lung. These previously unreported findings may help explain the potential relationship between APAP exposures and pulmonary-related morbidity.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Saif I Al-Juboori
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Miguel A Zarate
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Durga Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
27
|
Geib T, Moghaddam G, Supinski A, Golizeh M, Sleno L. Protein Targets of Acetaminophen Covalent Binding in Rat and Mouse Liver Studied by LC-MS/MS. Front Chem 2021; 9:736788. [PMID: 34490218 PMCID: PMC8417805 DOI: 10.3389/fchem.2021.736788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023] Open
Abstract
Acetaminophen (APAP) is a mild analgesic and antipyretic used commonly worldwide. Although considered a safe and effective over-the-counter medication, it is also the leading cause of drug-induced acute liver failure. Its hepatotoxicity has been linked to the covalent binding of its reactive metabolite, N-acetyl p-benzoquinone imine (NAPQI), to proteins. The aim of this study was to identify APAP-protein targets in both rat and mouse liver, and to compare the results from both species, using bottom-up proteomics with data-dependent high resolution mass spectrometry and targeted multiple reaction monitoring (MRM) experiments. Livers from rats and mice, treated with APAP, were homogenized and digested by trypsin. Digests were then fractionated by mixed-mode solid-phase extraction prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS). Targeted LC-MRM assays were optimized based on high-resolution MS/MS data from information-dependent acquisition (IDA) using control liver homogenates treated with a custom alkylating reagent yielding an isomeric modification to APAP on cysteine residues, to build a modified peptide database. A list of putative in vivo targets of APAP were screened from data-dependent high-resolution MS/MS analyses of liver digests, previous in vitro studies, as well as selected proteins from the target protein database (TPDB), an online resource compiling previous reports of APAP targets. Multiple protein targets in each species were found, while confirming modification sites. Several proteins were modified in both species, including ATP-citrate synthase, betaine-homocysteine S-methyltransferase 1, cytochrome P450 2C6/29, mitochondrial glutamine amidotransferase-like protein/ES1 protein homolog, glutamine synthetase, microsomal glutathione S-transferase 1, mitochondrial-processing peptidase, methanethiol oxidase, protein/nucleic acid deglycase DJ-1, triosephosphate isomerase and thioredoxin. The targeted method afforded better reproducibility for analysing these low-abundant modified peptides in highly complex samples compared to traditional data-dependent experiments.
Collapse
Affiliation(s)
- Timon Geib
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Ghazaleh Moghaddam
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Aimee Supinski
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Makan Golizeh
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
28
|
Abstract
Mitochondria have been studied for decades from the standpoint of metabolism and ATP generation. However, in recent years mitochondrial dynamics and its influence on bioenergetics and cellular homeostasis is also being appreciated. Mitochondria undergo regular cycles of fusion and fission regulated by various cues including cellular energy requirements and pathophysiological stimuli, and the network of critical proteins and membrane lipids involved in mitochondrial dynamics is being revealed. Hepatocytes are highly metabolic cells which have abundant mitochondria suggesting a biologically relevant role for mitochondrial dynamics in hepatocyte injury and recovery. Here we review information on molecular mediators of mitochondrial dynamics and their alteration in drug-induced liver injury. Based on current information, it is evident that changes in mitochondrial fusion and fission are hallmarks of liver pathophysiology ranging from acetaminophen-induced or cholestatic liver injury to chronic liver diseases. These alterations in mitochondrial dynamics influence multiple related mitochondrial responses such as mitophagy and mitochondrial biogenesis, which are important adaptive responses facilitating liver recovery in several contexts, including drug-induced liver injury. The current focus on characterization of molecular mechanisms of mitochondrial dynamics is of immense relevance to liver pathophysiology and have the potential to provide significant insight into mechanisms of liver recovery and regeneration after injury.
Collapse
|
29
|
Mitochondrial stress response in drug-induced liver injury. Mol Biol Rep 2021; 48:6949-6958. [PMID: 34432218 DOI: 10.1007/s11033-021-06674-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) caused by the ingestion of medications, herbs, chemicals or dietary supplements, is a clinically widespread health problem. The underlying mechanism of DILI is the formation of reactive metabolites, which trigger mitochondrial oxidative stress and the opening of mitochondrial permeability transition (MPT) pores through direct toxicity or immune response, leading to cell inflammation, apoptosis, and necrosis. Traditionally, mitochondria play an indispensable role in maintaining the physiological and biochemical functions of cells by producing ATP and mediating intracellular signal transduction; drugs can typically stimulate the mitochondria and, in the case of sustained stress, can eventually cause impairment of mitochondrial function and metabolic activity. Meanwhile, the mitochondrial stress response, as an adaptive protective mechanism, occurs when mitochondrial homeostasis is threatened. In this review, we summarize the relevant frontier researches of the protective effects of mitochondrial stress response in DILI as well as the potential related mechanisms, thus providing some thoughts for the clinical treatment of DILI.
Collapse
|
30
|
Niu B, Lei X, Xu Q, Ju Y, Xu D, Mao L, Li J, Zheng Y, Sun N, Zhang X, Mao Y, Li X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol Toxicol 2021; 38:505-530. [PMID: 34401974 DOI: 10.1007/s10565-021-09624-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is a common cause of drug-induced liver injury (DILI). Ferroptosis has been recently implicated in APAP-induced liver injury (AILI). However, the functional role and underlying mechanisms of mitochondria in APAP-induced ferroptosis are unclear. In this study, the voltage-dependent anion channel (VDAC) oligomerization inhibitor VBIT-12 and ferroptosis inhibitors were injected via tail vein in APAP-injured mice. Targeted metabolomics and untargeted lipidomic analyses were utilized to explore underlying mechanisms of APAP-induced mitochondrial dysfunction and subsequent ferroptosis. As a result, APAP overdose led to characteristic changes generally observed in ferroptosis. The use of ferroptosis inhibitor ferrostatin-1 (or UAMC3203) and iron chelator deferoxamine further confirmed that ferroptosis was responsible for AILI. Mitochondrial dysfunction, which is associated with the tricarboxylic acid cycle and fatty acid β-oxidation suppression, may drive APAP-induced ferroptosis in hepatocytes. APAP overdose induced VDAC1 oligomerization in hepatocytes, and protecting mitochondria via VBIT-12 alleviated APAP-induced ferroptosis. Ceramide and cardiolipin levels were increased via UAMC3203 or VBIT-12 in APAP-induced ferroptosis in hepatocytes. Knockdown of Smpd1 and Taz expression responsible for ceramide and cardiolipin synthesis, respectively, aggravated APAP-induced mitochondrial dysfunction and ferroptosis in hepatocytes, whereas Taz overexpression protected against these processes. By immunohistochemical staining, we found that levels of 4-hydroxynonenal (4-HNE) protein adducts were increased in the liver biopsy samples of patients with DILI compared to that in those of patients with autoimmune liver disease, chronic viral hepatitis B, and non-alcoholic fatty liver disease (NAFLD). In summary, protecting mitochondria via inhibiting VDAC1 oligomerization attenuated hepatocyte ferroptosis by restoring ceramide and cardiolipin content in AILI.
Collapse
Affiliation(s)
- Baolin Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China
| | - Qingling Xu
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yi Ju
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Dongke Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Liya Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China
| | - Xin Zhang
- Department of Pathology, Fudan University Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, 145 mid-Shandong Rd, Shanghai, 200001, China.
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Rd, Shanghai, 200032, China.
| |
Collapse
|
31
|
Umbaugh DS, Jaeschke H. Biomarkers of drug-induced liver injury: a mechanistic perspective through acetaminophen hepatotoxicity. Expert Rev Gastroenterol Hepatol 2021; 15:363-375. [PMID: 33242385 PMCID: PMC8026489 DOI: 10.1080/17474124.2021.1857238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022]
Abstract
Introduction: Liver injury induced by drugs is a serious clinical problem. Many circulating biomarkers for identifying and predicting drug-induced liver injury (DILI) have been proposed.Areas covered: Biomarkers are mainly predicated on the mechanistic understanding of the underlying DILI, often in the context of acetaminophen overdose. New panels of biomarkers have emerged that are related to recovery/regeneration rather than injury following DILI. We explore the clinical relevance and limitations of these new biomarkers including recent controversies. Extracellular vesicles have also emerged as a promising vector of biomarkers, although the biological role for EVs may limit their clinical usefulness. New technological approaches for biomarker discovery are also explored.Expert opinion: Recent clinical studies have validated the efficacy of some of these new biomarkers, cytokeratin-18, macrophage colony-stimulating factor receptor, and osteopontin for DILI prognosis. Low prevalence of DILI is an inherent limitation to DILI biomarker development. Furthering mechanistic understanding of DILI and leveraging technological advances (e.g. machine learning/omics) is necessary to improve upon the newest generation of biomarkers. The integration of omics approaches with machine learning has led to novel insights in cancer research and DILI research is poised to leverage these technologies for biomarker discovery and development.
Collapse
Affiliation(s)
- David S. Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
32
|
de Moraes ACN, de Andrade CBV, Ramos IPR, Dias ML, Batista CMP, Pimentel CF, de Carvalho JJ, Goldenberg RCDS. Resveratrol promotes liver regeneration in drug-induced liver disease in mice. Food Res Int 2021; 142:110185. [PMID: 33773662 DOI: 10.1016/j.foodres.2021.110185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Studies suggest that the bioactive polyphenolic compound resveratrol (RESV, trans-isomer), found naturally in certain foods such as red grapes and peanuts, may be able to ameliorate liver damage. However, the effects and efficacy of long-term treatment with RESV remain unclear. Here, we used an acetaminophen (APAP; 400 mg/kg/d for 15 days) overdose model to induce liver damage in C56BL/6 mice. Three days after the intoxication was stopped, we observed biochemical, histological and ultrastructural alterations in the livers of these mice. The APAP-treated animals were then given RESV (10 mg/kg/d) for 60 days. Blood and tissue were analyzed at days 7, 30 and 60. Our data show that long-term RESV treatment (60 days) ameliorates the liver injury caused by APAP intoxication, restoring histological features, ultrastructural organization and serum biochemical parameters (albumin, alanine aminotransferase). Ck18- and F4/80-positive cells (indicators of hepatocyte recovery) were reestablished and the number of α-SMA positive cells was normalized after long-term RESV treatment. Additionally, downregulation of the drug transporter BCRP was observed. Electron microscopy revealed that treatment with RESV was effective in restoring the shape and size of hepatic microvilli and normalizing both the number and viability of mitochondria. Taken together, these results indicate that long-term treatment with RESV is effective in alleviating liver injury caused by APAP administration.
Collapse
Affiliation(s)
- Alan Cesar Nunes de Moraes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil; Biology Department, Federal Fluminense University, UFF, Niterói, RJ, Brazil
| | - Cherley Borba Vieira de Andrade
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil; Department of Histology and Embryology, State University of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Isalira Peroba Rezende Ramos
- Center for Structural Biology and Bio-imaging, CENABIO, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Marlon Lemos Dias
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Cintia Marina Paz Batista
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Cibele Ferreira Pimentel
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Jorge Jose de Carvalho
- Department of Histology and Embryology, State University of Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Dobrinskikh E, Sherlock LG, Orlicky DJ, Zheng L, De Dios R, Balasubramaniyan D, Sizemore T, Butler B, Wright CJ. The developing murine lung is susceptible to acetaminophen toxicity. Am J Physiol Lung Cell Mol Physiol 2021; 320:L969-L978. [PMID: 33759579 DOI: 10.1152/ajplung.00072.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (n-acetyl-p-aminophenol, APAP) use in the neonatal intensive care unit is rapidly increasing. Although APAP-related hepatotoxicity is rarely reported in the neonatal literature, other end-organ toxicity can occur with toxic exposures. APAP-induced lung injury has been reported with toxic exposures in adults, but whether this occurs in the developing lung is unknown. Therefore, we tested whether toxic APAP exposures would injure the developing lung. Neonatal C57BL/6 mice (PN7, early alveolar stage of lung development) were exposed to a dose of APAP known to cause hepatotoxicity in adult mice (280 mg/kg, IP). This exposure induced significant lung injury in the absence of identifiable hepatic toxicity. This injury was associated with increased pulmonary expression of Cyp2e1, the xenobiotic enzyme responsible for the toxic conversion of APAP. Exposure was associated with increased pulmonary expression of antioxidant response genes and decreased pulmonary glutathione peroxidase activity level. Furthermore, we observed an increase in pulmonary expression of proinflammatory cytokines and chemokines. Lastly, we were able to demonstrate that this toxic APAP exposure was associated with a shift in pulmonary metabolism away from glycolysis with increased oxidative phosphorylation, a finding consistent with increased mitochondrial workload, potentially leading to mitochondrial toxicity. This previously unrecognized injury and metabolic implications highlight the need to look beyond the liver and evaluate both the acute and long-term pulmonary implications of APAP exposure in the perinatal period.
Collapse
Affiliation(s)
- Evgenia Dobrinskikh
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Division of Pulmonary Sciences and Critical Care, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Laura G Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Robyn De Dios
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Durga Balasubramaniyan
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Thom Sizemore
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Brittany Butler
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Clyde J Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
34
|
Frye RE, Cakir J, Rose S, Palmer RF, Austin C, Curtin P, Arora M. Mitochondria May Mediate Prenatal Environmental Influences in Autism Spectrum Disorder. J Pers Med 2021; 11:218. [PMID: 33803789 PMCID: PMC8003154 DOI: 10.3390/jpm11030218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
We propose that the mitochondrion, an essential cellular organelle, mediates the long-term prenatal environmental effects of disease in autism spectrum disorder (ASD). Many prenatal environmental factors which increase the risk of developing ASD influence mitochondria physiology, including toxicant exposures, immune activation, and nutritional factors. Unique types of mitochondrial dysfunction have been associated with ASD and recent studies have linked prenatal environmental exposures to long-term changes in mitochondrial physiology in children with ASD. A better understanding of the role of the mitochondria in the etiology of ASD can lead to targeted therapeutics and strategies to potentially prevent the development of ASD.
Collapse
Affiliation(s)
- Richard E. Frye
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Janet Cakir
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children’s Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
| | - Raymond F. Palmer
- Department of Family and Community Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.A.); (P.C.); (M.A.)
| |
Collapse
|
35
|
Nguyen NT, Du K, Akakpo JY, Umbaugh DS, Jaeschke H, Ramachandran A. Mitochondrial protein adduct and superoxide generation are prerequisites for early activation of c-jun N-terminal kinase within the cytosol after an acetaminophen overdose in mice. Toxicol Lett 2021; 338:21-31. [PMID: 33290831 PMCID: PMC7852579 DOI: 10.1016/j.toxlet.2020.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and formation of APAP-protein adducts, mitochondrial oxidant stress and activation of the mitogen activated protein (MAP) kinase c-jun N-terminal kinase (JNK) are critical for APAP-induced cell death. However, direct evidence linking these mechanistic features are lacking and were investigated by examining the early temporal course of these changes in mice after 300 mg/kg APAP. Protein adducts were detectable in the liver (0.05-0.1 nmol/mg protein) by 15 and 30 min after APAP, which increased (>500 %) selectively in mitochondria by 60 min. Cytosolic JNK activation was only evident at 60 min, and was significantly attenuated by scavenging superoxide specifically in the cytosol by TEMPO treatment. Treatment of mouse hepatocytes with APAP revealed mitochondrial superoxide generation within 15 min, accompanied by hydrogen peroxide production without change in mitochondrial respiratory function. The oxidant stress preceded JNK activation and its mitochondrial translocation. Inhibitor studies identified the putative source of mitochondrial superoxide as complex III, which released superoxide towards the intermembrane space after APAP resulting in activation of JNK in the cytosol. Our studies provide direct evidence of mechanisms involved in mitochondrial superoxide generation after NAPQI-adduct formation and its activation of the MAP kinase cascade in the cytosol, which are critical features of APAP hepatotoxicity.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kuo Du
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
36
|
Chusilp S, Lee C, Li B, Lee D, Yamoto M, Ganji N, Vejchapipat P, Pierro A. A novel model of injured liver ductal organoids to investigate cholangiocyte apoptosis with relevance to biliary atresia. Pediatr Surg Int 2020; 36:1471-1479. [PMID: 33084932 DOI: 10.1007/s00383-020-04765-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE The fibrogenic process in cholangiopathic diseases such as biliary atresia (BA) involves bile duct injury and apoptosis of cholangiocytes, which leads to the progression of liver fibrosis into liver cirrhosis and can result in end-staged liver disease. Recent advances in the development of organoids or mini-organ structures have allowed us to create an ex vivo injury model of the bile duct that mimics bile duct injury in BA. The aim of this experimental study was to develop a novel model of injured intrahepatic cholangiocytes as this can be relevant to BA. Our new model is important for studying the pathophysiological response of bile ducts to injury and the role of cholangiocytes in initiating the fibrogenic cascade. In addition, it has the potential to be used as a tool for developing new treatment strategies for BA. METHODS Liver ductal organoids were generated from the liver of healthy neonatal mouse pups. Intrahepatic bile duct fragments were isolated and cultured in Matrigel dome. Injury was induced in the organoids by administration of acetaminophen in culture medium. The organoids were then evaluated for fibrogenic cytokines expression, cell apoptosis marker and cell proliferation marker. RESULTS Organoids generated from intrahepatic bile duct fragments organized themselves into single-layer epithelial spheroids with lumen on the inside mimicking in vivo bile ducts. After 24-h exposure to acetaminophen, cholangiocytes in the organoids responded to the injury by increasing expression of fibrogenic cytokines, transforming growth factor beta-1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). This fibrogenic response of injured organoids was associated with increased cholangiocyte apoptosis and decreased cholangiocyte proliferation. CONCLUSION To our knowledge this is the first description of cholangiocyte injury in the organoids derived from intrahepatic bile ducts. Our injury model demonstrated that cholangiocyte apoptosis and its fibrogenic response may play a role in initiation of the fibrogenic process in cholangiopathic diseases such as BA. These findings are important for the development of novel therapy to reduce cholangiocyte apoptosis and to halt the early fibrogenic cascade in liver fibrogenesis. This novel injury model can prove very valuable for future research in biliary atresia.
Collapse
Affiliation(s)
- Sinobol Chusilp
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.,Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Dorothy Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Masaya Yamoto
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Niloofar Ganji
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paisarn Vejchapipat
- Division of Pediatric Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
37
|
Umbaugh DS, Jaeschke H. Extracellular vesicles: Roles and applications in drug-induced liver injury. Adv Clin Chem 2020; 102:63-125. [PMID: 34044913 DOI: 10.1016/bs.acc.2020.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EV) are defined as nanosized particles, with a lipid bilayer, that are unable to replicate. There has been an exponential increase of research investigating these particles in a wide array of diseases and deleterious states (inflammation, oxidative stress, drug-induced liver injury) in large part due to increasing recognition of the functional capacity of EVs. Cells can package lipids, proteins, miRNAs, DNA, and RNA into EVs and send these discrete packages of molecular information to distant, recipient cells to alter the physiological state of that cell. EVs are innately heterogeneous as a result of the diverse molecular pathways that are used to generate them. However, this innate heterogeneity of EVs is amplified due to the diversity in isolation techniques and lack of standardized nomenclature in the literature making it unclear if one scientist's "exosome" is another scientist's "microvesicle." One goal of this chapter is to provide the contextual understanding of EV origin so one can discern between divergent nomenclature. Further, the chapter will explore the potential protective and harmful roles that EVs play in DILI, and the potential of EVs and their cargo as a biomarker. The use of EVs as a therapeutic as well as a vector for therapeutic delivery will be discussed.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
38
|
Hu F, Guo Q, Wei M, Huang Z, Shi L, Sheng Y, Ji L. Chlorogenic acid alleviates acetaminophen-induced liver injury in mice via regulating Nrf2-mediated HSP60-initiated liver inflammation. Eur J Pharmacol 2020; 883:173286. [PMID: 32603696 DOI: 10.1016/j.ejphar.2020.173286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022]
Abstract
Acetaminophen (APAP)-induced acute liver failure is a serious clinic issue. Our previous study showed that chlorogenic acid (CGA) alleviated APAP-induced liver inflammatory injury, but its concrete mechanism is still not clear. This study aims to elucidate the engaged mechanism involved in the CGA-provided alleviation on APAP-induced liver inflammation. CGA reduced the increased hepatic infiltration of immune cells and the elevated serum contents of high mobility group box 1 (HMGB1) and heat shock protein 60 (HSP60) in mice treated with APAP. CGA decreased the enhanced hepatic mRNA expression of some pro-inflammatory molecules in mice treated with APAP and in RAW264.7 cells stimulated with HMGB1 or HSP60. CGA attenuated liver mitochondrial injury, rescued the decreased lon protease homolog (Lon) protein expression, and reduced mitochondrial HSP60 release in mice treated with APAP. Moreover, the CGA-provided alleviation on APAP-induced liver inflammatory injury was diminished in mice treated with anti-HSP60 antibody. Further results showed that the CGA-provided alleviation on APAP-induced liver inflammation was also diminished in nuclear factor erythroid 2-related factor 2 (Nrf2) knock-out mice. Meanwhile, the CGA-provided reduce on serum HSP60 content and restore of mitochondrial Lon protein expression were all diminished in Nrf2 knock-out mice treated with APAP. In conclusion, our study revealed that CGA alleviated APAP-induced liver inflammatory injury initiated by HSP60 or HMGB1, and Nrf2 was critical for regulating the mitochondrial HSP60 release via rescuing the reduced mitochondrial Lon protein expression.
Collapse
Affiliation(s)
- Feifei Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qian Guo
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liang Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, The SATCM Key Laboratory for New Resources, Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
39
|
Lin MJ, Li S, Yang LJ, Ye DY, Xu LQ, Zhang X, Sun PN, Wei CJ. Plasma membrane vesicles of human umbilical cord mesenchymal stem cells ameliorate acetaminophen-induced damage in HepG2 cells: a novel stem cell therapy. Stem Cell Res Ther 2020; 11:225. [PMID: 32513263 PMCID: PMC7278066 DOI: 10.1186/s13287-020-01738-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) overdose is the common cause of acute liver failure (ALF) due to the oxidative damage of multiple cellular components. This study aimed to investigate whether plasma membrane vesicles (PMVs) from human umbilical cord mesenchymal stem cells (hUCMSCs) could be exploited as a novel stem cell therapy for APAP-induced liver injury. METHODS PMVs from hUCMSCs were prepared with an improved procedure including a chemical enucleation step followed by a mechanical extrusion. PMVs of hUCMSCs were characterized and supplemented to hepatocyte cultures. Rescue of APAP-induced hepatocyte damage was evaluated. RESULTS The hUCMSCs displayed typical fibroblastic morphology and multipotency when cultivated under adipogenic, osteogenic, or chondrogenic conditions. PMVs of hUCMSCs maintained the stem cell phenotype, including the presence of CD13, CD29, CD44, CD73, and HLA-ABC, but the absence of CD45, CD117, CD31, CD34, and HLA-DR on the plasma membrane surface. RT-PCR and transcriptomic analyses showed that PMVs were similar to hUCMSCs in terms of mRNA profile, including the expression of stemness genes GATA4/5/6, Nanog, and Oct1/2/4. GO term analysis showed that the most prominent reduced transcripts in PMVs belong to integral membrane components, extracellular vesicular exosome, and extracellular matrix. Immunofluorescence labeling/staining and confocal microscopy assays showed that PMVs enclosed cellular organelles, including mitochondria, lysosomes, proteasomes, and endoplasmic reticula. Incorporation of the fusogenic VSV-G viral membrane glycoprotein stimulated the endosomal release of PMV contents into the cytoplasm. Further, the addition of PMVs and a mitochondrial-targeted antioxidant Mito-Tempo into cultures of APAP-treated HepG2 cells resulted in reduced cell death, enhanced viability, and increased mitochondrial membrane potential. Lastly, this study demonstrated that the redox state and activities of aminotransferases were restored in APAP-treated HepG2 cells. CONCLUSIONS The results suggest that PMVs from hUCMSCs could be used as a novel stem cell therapy for the treatment of APAP-induced liver injury.
Collapse
Affiliation(s)
- Mei-Jia Lin
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Shuang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Lu-Jun Yang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Dan-Yan Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Li-Qun Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China
| | - Xin Zhang
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ping-Nan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Chi-Ju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
40
|
Ramachandran A, Jaeschke H. A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol 2020; 140:111282. [PMID: 32209353 PMCID: PMC7254872 DOI: 10.1016/j.fct.2020.111282] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the United States and APAP-induced hepatotoxicity is initiated by formation of a reactive metabolite which depletes hepatic glutathione and forms protein adducts. Studies over the years have established the critical role of c-Jun N terminal kinase (JNK) and its mitochondrial translocation, as well as mitochondrial oxidant stress and subsequent induction of the mitochondrial permeability transition in APAP pathophysiology. However, it is now evident that mitochondrial responses to APAP overdose are more nuanced than appreciated earlier, with multiple levels of control, for example, to dose of APAP. In addition, mitochondrial dynamics, as well as the organelle's importance in recovery and regeneration after APAP-induced liver injury is also being recognized, which are exciting new areas with significant therapeutic potential. Thus, this review examines the temporal course of hepatocyte mitochondrial responses to an APAP overdose with an emphasis on mechanistic response to various trigger checkpoints such as NAPQI-mitochondrial protein adduct formation and activated JNK translocation. Mitochondrial dynamics, the organelle's role in recovery after APAP and emerging areas of research which promise to provide further insight into modulation of APAP pathophysiology by these fascinating organelles will also be discussed.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutic, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
41
|
Wang L, Li A, Liu Y, Zhan S, Zhong L, Du Y, Xu D, Wang W, Huang W. Genistein protects against acetaminophen-induced liver toxicity through augmentation of SIRT1 with induction of Nrf2 signalling. Biochem Biophys Res Commun 2020; 527:90-97. [PMID: 32446397 DOI: 10.1016/j.bbrc.2020.04.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/18/2020] [Indexed: 01/27/2023]
Abstract
Previous studies suggest that genistein protects liver from acetaminophen (APAP)-induced injury, however, the detailed mechanism of the process is still incompletely. Therefore, present study was to investigate the potential mechanism of the genistein mediated protection against APAP-induced hepatotoxicity. As shown, supplementation with 150 mg/kg genistein greatly alleviated the increase in serum alanine aminotransferase (ALT) activity, aspartate aminotransferase (AST) activity, hepatic malondialdehyde (MDA) contents, and reversed the decrease in hepatic GSH levels in response to overdose APAP. At the same time, hepatic SIRT1 protein and activity were markedly upregulated in mouse receiving genistein. However, the amelioration was almost abolished by the knockdown of hepatic SIRT1 expression using lentivirus carrying specific shRNA targeting SIRT1. These results were further validated by histopathology examination. Moreover, depletion of hepatic SIRT1 prevented the accumulation of Nrf2 in nucleus and the upregulation of the antioxidant gene expression in the presence of genistein and/or APAP. Concomitantly, the induced mRNA expression of UDP-glucuronosyltransferases (UGTs) by genistein was largely dependent on the SIRT1 expression and activity. Together, our results support the notion that the strong elevation of SIRT1 expression and activity may represent a potential mechanism of protection against APAP-induced liver injury by genistein.
Collapse
Affiliation(s)
- Linpei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Anquan Li
- Department of Gastroenterology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian, China
| | - Yinhao Liu
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, 443002, China
| | - Shiyang Zhan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Lei Zhong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Youqin Du
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, 443002, China
| | - Dongyao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China; Clinical College of Quanzhou Medical College, Quanzhou, 362000, Fujian, China.
| | - Weifeng Huang
- The Institute of Infection and Inflammation, Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, 443002, China; Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China.
| |
Collapse
|
42
|
Jaeschke H, Duan L, Nguyen N, Ramachandran A. Mitochondrial Damage and Biogenesis in Acetaminophen-induced Liver Injury. LIVER RESEARCH 2019; 3:150-156. [PMID: 32655976 PMCID: PMC7351365 DOI: 10.1016/j.livres.2019.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liver injury and acute liver failure caused by acetaminophen (APAP) overdose is the clinically most important drug toxicity in western countries. Mechanistic investigations have revealed a central role of mitochondria in the pathophysiology. Excess formation of the reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI) after an overdose leads to hepatic glutathione depletion, mitochondrial protein adducts formation and an initial oxidant stress, which triggers the activation of mitogen activated protein (MAP) kinase cascade ultimately leading to c-jun N-terminal kinase (JNK) phosphorylation. Phospho-JNK translocates to the mitochondria and amplifies the oxidative and nitrosative stress eventually causing the mitochondrial membrane permeability transition pore opening and cessation of ATP synthesis. In addition, mitochondrial matrix swelling ruptures the outer membrane and releases endonucleases, which cause nuclear DNA fragmentation. Together, the nuclear DNA damage and the extensive mitochondrial dysfunction result in necrotic cell death. However, the pro-cell death signaling events are counteracted by adaptive responses such as autophagy and mitochondrial biogenesis. The improved mechanistic insight into the pathophysiology leads to better understanding of the mechanisms of action of the existing antidote N-acetylcysteine and justifies the clinical testing of novel therapeutics such as 4-methylpyrazole and calmangafodipir.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Luqi Duan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Nga Nguyen
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|