1
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
2
|
Ahlawat S, Mote KR, Raran-Kurussi S, Agarwal V. Mechanism of selective polarization exchange amongst chemically similar and distinct protons during weak rf irradiation at fast magic angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 340:107236. [PMID: 35609347 DOI: 10.1016/j.jmr.2022.107236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Band Selective Spectral Spin-Diffusion (BASS-SD) is a method to obtain selective 1H-1H contacts between chemically similar protons within a distance range of 5-6 Å in fully protonated proteins. BASS-SD combines low-amplitude proton spinlock radio frequency (rf) pulses with fast MAS frequency to enable selective polarization exchange in fully protonated molecules. The selectivity of transfer is dictated by the bandwidth of the spinlock pulse and has been used to observe selective HN-HN, Hα-Ηα and Hmethyl-Hmethyl correlations. These proton-proton spatial contacts are similar to those observed in perdeuterated samples and serve as useful structural restraints towards de novo protein structure determination. This study employs bimodal Floquet theory to derive the first- and second-order effective Hamiltonians necessary to understand the spin dynamics during BASS-SD. Analytical calculations combined with numerical simulations delineate two different mechanisms for polarization transfer amongst the proton spins. The BASS-SD recoupling condition has been reoptimized to observe selective correlations between chemically different protons (e.g., HN-Hα) while retaining the spatial contacts between chemically similar protons (e.g., HN-HN). The new BASS-SD condition is integrated with simultaneous and sequential acquisition approaches to generate four different types of structural restraints (HN-HN, Hα-Ηα, HN-Hα, Hα-HN) in one experiment. The approach has been demonstrated on microcrystalline U-[13C,15N] labeled GB1 protein at ∼ 95-100 kHz MAS.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India.
| |
Collapse
|
3
|
Gopinath T, Manu VS, Weber DK, Veglia G. PHRONESIS: a one-shot approach for sequential assignment of protein resonances by ultrafast MAS solid-state NMR spectroscopy. Chemphyschem 2022; 23:e202200127. [PMID: 35499980 PMCID: PMC9400877 DOI: 10.1002/cphc.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
Solid‐state NMR (ssNMR) spectroscopy has emerged as the method of choice to analyze the structural dynamics of fibrillar, membrane‐bound, and crystalline proteins that are recalcitrant to other structural techniques. Recently, 1H detection under fast magic angle spinning and multiple acquisition ssNMR techniques have propelled the structural analysis of complex biomacromolecules. However, data acquisition and resonance‐specific assignments remain a bottleneck for this technique. Here, we present a comprehensive multi‐acquisition experiment (PHRONESIS) that simultaneously generates up to ten 3D 1H‐detected ssNMR spectra. PHRONESIS utilizes broadband transfer and selective pulses to drive multiple independent polarization pathways. High selectivity excitation and de‐excitation of specific resonances were achieved by high‐fidelity selective pulses that were designed using a combination of an evolutionary algorithm and artificial intelligence. We demonstrated the power of this approach with microcrystalline U‐13C,15N GB1 protein, reaching 100 % of the resonance assignments using one data set of ten 3D experiments. The strategy outlined in this work opens up new avenues for implementing novel 1H‐detected multi‐acquisition ssNMR experiments to speed up and expand the application to larger biomolecular systems.
Collapse
Affiliation(s)
- T Gopinath
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - V S Manu
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, 321 Church St SE, 55455, Minneapolis, UNITED STATES
| | - Daniel K Weber
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - Gianluigi Veglia
- University of Minnesota, Biochemistry, 321 Church Street SE, 55455, Minneapolis, UNITED STATES
| |
Collapse
|
4
|
Yan Z, Zhang R. Rapid Structural Analysis of Minute Quantities of Organic Solids by Exhausting 1H Polarization in Solid-State NMR Spectroscopy Under Fast Magic Angle Spinning. J Phys Chem Lett 2021; 12:12067-12074. [PMID: 34910488 DOI: 10.1021/acs.jpclett.1c03672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solid-state nuclear magnetic resonance (NMR) often suffers from significant limitations due to the inherent low signal sensitivity when low-γ nuclei are involved. Herein, we report an elegant solid-state NMR approach for rapid structural analysis of minute amounts of organic solids. By encoding staggered chemical shift evolution in the indirect dimension and staggered acquisition in the 1H dimension, a proton-detected homonuclear 1H/1H and heteronuclear 13C/1H chemical shift correlation (HETCOR) spectrum can be obtained simultaneously in a single experiment at a fast magic-angle-spinning (MAS) condition with barely increasing the experimental time. We further show that during the conventional 1H-detected HETCOR experimental time, multiple homonuclear 1H/1H correlation spectra can be recorded in addition to the HETCOR spectrum, enabling the determination of 1H-1H distances. We establish that abundant 1H polarization can be efficiently manipulated and fully utilized in proton-detected solid-state NMR spectroscopy for extraction of more critical structural information and thus reduction of the total experimental time.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Molecular Science and Engineering (MoSE), South China University of Technology, Guangzhou, 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
5
|
Gopinath T, Weber DK, Veglia G. Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning. JOURNAL OF BIOMOLECULAR NMR 2020; 74:267-285. [PMID: 32333193 PMCID: PMC7236978 DOI: 10.1007/s10858-020-00316-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/11/2020] [Indexed: 05/04/2023]
Abstract
Ultrafast magic angle spinning (MAS) technology and 1H detection have dramatically enhanced the sensitivity of solid-state NMR (ssNMR) spectroscopy of biopolymers. We previously showed that, when combined with polarization optimized experiments (POE), these advancements enable the simultaneous acquisition of multi-dimensional 1H- or 13C-detected experiments using a single receiver. Here, we propose a new sub-class within the POE family, namely HC-DUMAS, HC-MEIOSIS, and HC-MAeSTOSO, that utilize dual receiver technology for the simultaneous detection of 1H and 13C nuclei. We also expand this approach to record 1H-, 13C-, and 15N-detected homonuclear 2D spectra simultaneously using three independent receivers. The combination of POE and multi-receiver technology will further shorten the total experimental time of ssNMR experiments for biological solids.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Gopinath T, Veglia G. Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: Multi-acquisition of membrane protein spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106664. [PMID: 31837552 PMCID: PMC7003683 DOI: 10.1016/j.jmr.2019.106664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/05/2023]
Abstract
Proton-detected solid-state NMR (ssNMR) spectroscopy has dramatically improved the sensitivity and resolution of fast magic angle spinning (MAS) methods. While relatively straightforward for fibers and crystalline samples, the routine application of these techniques to membrane protein samples is still challenging. This is due to the low sensitivity of these samples, which require high lipid:protein ratios to maintain the structural and functional integrity of membrane proteins. We previously introduced a family of novel polarization optimized experiments (POE) that enable to make the best of nuclear polarization and obtain multiple-acquisitions from a single pulse sequence and one receiver. Here, we present the 1H-detected versions of POE using ultrafast MAS ssNMR. Specifically, we implemented proton detection into our three main POE strategies, H-DUMAS, H-MEIOSIS, and H-MAeSTOSO, achieving the acquisition of up to ten different experiments using a single pulse sequence. We tested these experiments on a model compound N-Acetyl-Val-Leu dipeptide and applied to a six transmembrane acetate transporter, SatP, reconstituted in lipid membranes. These new methods will speed up the spectroscopy of challenging biomacromolecules such as membrane proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
7
|
Gopinath T, Wang S, Lee J, Aihara H, Veglia G. Hybridization of TEDOR and NCX MAS solid-state NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements. JOURNAL OF BIOMOLECULAR NMR 2019; 73:141-153. [PMID: 30805819 PMCID: PMC6526076 DOI: 10.1007/s10858-019-00237-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is a major technique for the characterization of the structural dynamics of biopolymers at atomic resolution. However, the intrinsic low sensitivity of this technique poses significant limitations to its routine application in structural biology. Here we achieve substantial savings in experimental time using a new subclass of Polarization Optimized Experiments (POEs) that concatenate TEDOR and SPECIFIC-CP transfers into a single pulse sequence. Specifically, we designed new 2D and 3D experiments (2D TEDOR-NCX, 3D TEDOR-NCOCX, and 3D TEDOR-NCACX) to obtain distance measurements and heteronuclear chemical shift correlations for resonance assignments using only one experiment. We successfully tested these experiments on N-Acetyl-Val-Leu dipeptide, microcrystalline U-13C,15N ubiquitin, and single- and multi-span membrane proteins reconstituted in lipid membranes. These pulse sequences can be implemented on any ssNMR spectrometer equipped with standard solid-state hardware using only one receiver. Since these new POEs speed up data acquisition considerably, we anticipate their broad application to fibrillar, microcrystalline, and membrane-bound proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - John Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Gopinath T, Veglia G. Probing membrane protein ground and conformationally excited states using dipolar- and J-coupling mediated MAS solid state NMR experiments. Methods 2018; 148:115-122. [PMID: 30012515 PMCID: PMC6428079 DOI: 10.1016/j.ymeth.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
The intrinsic conformational plasticity of membrane proteins directly influences the magnitude of the orientational-dependent NMR interactions such as dipolar couplings (DC) and chemical shift anisotropy (CSA). As a result, the conventional cross-polarization (CP)-based techniques mainly capture the more rigid regions of membrane proteins, while the most dynamic regions are essentially invisible. Nonetheless, dynamic regions can be detected using experiments in which polarization transfer takes place via J-coupling interactions. Here, we review our recent efforts to develop single and dual acquisition pulse sequences with either 1H or 13C detection that utilize both DC and J-coupling mediated transfer to detect both rigid and mobile regions of membrane proteins in native-like lipid environments. We show the application of these new methods for studying the conformational equilibrium of a single-pass membrane protein, phospholamban, which regulates the calcium transport across the sarcoplasmic reticulum (SR) membrane by interacting with the SR Ca2+-ATPase. We anticipate that these methods will be ideal to portray the complex dynamics of membrane proteins in their native environments.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
9
|
Gopinath T, Veglia G. Experimental Aspects of Polarization Optimized Experiments (POE) for Magic Angle Spinning Solid-State NMR of Microcrystalline and Membrane-Bound Proteins. Methods Mol Biol 2018; 1688:37-53. [PMID: 29151203 DOI: 10.1007/978-1-4939-7386-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conventional NMR pulse sequences record one spectrum per experiment, while spending most of the time waiting for the spin system to return to the equilibrium. As a result, a full set of multidimensional NMR experiments for biological macromolecules may take up to several months to complete. Here, we present a practical guide for setting up a new class of MAS solid-state NMR experiments (POE or polarization optimized experiments) that enable the simultaneous acquisition of multiple spectra of proteins, accelerating data acquisition. POE exploit the long-lived 15N polarization of isotopically labeled proteins and enable one to obtain up to eight spectra, by concatenating classical NMR pulse sequences. This new strategy propels data throughput of solid-state NMR spectroscopy of fibers, microcrystalline preparations, as well as membrane proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Gopinath T, Nelson SED, Veglia G. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:101-107. [PMID: 29173803 PMCID: PMC5764182 DOI: 10.1016/j.jmr.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 05/05/2023]
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sarah E D Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
11
|
Gopinath T, Nelson SED, Soller KJ, Veglia G. Probing the Conformationally Excited States of Membrane Proteins via 1H-Detected MAS Solid-State NMR Spectroscopy. J Phys Chem B 2017; 121:4456-4465. [DOI: 10.1021/acs.jpcb.7b03268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- T. Gopinath
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sarah E. D. Nelson
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kailey J. Soller
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Gianluigi Veglia
- Department of Chemistry and ‡Department of Biochemistry, Molecular Biology, and
Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|