1
|
Cruz DM, Mostafavi E, Vernet-Crua A, O’Connell CP, Barabadi H, Mobini S, Cholula-Díaz JL, Guisbiers G, García-Martín JM, Webster TJ. Green nanotechnology and nanoselenium for biomedical applications. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
2
|
Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep 2022; 12:16165. [PMID: 36171339 PMCID: PMC9519583 DOI: 10.1038/s41598-022-20360-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study investigated for the first time a simple bio-synthesis approach for the synthesis of copper oxide nanoparticles (CuO NPs) using Annona muricata L (A. muricata) plant extract to test their anti-cancer effects. The presence of CuONPs was confirmed by UV–visible spectroscopy, Scanning electron microscope (SEM), and Transmission electron microscope (TEM). The antiproliferative properties of the synthesized nanoparticles were evaluated against (AMJ-13), (MCF-7) breast cancer cell lines, and the human breast epithelial cell line (HBL-100) as healthy cells. This study indicates that CuONPs reduced cell proliferation for AMJ-13 and MCF-7. HBL-100 cells were not significantly inhibited for several concentration levels or test periods. The outcomes suggest that the prepared copper oxide nanoparticles acted against the growth of specific cell lines observed in breast cancer. It was observed that cancer cells had minor colony creation after 24 h sustained CuONPs exposure using (IC50) concentration for AMJ-13 was (17.04 µg mL−1). While for MCF-7 cells was (18.92 µg mL−1). It indicates the uptake of CuONPs by cancer cells, triggering apoptosis. Moreover, treatment with CuONPs enhanced Lactate dehydrogenase (LDH) production, probably caused by cell membrane damage, creating leaks comprising cellular substances like lactate dehydrogenase. Hence, research results suggested that the synthesized CuONPs precipitated anti-proliferative effects by triggering cell death through apoptosis.
Collapse
|
3
|
Wanjari AK, Patil MP, Chaudhari UE, Gulhane VN, Kim GD, Kiddane AT. Bactericidal and photocatalytic degradation of methyl orange of silver-silver chloride nanoparticles synthesized using aqueous phyto-extract. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2056552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atul K. Wanjari
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | | | - Umesh E. Chaudhari
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | - Vaibhav N. Gulhane
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea
- School of Marine and Fisheries Life Science, College of Natural Science, Pukyong National University, Busan, Republic of Korea
| | - Anley T. Kiddane
- Lab of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Enhancement of anti-bacterial potential of green synthesized selenium nanoparticles by starch encapsulation. Microb Pathog 2022; 167:105544. [DOI: 10.1016/j.micpath.2022.105544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/18/2022] [Accepted: 04/13/2022] [Indexed: 01/24/2023]
|
5
|
Antiproliferative potentials of chitin and chitosan encapsulated gold nanoparticles derived from unhatched Artemia cysts. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotra R. Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aman Sahu
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pankaj Singh
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | | | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
7
|
Sathiya P, Geetha K. Fruit extract mediated synthesis of silver oxide nanoparticles using Dimocarpus longan fruit and their assesment of catalytic, antifungal, antioxidant and cytotoxic potentials. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1983834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- P. Sathiya
- Department of Chemistry, Muthurangam Government Arts College (Autonomous), Affiliated to Thiruvalluvar University, Vellore, India
| | - Kannappan Geetha
- Department of Chemistry, Muthurangam Government Arts College (Autonomous), Affiliated to Thiruvalluvar University, Vellore, India
| |
Collapse
|
8
|
Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme Microb Technol 2021; 150:109888. [PMID: 34489041 DOI: 10.1016/j.enzmictec.2021.109888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Owing to the probiotic origin, lipases-derived from the Lactobacilli sp. are considered to be promising biomaterials for in vivo applications. On a different note, poly(ε-caprolactone) (PCL)-an FDA-approved polymer for implantable applications-lacks inherent antimicrobial property, because of which suitable modifications are required to render it with bactericidal activity. Here, we employ Lactobacillus amylovorous derived lipase to surface derivatize the PCL films with silver that is a highly efficient inorganic broad-spectrum antimicrobial substance. Two different surface functionalization strategies have been employed over the alkaline hydrolyzed PCL films towards this purpose: In the first strategy, lipase-capped silver nanoparticles (Ag NPs) have been synthesized in a first step, which have been covalently immobilized over the activated carboxylic groups on the PCL film surface in a subsequent step. In the second strategy, the lipase was covalently immobilized over the activated carboxylic groups of the PCL film surface in the first step, over which silver was deposited in the second step using the dip-coating method. While the characterization study using X-ray photoelectron spectroscopy (XPS) has revealed the successful derivatization of silver over the PCL film, the surface characterization using field-emission scanning electron microscopy (FE-SEM) study has shown a distinct morphological change with higher silver loading in both strategies. The antimicrobial studies employing E. coli have revealed 100 % inhibition in the bacterial growth in 4-6 h with the Ag NPs-immobilized PCL films as opposed to >8 h with those prepared through the dip-coating method. Additionally, the cytotoxicity assay using mouse fibroblast cells has shown that the PCL films immobilized with lipase-capped Ag NPs exhibit high cell compatibility, similar to that of pristine PCL film, and thereby making it suitable for in vivo applications.
Collapse
|
9
|
Sharma D, Kumar N, Devki, Tiwari S, Mehrotra T, Pervaiz N, Kumar R, Ledwani L. Cytotoxic potential of Rheum emodi capped silver nanoparticles and In silico study of human CDK-4/6 proteins with hydroxyanthraquinones. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Chauhan A, Khan T, Omri A. Design and Encapsulation of Immunomodulators onto Gold Nanoparticles in Cancer Immunotherapy. Int J Mol Sci 2021; 22:8037. [PMID: 34360803 PMCID: PMC8347387 DOI: 10.3390/ijms22158037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of cancer immunotherapy is to reactivate autoimmune responses to combat cancer cells. To stimulate the immune system, immunomodulators, such as adjuvants, cytokines, vaccines, and checkpoint inhibitors, are extensively designed and studied. Immunomodulators have several drawbacks, such as drug instability, limited half-life, rapid drug clearance, and uncontrolled immune responses when used directly in cancer immunotherapy. Several strategies have been used to overcome these limitations. A simple and effective approach is the loading of immunomodulators onto gold-based nanoparticles (GNPs). As gold is highly biocompatible, GNPs can be administered intravenously, which aids in increasing cancer cell permeability and retention time. Various gold nanoplatforms, including nanospheres, nanoshells, nanorods, nanocages, and nanostars have been effectively used in cancer immunotherapy. Gold nanostars (GNS) are one of the most promising GNP platforms because of their unusual star-shaped geometry, which significantly increases light absorption and provides high photon-to-heat conversion efficiency due to the plasmonic effect. As a result, GNPs are a useful vehicle for delivering antigens and adjuvants that support the immune system in killing tumor cells by facilitating or activating cytotoxic T lymphocytes. This review represents recent progress in encapsulating immunomodulators into GNPs for utility in a cancer immunotherapeutic regimen.
Collapse
Affiliation(s)
- Akshita Chauhan
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
11
|
Naidi SN, Harunsani MH, Tan AL, Khan MM. Green-synthesized CeO 2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 2021; 9:5599-5620. [PMID: 34161404 DOI: 10.1039/d1tb00248a] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are a sought-after material in numerous fields due to their potential applications such as in catalysis, cancer therapy, photocatalytic degradation of pollutants, sensors, polishing agents. Green synthesis usually involves the production of CeO2 assisted by organic extracts obtained from plants, leaves, flowers, bacteria, algae, food, fruits, etc. The phytochemicals present in the organic extracts adhere to the NPs and act as reducing and/or oxidizing agents and capping agents to stabilize the NPs, modify the particle size, morphology and band gap energy of the as-synthesized materials, which would be advantageous for numerous applications. This review focuses on the green extract-mediated synthesis of CeO2 NPs and discusses the effects on CeO2 NPs of various synthesis methods that have been reported. Several photocatalytic, antimicrobial, antioxidant and cytotoxicity applications have been evaluated, compared and discussed. Future prospects are also suggested.
Collapse
Affiliation(s)
- Siti Najihah Naidi
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
12
|
Khatamifar M, Fatemi SJ, Torkzadeh-Mahani M, Mohammadi M, Hassanshahian M. Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: thermal behavior, antibacterial, antioxidant and anticancer properties. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1941455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marzieh Khatamifar
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - S. Jamilaldin Fatemi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Meisam Mohammadi
- Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
13
|
Mane PC, Sayyed SAR, Kadam DD, D Shinde M, Fatehmulla A, Aldhafiri AM, Alghamdi EA, Amalnerkar DP, Chaudhari RD. Terrestrial snail-mucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci Rep 2021; 11:13068. [PMID: 34158586 PMCID: PMC8219800 DOI: 10.1038/s41598-021-92478-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past few years, biogenic methods for designing silver nanocomposites are in limelight due to their ability to generate semi-healthcare and para-pharmaceutical consumer goods. The present study reports the eco-friendly synthesis of silver nanoparticles from the hitherto unexplored mucus of territorial snail Achatina fulica by the facile, clean and easily scalable method. The detailed characterization of the resultant samples by UV-Visible Spectroscopy, FESEM-EDS, XRD and FTIR Spectroscopy techniques corroborated the formation of silver nanoparticles in snail mucus matrix. The resultant samples were tested against a broad range of Gram positive and Gram negative bacteria like Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and a fungal strain Aspergillus fumigatus by well diffusion method. The results indicate that silver nanoparticles in mucus matrix exhibit strong antibacterial as well as antifungal activity. The pertinent experiments were also performed to determine the inhibitory concentration against both bacterial and fungal strains. Anticancer activity was executed by in vitro method using cervical cancer cell lines. Curiously, our biogenically synthesized Ag nanoparticles in biocompatible mucus revealed anticancer activity and demonstrated more than 15% inhibition of Hela cells. We suggest an interesting possibility of formulating antimicrobial and possibly anticancer creams/gels for topical applications in skin ailments.
Collapse
Affiliation(s)
- Pramod C Mane
- P. G. Department of Zoology and Research Centre, Shri Shiv Chhatrapati College of Arts, Commerce and Science, Junnar, Pune, 410 502, India
| | - Shabnam A R Sayyed
- P. G. Department of Zoology and Research Centre, Shri Shiv Chhatrapati College of Arts, Commerce and Science, Junnar, Pune, 410 502, India
| | - Deepali D Kadam
- P. G. Department of Zoology and Research Centre, Shri Shiv Chhatrapati College of Arts, Commerce and Science, Junnar, Pune, 410 502, India
| | - Manish D Shinde
- Centre for Materials for Electronics Technology, Panchawati, Off-Pashan Road, Pune, 411008, India
| | - Amanullah Fatehmulla
- Department of Physics and Astronomy College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah M Aldhafiri
- Department of Physics and Astronomy College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Eman A Alghamdi
- Department of Physics and Astronomy College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dinesh P Amalnerkar
- Department of Technology, Savitribai Phule Pune University, Pune, 411 008, India.
| | - Ravindra D Chaudhari
- P. G. Department of Zoology and Research Centre, Shri Shiv Chhatrapati College of Arts, Commerce and Science, Junnar, Pune, 410 502, India.
| |
Collapse
|
14
|
Verma A, Bharadvaja N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02091-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Shaker Ardakani L, Alimardani V, Tamaddon AM, Amani AM, Taghizadeh S. Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon 2021; 7:e06159. [PMID: 33644459 PMCID: PMC7887398 DOI: 10.1016/j.heliyon.2021.e06159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/13/2020] [Accepted: 01/27/2021] [Indexed: 01/05/2023] Open
Abstract
Nowadays, green synthesis methods have gained growing attention in nanotechnology owning to their versatile features including high efficiency, cost-effectiveness, and eco-friendliness. Here, the aqueous extract of Chlorophytum comosum leaf was applied for the preparation of iron nanoparticles (INPs) to obtain spherical and amorphous INPs with a particle size below 100 nm as confirmed by TEM. The synthesized INPs managed to eliminate methyl orange (MO) from the aqueous solution. The concentration of MO can be easily checked via ultraviolet-visible (UV-Vis) spectroscopy throughout the usage of INPs at the presence of H2O2. The synthesized INPs exhibited MO degradation efficiency of 77% after 6 h. Furthermore, the synthesized INPs exhibited antibacterial activity against both Gram-negative and Gram-positive bacteria. The prepared INPs have an impressive effect on Staphylococcus aureus at concentrations below 6 μg/ml. Overall, the synthesized INPs could considerably contribute to our combat against organic dyes and bacteria.
Collapse
Affiliation(s)
| | - Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
17
|
Veisi H, Karmakar B, Tamoradi T, Hemmati S, Hekmati M, Hamelian M. Biosynthesis of CuO nanoparticles using aqueous extract of herbal tea (Stachys Lavandulifolia) flowers and evaluation of its catalytic activity. Sci Rep 2021; 11:1983. [PMID: 33479340 PMCID: PMC7820272 DOI: 10.1038/s41598-021-81320-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Plant derived biogenic synthesis of nanoparticles (NP) has been the recent trend in material science as featured sustainable catalysts. A great deal of the current nanocatalytic research has been oriented on the bio-inspired green catalysts based on their wide applicability. In this context, CuO NPs are synthesized following a green approach using an herbal tea (Stachys Lavandulifolia) flower extract. The phytochemicals contained in it were used asthe internal reductant without applying harsh chemicals or strong heat. The derived nanoparticles also got stabilized by the biomolecular capping. The as-synthesized CuO NPs was characterized over FT-IR, FE-SEM, EDS, TEM, XRD, TGA and UV–Vis spectroscopy. These NPs were exploited as a competent catalyst in the aryl and heteroaryl C–heteroatom (N, O, S) cross coupling reactions affording outstanding yields. The nanocatalyst was isolated and recycled in 8 consecutive runs with reproducible catalytic activity. Rigidity of the CuO/S. Lavandulifolia nanocomposite was further justified by leaching test and heterogeneity test.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran.
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India.
| | | | - Saba Hemmati
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mona Hamelian
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
18
|
Ranjbar M, Kiani M, Khakdan F. Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Photocatalytic reduction and anti-bacterial activity of biosynthesized silver nanoparticles against multi drug resistant Staphylococcus saprophyticus BDUMS 5 (MN310601). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111024. [DOI: 10.1016/j.msec.2020.111024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 12/19/2022]
|
20
|
Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01794-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Sivakumar M, Surendar S, Jayakumar M, Seedevi P, Sivasankar P, Ravikumar M, Anbazhagan M, Murugan T, Siddiqui SS, Loganathan S. Parthenium hysterophorus Mediated Synthesis of Silver Nanoparticles and its Evaluation of Antibacterial and Antineoplastic Activity to Combat Liver Cancer Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01775-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|