1
|
Xiong H, Wang Q, Li CC, He A. Single-cell joint profiling of multiple epigenetic proteins and gene transcription. SCIENCE ADVANCES 2024; 10:eadi3664. [PMID: 38170774 PMCID: PMC10796078 DOI: 10.1126/sciadv.adi3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Sculpting the epigenome with a combination of histone modifications and transcription factor occupancy determines gene transcription and cell fate specification. Here, we first develop uCoTarget, utilizing a split-pool barcoding strategy for realizing ultrahigh-throughput single-cell joint profiling of multiple epigenetic proteins. Through extensive optimization for sensitivity and multimodality resolution, we demonstrate that uCoTarget enables simultaneous detection of five histone modifications (H3K27ac, H3K4me3, H3K4me1, H3K36me3, and H3K27me3) in 19,860 single cells. We applied uCoTarget to the in vitro generation of hematopoietic stem/progenitor cells (HSPCs) from human embryonic stem cells, presenting multimodal epigenomic profiles in 26,418 single cells. uCoTarget reveals establishment of pairing of HSPC enhancers (H3K27ac) and promoters (H3K4me3) and RUNX1 engagement priming for H3K27ac activation along the HSPC path. We then develop uCoTargetX, an expansion of uCoTarget to simultaneously measure transcriptome and multiple epigenome targets. Together, our methods enable generalizable, versatile multimodal profiles for reconstructing comprehensive epigenome and transcriptome landscapes and analyzing the regulatory interplay at single-cell level.
Collapse
Affiliation(s)
- Haiqing Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qianhao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chen C. Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Key laboratory of Carcinogenesis and Translational Research of Ministry of Education of China, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| |
Collapse
|
2
|
Marzoog BA. Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target. Curr Drug Targets 2024; 25:46-61. [PMID: 38444255 DOI: 10.2174/0113894501279977231210170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/07/2024]
Abstract
Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Donnaloja F, Raimondi MT, Messa L, Barzaghini B, Carnevali F, Colombo E, Mazza D, Martinelli C, Boeri L, Rey F, Cereda C, Osellame R, Cerullo G, Carelli S, Soncini M, Jacchetti E. 3D photopolymerized microstructured scaffolds influence nuclear deformation, nucleo/cytoskeletal protein organization, and gene regulation in mesenchymal stem cells. APL Bioeng 2023; 7:036112. [PMID: 37692376 PMCID: PMC10491463 DOI: 10.1063/5.0153215] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Mechanical stimuli from the extracellular environment affect cell morphology and functionality. Recently, we reported that mesenchymal stem cells (MSCs) grown in a custom-made 3D microscaffold, the Nichoid, are able to express higher levels of stemness markers. In fact, the Nichoid is an interesting device for autologous MSC expansion in clinical translation and would appear to regulate gene activity by altering intracellular force transmission. To corroborate this hypothesis, we investigated mechanotransduction-related nuclear mechanisms, and we also treated spread cells with a drug that destroys the actin cytoskeleton. We observed a roundish nuclear shape in MSCs cultured in the Nichoid and correlated the nuclear curvature with the import of transcription factors. We observed a more homogeneous euchromatin distribution in cells cultured in the Nichoid with respect to the Flat sample, corresponding to a standard glass coverslip. These results suggest a different gene regulation, which we confirmed by an RNA-seq analysis that revealed the dysregulation of 1843 genes. We also observed a low structured lamina mesh, which, according to the implemented molecular dynamic simulations, indicates reduced damping activity, thus supporting the hypothesis of low intracellular force transmission. Also, our investigations regarding lamin expression and spatial organization support the hypothesis that the gene dysregulation induced by the Nichoid is mainly related to a reduction in force transmission. In conclusion, our findings revealing the Nichoid's effects on MSC behavior is a step forward in the control of stem cells via mechanical manipulation, thus paving the way to new strategies for MSC translation to clinical applications.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Carnevali
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | | | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale, Milan, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Lucia Boeri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| | - Federica Rey
- Pediatric Research Center “Romeo ed Enrica Invernizzi,” Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomic and Rare Diseases, “V. Buzzi” Children's Hospital, 20154 Milan, Italy
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Institute for Photonics and Nanotechnologies—CNR, and Physics Department, Politecnico di Milano, Milan, Italy
| | | | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Dennison R, Usuga E, Chen H, Paul JZ, Arbelaez CA, Teng YD. Direct Cell Reprogramming and Phenotypic Conversion: An Analysis of Experimental Attempts to Transform Astrocytes into Neurons in Adult Animals. Cells 2023; 12:618. [PMID: 36831283 PMCID: PMC9954435 DOI: 10.3390/cells12040618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Central nervous system (CNS) repair after injury or disease remains an unresolved problem in neurobiology research and an unmet medical need. Directly reprogramming or converting astrocytes to neurons (AtN) in adult animals has been investigated as a potential strategy to facilitate brain and spinal cord recovery and advance fundamental biology. Conceptually, AtN strategies rely on forced expression or repression of lineage-specific transcription factors to make endogenous astrocytes become "induced neurons" (iNs), presumably without re-entering any pluripotent or multipotent states. The AtN-derived cells have been reported to manifest certain neuronal functions in vivo. However, this approach has raised many new questions and alternative explanations regarding the biological features of the end products (e.g., iNs versus neuron-like cells, neural functional changes, etc.), developmental biology underpinnings, and neurobiological essentials. For this paper per se, we proposed to draw an unconventional distinction between direct cell conversion and direct cell reprogramming, relative to somatic nuclear transfer, based on the experimental methods utilized to initiate the transformation process, aiming to promote a more in-depth mechanistic exploration. Moreover, we have summarized the current tactics employed for AtN induction, comparisons between the bench endeavors concerning outcome tangibility, and discussion of the issues of published AtN protocols. Lastly, the urgency to clearly define/devise the theoretical frameworks, cell biological bases, and bench specifics to experimentally validate primary data of AtN studies was highlighted.
Collapse
Affiliation(s)
- Rachel Dennison
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Esteban Usuga
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Harriet Chen
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Jacob Z. Paul
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| | - Yang D. Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02129, USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
- Neurotrauma Recovery Research, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
An improved CUT&RUN method for regulation network reconstruction of low abundance transcription factor. Cell Signal 2022; 96:110361. [DOI: 10.1016/j.cellsig.2022.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022]
|
6
|
The role of NURR1 in metabolic abnormalities of Parkinson's disease. Mol Neurodegener 2022; 17:46. [PMID: 35761385 PMCID: PMC9235236 DOI: 10.1186/s13024-022-00544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A constant metabolism and energy supply are crucial to all organs, particularly the brain. Age-dependent neurodegenerative diseases, such as Parkinson’s disease (PD), are associated with alterations in cellular metabolism. These changes have been recognized as a novel hot topic that may provide new insights to help identify risk in the pre-symptomatic phase of the disease, understand disease pathogenesis, track disease progression, and determine critical endpoints. Nuclear receptor-related factor 1 (NURR1), an orphan member of the nuclear receptor superfamily of transcription factors, is a major risk factor in the pathogenesis of PD, and changes in NURR1 expression can have a detrimental effect on cellular metabolism. In this review, we discuss recent evidence that suggests a vital role of NURR1 in dopaminergic (DAergic) neuron development and the pathogenesis of PD. The association between NURR1 and cellular metabolic abnormalities and its implications for PD therapy have been further highlighted.
Collapse
|
7
|
Borisova E, Nishimura K, An Y, Takami M, Li J, Song D, Matsuo-Takasaki M, Luijkx D, Aizawa S, Kuno A, Sugihara E, Sato TA, Yumoto F, Terada T, Hisatake K, Hayashi Y. Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. iScience 2022; 25:103525. [PMID: 35106457 PMCID: PMC8786646 DOI: 10.1016/j.isci.2021.103525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/14/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-genetically modified somatic cells can only be inefficiently and stochastically reprogrammed to pluripotency by exogenous expression of reprogramming factors. Low competence of natural reprogramming factors may prevent the majority of cells to successfully and synchronously reprogram. Here we screened DNA-interacting amino acid residues in the zinc-finger domain of KLF4 for enhanced reprogramming efficiency using alanine-substitution scanning methods. Identified KLF4 L507A mutant accelerated and stabilized reprogramming to pluripotency in both mouse and human somatic cells. By testing all the variants of L507 position, variants with smaller amino acid residues in the KLF4 L507 position showed higher reprogramming efficiency. L507A bound more to promoters or enhancers of pluripotency genes, such as KLF5, and drove gene expression of these genes during reprogramming. Molecular dynamics simulations predicted that L507A formed additional interactions with DNA. Our study demonstrates how modifications in amino acid residues of DNA-binding domains enable next-generation reprogramming technology with engineered reprogramming factors. KLF4 L507A variant accelerates and stabilizes reprogramming to pluripotency KLF4 L507A has distinctive features of transcriptional binding and activation KLF4 L507A may acquire a unique conformation with additional DNA interaction Smaller amino acid residues in L507 position cause higher reprogramming efficiency
Collapse
Affiliation(s)
- Evgeniia Borisova
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuri An
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Miho Takami
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Jingyue Li
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.,Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dan Song
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Mami Matsuo-Takasaki
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Dorian Luijkx
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Shiho Aizawa
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory of Animal Resource Center, Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Sugihara
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan.,The Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Taka-Aki Sato
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550, Japan
| | - Fumiaki Yumoto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization in Tsukuba, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
8
|
Shear MA, Massa A. In Utero Fetal Therapy: Stem Cells, Cell Transplantation, Gene Therapy, and CRISPR-Cas9. Clin Obstet Gynecol 2021; 64:861-875. [PMID: 34668889 DOI: 10.1097/grf.0000000000000663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In utero fetal therapy offers the opportunity to prevent and treat diseases with a cellular or genetic basis. Components of successful fetal treatment include isolation of a replacement cell population, in utero stem cell transplantation, cell engraftment with fetal immune tolerance, and ongoing cell function. Fetal gene therapy with CRISPR-Cas9 represents an exciting potential therapy for genetic diseases not amenable to gene supplementation via adenoviral vector transduction. These fetal therapies have unique ethical and safety considerations. Clinical trials for in utero cell therapy are underway, as additional discoveries in stem cell biology and gene therapy move closer to clinical translation.
Collapse
Affiliation(s)
- Matthew A Shear
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, California
| | - Andrew Massa
- Columbia Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
9
|
Han X, Feng J, Guo T, Loh YHE, Yuan Y, Ho TV, Cho CK, Li J, Jing J, Janeckova E, He J, Pei F, Bi J, Song B, Chai Y. Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis. eLife 2021; 10:e62387. [PMID: 33482080 PMCID: PMC7826157 DOI: 10.7554/elife.62387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cranial neural crest (CNC) cells give rise to bone, cartilage, tendons, and ligaments of the vertebrate craniofacial musculoskeletal complex, as well as regulate mesoderm-derived craniofacial muscle development through cell-cell interactions. Using the mouse soft palate as a model, we performed an unbiased single-cell RNA-seq analysis to investigate the heterogeneity and lineage commitment of CNC derivatives during craniofacial muscle development. We show that Runx2, a known osteogenic regulator, is expressed in the CNC-derived perimysial and progenitor populations. Loss of Runx2 in CNC-derivatives results in reduced expression of perimysial markers (Aldh1a2 and Hic1) as well as soft palate muscle defects in Osr2-Cre;Runx2fl/fl mice. We further reveal that Runx2 maintains perimysial marker expression through suppressing Twist1, and that myogenesis is restored in Osr2-Cre;Runx2fl/fl;Twist1fl/+ mice. Collectively, our findings highlight the roles of Runx2, Twist1, and their interaction in regulating the fate of CNC-derived cells as they guide craniofacial muscle development through cell-cell interactions.
Collapse
Affiliation(s)
- Xia Han
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yong-Hwee Eddie Loh
- USC Libraries Bioinformatics Services, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Courtney Kyeong Cho
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Jing Bi
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Brian Song
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los AngelesLos AngelesUnited States
| |
Collapse
|
10
|
Cevallos RR, Edwards YJK, Parant JM, Yoder BK, Hu K. Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fibroblast conversion to iPSCs. Sci Rep 2020; 10:19710. [PMID: 33184372 PMCID: PMC7661723 DOI: 10.1038/s41598-020-76705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The four transcription factors OCT4, SOX2, KLF4, and MYC (OSKM) together can convert human fibroblasts to induced pluripotent stem cells (iPSCs). It is, however, perplexing that they can do so only for a rare population of the starting cells with a long latency. Transcription factors (TFs) define identities of both the starting fibroblasts and the end product, iPSCs, and are also of paramount importance for the reprogramming process. It is critical to upregulate or activate the iPSC-enriched TFs while downregulate or silence the fibroblast-enriched TFs. This report explores the initial TF responses to OSKM as the molecular underpinnings for both the potency aspects and the limitation sides of the OSKM reprogramming. The authors first defined the TF reprogramome, i.e., the full complement of TFs to be reprogrammed. Most TFs were resistant to OSKM reprogramming at the initial stages, an observation consistent with the inefficiency and long latency of iPSC reprogramming. Surprisingly, the current analyses also revealed that most of the TFs (at least 83 genes) that did respond to OSKM induction underwent legitimate reprogramming. The initial legitimate transcriptional responses of TFs to OSKM reprogramming were also observed in the reprogramming fibroblasts from a different individual. Such early biased legitimate reprogramming of the responsive TFs aligns well with the robustness aspect of the otherwise inefficient and stochastic OSKM reprogramming.
Collapse
Affiliation(s)
- Ricardo R Cevallos
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bradley K Yoder
- Department of Cell Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kejin Hu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
11
|
Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, Lagunas T, Qi Z, Lalli MA, Guo C, Morris SA, Dougherty JD, Mitra RD. Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells. Cell 2020; 182:992-1008.e21. [PMID: 32710817 PMCID: PMC7510185 DOI: 10.1016/j.cell.2020.06.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael N Wilkinson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - June He
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tomás Lagunas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zongtai Qi
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Lalli
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Chuner Guo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Abstract
Stomatal cell fate and patterning, which are regulated by key transcriptional factors and intercellular communications, are critical for plant growth and survival. The known regulators of stomatal development do not appear to have microRNAs (miRNAs) regulating them. Thus, it remains elusive as to whether and how miRNAs are involved in stomatal development. This study identifies stomatal lineage miRNAs including developmental stage-specific miRNAs. Genetic analysis shows that stomatal lineage miRNAs positively or negatively regulate stomatal formation and patterning. Moreover, biological processes modulated by stomatal lineage miRNAs reveal previously unknown regulatory pathways in stomatal development, indicating that miRNAs function as a critical element of stomatal development. These results provide a resource for guiding the study of stomatal development. Stomata in the plant epidermis play a critical role in growth and survival by controlling gas exchange, transpiration, and immunity to pathogens. Plants modulate stomatal cell fate and patterning through key transcriptional factors and signaling pathways. MicroRNAs (miRNAs) are known to contribute to developmental plasticity in multicellular organisms; however, no miRNAs appear to target the known regulators of stomatal development. It remains unclear as to whether miRNAs are involved in stomatal development. Here, we report highly dynamic, developmentally stage-specific miRNA expression profiles from stomatal lineage cells. We demonstrate that stomatal lineage miRNAs positively and negatively regulate stomatal formation and patterning to avoid clustered stomata. Target prediction of stomatal lineage miRNAs implicates potential cellular processes in stomatal development. We show that miR399-mediated PHO2 regulation, involved in phosphate homeostasis, contributes to the control of stomatal development. Our study demonstrates that miRNAs constitute a critical component in the regulatory mechanisms controlling stomatal development.
Collapse
|
13
|
Gao SW, Liu F. Novel insights into cell cycle regulation of cell fate determination. J Zhejiang Univ Sci B 2019; 20:467-475. [PMID: 31090272 DOI: 10.1631/jzus.b1900197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stem/progenitor cell has long been regarded as a central cell type in development, homeostasis, and regeneration, largely owing to its robust self-renewal and multilineage differentiation abilities. The balance between self-renewal and stem/progenitor cell differentiation requires the coordinated regulation of cell cycle progression and cell fate determination. Extensive studies have demonstrated that cell cycle states determine cell fates, because cells in different cell cycle states are characterized by distinct molecular features and functional outputs. Recent advances in high-resolution epigenome profiling, single-cell transcriptomics, and cell cycle reporter systems have provided novel insights into the cell cycle regulation of cell fate determination. Here, we review recent advances in cell cycle-dependent cell fate determination and functional heterogeneity, and the application of cell cycle manipulation for cell fate conversion. These findings will provide insight into our understanding of cell cycle regulation of cell fate determination in this field, and may facilitate its potential application in translational medicine.
Collapse
Affiliation(s)
- Su-Wei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gentsch GE, Spruce T, Owens NDL, Smith JC. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat Commun 2019; 10:4269. [PMID: 31537794 PMCID: PMC6753111 DOI: 10.1038/s41467-019-12263-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Thomas Spruce
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, 75015, Paris, France
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|