1
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
2
|
Arnold BH, Sanislav O, Fisher PR, Annesley SJ. Plate-Based Assays for the Characterization of Mitochondrial and Cellular Phenotypes. Methods Mol Biol 2024; 2746:1-20. [PMID: 38070076 DOI: 10.1007/978-1-0716-3585-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The mitochondria are essential to eukaryotic life, acting as key drivers of energy generation while also being involved in the regulation of many cellular processes including apoptosis, cell proliferation, calcium homeostasis, and metabolism. Mitochondrial diseases which disrupt these processes lead to a diverse range of pathologies and lack consistency in symptom presentation. In disease, mitochondrial activity and energy homeostasis can be adapted to cellular requirements, and studies using Dictyostelium and human lymphoblastoid cell lines have shown that such changes can be facilitated by the key cellular and energy regulators, TORC1 and AMPK. Fluorescence-based assays are increasingly utilized to measure mitochondrial and cell signalling function in mitochondrial disease research. Here, we describe a streamlined method for the simultaneous measurement of mitochondrial mass, membrane potential, and reactive oxygen species production using MitoTracker Green™ FM, MitoTracker Red™ CMXRos, and DCFH-DA probes. This protocol has been adapted for both Dictyostelium and human lymphoblastoid cell lines. We also describe a method for assessing TORC1 and AMPK activity simultaneously in lymphoblastoid cells. These techniques allow for the characterization of mitochondrial defects in a rapid and easy to implement manner.
Collapse
Affiliation(s)
- Benjamin Henry Arnold
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Oana Sanislav
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Sen A, Cox RT. Loss of Drosophila Clueless differentially affects the mitochondrial proteome compared to loss of Sod2 and Pink1. Front Physiol 2022; 13:1004099. [PMID: 36388112 PMCID: PMC9644064 DOI: 10.3389/fphys.2022.1004099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/28/2025] Open
Abstract
Mitochondria contain their own DNA, mitochondrial DNA, which encodes thirteen proteins. However, mitochondria require thousands of proteins encoded in the nucleus to carry out their many functions. Identifying the definitive mitochondrial proteome has been challenging as methods isolating mitochondrial proteins differ and different tissues and organisms may have specialized proteomes. Mitochondrial diseases arising from single gene mutations in nucleus encoded genes could affect the mitochondrial proteome, but deciphering which effects are due to loss of specific pathways or to accumulated general mitochondrial damage is difficult. To identify specific versus general effects, we have taken advantage of mutations in three Drosophila genes, clueless, Sod2, and Pink1, which are required for mitochondrial function through different pathways. We measured changes in each mutant's mitochondrial proteome using quantitative tandem mass tag mass spectrometry. Our analysis identified protein classes that are unique to each mutant and those shared between them, suggesting that some changes in the mitochondrial proteome are due to general mitochondrial damage whereas others are gene specific. For example, clueless mutants had the greatest number of less and more abundant mitochondrial proteins whereas loss of all three genes increased stress and metabolism proteins. This study is the first to directly compare in vivo steady state levels of mitochondrial proteins by examining loss of three pathways critical for mitochondrial function. These data could be useful to understand disease etiology, and how mutations in genes critical for mitochondrial function cause specific mitochondrial proteomic changes as opposed to changes due to generalized mitochondrial damage.
Collapse
Affiliation(s)
- Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
5
|
Sabharwal A, Campbell JM, Schwab TL, WareJoncas Z, Wishman MD, Ata H, Liu W, Ichino N, Hunter DE, Bergren JD, Urban MD, Urban RM, Holmberg SR, Kar B, Cook A, Ding Y, Xu X, Clark KJ, Ekker SC. A Primer Genetic Toolkit for Exploring Mitochondrial Biology and Disease Using Zebrafish. Genes (Basel) 2022; 13:1317. [PMID: 35893052 PMCID: PMC9331066 DOI: 10.3390/genes13081317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mitochondria are a dynamic eukaryotic innovation that play diverse roles in biology and disease. The mitochondrial genome is remarkably conserved in all vertebrates, encoding the same 37-gene set and overall genomic structure, ranging from 16,596 base pairs (bp) in the teleost zebrafish (Danio rerio) to 16,569 bp in humans. Mitochondrial disorders are amongst the most prevalent inherited diseases, affecting roughly 1 in every 5000 individuals. Currently, few effective treatments exist for those with mitochondrial ailments, representing a major unmet patient need. Mitochondrial dysfunction is also a common component of a wide variety of other human illnesses, ranging from neurodegenerative disorders such as Huntington's disease and Parkinson's disease to autoimmune illnesses such as multiple sclerosis and rheumatoid arthritis. The electron transport chain (ETC) component of mitochondria is critical for mitochondrial biology and defects can lead to many mitochondrial disease symptoms. Here, we present a publicly available collection of genetic mutants created in highly conserved, nuclear-encoded mitochondrial genes in Danio rerio. The zebrafish system represents a potentially powerful new opportunity for the study of mitochondrial biology and disease due to the large number of orthologous genes shared with humans and the many advanced features of this model system, from genetics to imaging. This collection includes 15 mutant lines in 13 different genes created through locus-specific gene editing to induce frameshift or splice acceptor mutations, leading to predicted protein truncation during translation. Additionally, included are 11 lines created by the random insertion of the gene-breaking transposon (GBT) protein trap cassette. All these targeted mutant alleles truncate conserved domains of genes critical to the proper function of the ETC or genes that have been implicated in human mitochondrial disease. This collection is designed to accelerate the use of zebrafish to study many different aspects of mitochondrial function to widen our understanding of their role in biology and human disease.
Collapse
Affiliation(s)
- Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jarryd M. Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Tanya L. Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Wishman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Hirotaka Ata
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Wiebin Liu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Noriko Ichino
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Danielle E. Hunter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Jake D. Bergren
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Rhianna M. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Shannon R. Holmberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Alex Cook
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
- Division of Cardiovascular Diseases, Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; (A.S.); (J.M.C.); (T.L.S.); (Z.W.); (M.D.W.); (H.A.); (W.L.); (N.I.); (D.E.H.); (J.D.B.); (M.D.U.); (R.M.U.); (S.R.H.); (B.K.); (A.C.); (Y.D.); (X.X.); (K.J.C.)
| |
Collapse
|
6
|
Saoji M, Petersen CE, Sen A, Tripoli BA, Smyth JT, Cox RT. Reduction of Drosophila Mitochondrial RNase P in Skeletal and Heart Muscle Causes Muscle Degeneration, Cardiomyopathy, and Heart Arrhythmia. Front Cell Dev Biol 2022; 10:788516. [PMID: 35663400 PMCID: PMC9162060 DOI: 10.3389/fcell.2022.788516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, we examine the cause and progression of mitochondrial diseases linked to the loss of mtRNase P, a three-protein complex responsible for processing and cleaving mitochondrial transfer RNAs (tRNA) from their nascent transcripts. When mtRNase P function is missing, mature mitochondrial tRNA levels are decreased, resulting in mitochondrial dysfunction. mtRNase P is composed of Mitochondrial RNase P Protein (MRPP) 1, 2, and 3. MRPP1 and 2 have their own enzymatic activity separate from MRPP3, which is the endonuclease responsible for cleaving tRNA. Human mutations in all subunits cause mitochondrial disease. The loss of mitochondrial function can cause devastating, often multisystemic failures. When mitochondria do not provide enough energy and metabolites, the result can be skeletal muscle weakness, cardiomyopathy, and heart arrhythmias. These symptoms are complex and often difficult to interpret, making disease models useful for diagnosing disease onset and progression. Previously, we identified Drosophila orthologs of each mtRNase P subunit (Roswell/MRPP1, Scully/MRPP2, Mulder/MRPP3) and found that the loss of each subunit causes lethality and decreased mitochondrial tRNA processing in vivo. Here, we use Drosophila to model mtRNase P mitochondrial diseases by reducing the level of each subunit in skeletal and heart muscle using tissue-specific RNAi knockdown. We find that mtRNase P reduction in skeletal muscle decreases adult eclosion and causes reduced muscle mass and function. Adult flies exhibit significant age-progressive locomotor defects. Cardiac-specific mtRNase P knockdowns reduce fly lifespan for Roswell and Scully, but not Mulder. Using intravital imaging, we find that adult hearts have impaired contractility and exhibit substantial arrhythmia. This occurs for roswell and mulder knockdowns, but with little effect for scully. The phenotypes shown here are similar to those exhibited by patients with mitochondrial disease, including disease caused by mutations in MRPP1 and 2. These findings also suggest that skeletal and cardiac deficiencies induced by mtRNase P loss are differentially affected by the three subunits. These differences could have implications for disease progression in skeletal and heart muscle and shed light on how the enzyme complex functions in different tissues.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Courtney E. Petersen
- Henry M. Jackson Foundation, Bethesda, MD, United States.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States.
| | - Benjamin A. Tripoli
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
7
|
Anoar S, Woodling NS, Niccoli T. Mitochondria Dysfunction in Frontotemporal Dementia/Amyotrophic Lateral Sclerosis: Lessons From Drosophila Models. Front Neurosci 2021; 15:786076. [PMID: 34899176 PMCID: PMC8652125 DOI: 10.3389/fnins.2021.786076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by declining motor and cognitive functions. Even though these diseases present with distinct sets of symptoms, FTD and ALS are two extremes of the same disease spectrum, as they show considerable overlap in genetic, clinical and neuropathological features. Among these overlapping features, mitochondrial dysfunction is associated with both FTD and ALS. Recent studies have shown that cells derived from patients' induced pluripotent stem cells (iPSC)s display mitochondrial abnormalities, and similar abnormalities have been observed in a number of animal disease models. Drosophila models have been widely used to study FTD and ALS because of their rapid generation time and extensive set of genetic tools. A wide array of fly models have been developed to elucidate the molecular mechanisms of toxicity for mutations associated with FTD/ALS. Fly models have been often instrumental in understanding the role of disease associated mutations in mitochondria biology. In this review, we discuss how mutations associated with FTD/ALS disrupt mitochondrial function, and we review how the use of Drosophila models has been pivotal to our current knowledge in this field.
Collapse
Affiliation(s)
- Sharifah Anoar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Nathaniel S Woodling
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| | - Teresa Niccoli
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
8
|
Liu Y, Weaver CM, Sen Y, Eitzen G, Simmonds AJ, Linchieh L, Lurette O, Hebert-Chatelain E, Rachubinski RA, Di Cara F. The Nitric Oxide Donor, S-Nitrosoglutathione, Rescues Peroxisome Number and Activity Defects in PEX1G843D Mild Zellweger Syndrome Fibroblasts. Front Cell Dev Biol 2021; 9:714710. [PMID: 34434934 PMCID: PMC8382563 DOI: 10.3389/fcell.2021.714710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
Peroxisome biogenesis disorders (PBDs) are a group of metabolic developmental diseases caused by mutations in one or more genes encoding peroxisomal proteins. Zellweger syndrome spectrum (PBD-ZSS) results from metabolic dysfunction caused by damaged or non-functional peroxisomes and manifests as a multi-organ syndrome with significant morbidity and mortality for which there is no current drug therapy. Mild PBD-ZSS patients can exhibit a more progressive disease course and could benefit from the identification of drugs to improve the quality of life and extend the lifespan of affected individuals. Our study used a high-throughput screen of FDA-approved compounds to identify compounds that improve peroxisome function and biogenesis in human fibroblast cells carrying the mild PBD-ZSS variant, PEX1G843D. Our screen identified the nitrogen oxide donor, S-nitrosoglutathione (GSNO), as a potential therapeutic for this mild form of PBD-ZSS. Further biochemical characterization showed that GSNO enhances both peroxisome number and function in PEX1G843D mutant fibroblasts and leads to increased survival and longer lifespan in an in vivo humanized Drosophila model carrying the PEX1G843D mutation. GSNO is therefore a strong candidate to be translated to clinical trials as a potential therapeutic for mild PBD-ZSS.
Collapse
Affiliation(s)
- Yidi Liu
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Ceileigh M Weaver
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Yarina Sen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Lilliana Linchieh
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Olivier Lurette
- Department of Biology, University of Moncton, Moncton, NB, Canada
| | | | | | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Saoji M, Sen A, Cox RT. Loss of Individual Mitochondrial Ribonuclease P Complex Proteins Differentially Affects Mitochondrial tRNA Processing In Vivo. Int J Mol Sci 2021; 22:ijms22116066. [PMID: 34199774 PMCID: PMC8200052 DOI: 10.3390/ijms22116066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5'-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.
Collapse
Affiliation(s)
- Maithili Saoji
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA
- Alector Inc., 131 Oyster Point Blvd, San Francisco, CA 94080, USA
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (M.S.); (A.S.)
- Correspondence:
| |
Collapse
|
10
|
Annesley SJ, Fisher PR. Lymphoblastoid Cell Lines as Models to Study Mitochondrial Function in Neurological Disorders. Int J Mol Sci 2021; 22:4536. [PMID: 33926115 PMCID: PMC8123577 DOI: 10.3390/ijms22094536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders, including neurodegenerative diseases, are collectively a major cause of death and disability worldwide. Whilst the underlying disease mechanisms remain elusive, altered mitochondrial function has been clearly implicated and is a key area of study in these disorders. Studying mitochondrial function in these disorders is difficult due to the inaccessibility of brain tissue, which is the key tissue affected in these diseases. To overcome this issue, numerous cell models have been used, each providing unique benefits and limitations. Here, we focussed on the use of lymphoblastoid cell lines (LCLs) to study mitochondrial function in neurological disorders. LCLs have long been used as tools for genomic analyses, but here we described their use in functional studies specifically in regard to mitochondrial function. These models have enabled characterisation of the underlying mitochondrial defect, identification of altered signalling pathways and proteins, differences in mitochondrial function between subsets of particular disorders and identification of biomarkers of the disease. The examples provided here suggest that these cells will be useful for development of diagnostic tests (which in most cases do not exist), identification of drug targets and testing of pharmacological agents, and are a worthwhile model for studying mitochondrial function in neurological disorders.
Collapse
Affiliation(s)
- Sarah Jane Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC 3086, Australia;
| | | |
Collapse
|
11
|
Falk MJ. The pursuit of precision mitochondrial medicine: Harnessing preclinical cellular and animal models to optimize mitochondrial disease therapeutic discovery. J Inherit Metab Dis 2021; 44:312-324. [PMID: 33006762 PMCID: PMC7994194 DOI: 10.1002/jimd.12319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria share extensive evolutionary conservation across nearly all living species. This homology allows robust insights to be gained into pathophysiologic mechanisms and therapeutic targets for the heterogeneous class of primary mitochondrial diseases (PMDs) through the study of diverse in vitro cellular and in vivo animal models. Dramatic advances in genetic technologies, ranging from RNA interference to achieve graded knock-down of gene expression to CRISPR/Cas-based gene editing that yields a stable gene knock-out or targeted mutation knock-in, have enabled the ready establishment of mitochondrial disease models for a plethora of individual nuclear gene disorders. These models are complemented and extended by the use of pharmacologic inhibitor-based stressors to characterize variable degrees, onset, duration, and combinations of acute on chronic mitochondrial dysfunction in individual respiratory chain enzyme complexes or distinct biochemical pathways within mitochondria. Herein is described the rationale for, and progress made in, "therapeutic cross-training," a novel approach meant to improve the validity and rigor of experimental conclusions when testing therapies by studying treatment effects in multiple, evolutionarily-distinct species, including Caenorhabditis elegans (invertebrate, worm), Danio rerio (vertebrate, zebrafish), Mus musculus (mammal, mouse), and/or human patient primary fibroblast cell line models of PMD. The goal of these preclinical studies is to identify lead therapies from candidate molecules or library screens that consistently demonstrate efficacy, with minimal toxicity, in specific subtypes of mitochondrial disease. Conservation of in vitro and in vivo therapeutic effects of lead molecules across species has proven extensive, where molar concentrations found to be toxic or efficacious in one species are often consistent with therapeutic effects at similar doses seen in other mitochondrial disease models. Phenotypic outcome studies in all models are prioritized at the level of survival and function, to reflect the ultimate goal of developing highly potent therapies for human mitochondrial disease. Lead compounds that demonstrate significant benefit on gross phenotypes may be further scrutinized in these same models to decipher their cellular targets, mechanism(s), and detailed biochemical effects. High-throughput, automated technologic advances will be discussed that enable efficient, parallel screening in a diverse array of mitochondrial disease disorders and overarching subclasses of compounds, concentrations, libraries, and combinations. Overall, this therapeutic cross-training approach has proven valuable to identify compounds with optimal potency and safety profiles among major biochemical subtypes or specific genetic etiologies of mitochondrial disease. This approach further supports rational prioritization of lead compounds, target concentrations, and specific disease phenotypes, outcomes, and subgroups to optimally inform the design of clinical trials that test their efficacy in human mitochondrial disease subjects.
Collapse
Affiliation(s)
- Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Corresponding Author: Marni J. Falk, M.D., The Children’s Hospital of Philadelphia, ARC1002c, 3615 Civic Center Blvd, Philadelphia, PA 19104, Office 1-267-426-4961, Fax 1-267-476-2876,
| |
Collapse
|
12
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Xu J, Zhang J, Yang D, Song J, Pallas B, Zhang C, Hu J, Peng X, Christensen ND, Han R, Chen YE. Gene Editing in Rabbits: Unique Opportunities for Translational Biomedical Research. Front Genet 2021; 12:642444. [PMID: 33584832 PMCID: PMC7876448 DOI: 10.3389/fgene.2021.642444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The rabbit is a classic animal model for biomedical research, but the production of gene targeted transgenic rabbits had been extremely challenging until the recent advent of gene editing tools. More than fifty gene knockout or knock-in rabbit models have been reported in the past decade. Gene edited (GE) rabbit models, compared to their counterpart mouse models, may offer unique opportunities in translational biomedical research attributed primarily to their relatively large size and long lifespan. More importantly, GE rabbit models have been found to mimic several disease pathologies better than their mouse counterparts particularly in fields focused on genetically inherited diseases, cardiovascular diseases, ocular diseases, and others. In this review we present selected examples of research areas where GE rabbit models are expected to make immediate contributions to the understanding of the pathophysiology of human disease, and support the development of novel therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chen Zhang
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jiafen Hu
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States
| | - Xuwen Peng
- Department of Comparative Medicine, Penn State University College of Medicine, Hershey, PA, United States
| | - Neil D Christensen
- Department of Pathology and Laboratory Medicine, Penn State Cancer Institute, Hershey, PA, United States.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| | - Renzhi Han
- Biomedical Sciences and Biophysics Graduate Program, Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Pridie C, Ueda K, Simmonds AJ. Rosy Beginnings: Studying Peroxisomes in Drosophila. Front Cell Dev Biol 2020; 8:835. [PMID: 32984330 PMCID: PMC7477296 DOI: 10.3389/fcell.2020.00835] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Research using the fruit fly Drosophila melanogaster has traditionally focused on understanding how mutations affecting gene regulation or function affect processes linked to animal development. Accordingly, flies have become an essential foundation of modern medical research through repeated contributions to our fundamental understanding of how their homologs of human genes function. Peroxisomes are organelles that metabolize lipids and reactive oxygen species like peroxides. However, despite clear linkage of mutations in human genes affecting peroxisomes to developmental defects, for many years fly models were conspicuously absent from the study of peroxisomes. Now, the few early studies linking the Rosy eye color phenotype to peroxisomes in flies have been joined by a growing body of research establishing novel roles for peroxisomes during the development or function of specific tissues or cell types. Similarly, unique properties of cultured fly Schneider 2 cells have advanced our understanding of how peroxisomes move on the cytoskeleton. Here, we profile how those past and more recent Drosophila studies started to link specific effects of peroxisome dysfunction to organ development and highlight the utility of flies as a model for human peroxisomal diseases. We also identify key differences in the function and proliferation of fly peroxisomes compared to yeast or mammals. Finally, we discuss the future of the fly model system for peroxisome research including new techniques that should support identification of additional tissue specific regulation of and roles for peroxisomes.
Collapse
Affiliation(s)
- C Pridie
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Kazuki Ueda
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|
16
|
Jajoo A, Donlon C, Shnayder S, Levin M, McVey M. Sertraline induces DNA damage and cellular toxicity in Drosophila that can be ameliorated by antioxidants. Sci Rep 2020; 10:4512. [PMID: 32161356 PMCID: PMC7066164 DOI: 10.1038/s41598-020-61362-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/26/2020] [Indexed: 11/22/2022] Open
Abstract
Sertraline hydrochloride is a commonly prescribed antidepressant medication that acts by amplifying serotonin signaling. Numerous studies have suggested that children of women taking sertraline during pregnancy have an increased risk of developmental defects. Resolving the degree of risk for human fetuses requires comprehensive knowledge of the pathways affected by this drug. We utilized a Drosophila melanogaster model system to assess the effects of sertraline throughout development. Ingestion of sertraline by females did not affect their fecundity or embryogenesis in their progeny. However, larvae that consumed sertraline experienced delayed developmental progression and reduced survival at all stages of development. Genetic experiments showed that these effects were mostly independent of aberrant extracellular serotonin levels. Using an ex vivo imaginal disc culture system, we showed that mitotically active sertraline-treated tissues accumulate DNA double-strand breaks and undergo apoptosis at increased frequencies. Remarkably, the sertraline-induced genotoxicity was partially rescued by co-incubation with ascorbic acid, suggesting that sertraline induces oxidative DNA damage. These findings may have implications for the biomedicine of sertraline-induced birth defects.
Collapse
Affiliation(s)
- Arpita Jajoo
- Department of Biology, Tufts University, Medford, MA, USA
| | | | - Sarah Shnayder
- Department of Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Mitch McVey
- Department of Biology, Tufts University, Medford, MA, USA.
| |
Collapse
|
17
|
The Alliance of Genome Resources Consortium. The Alliance of Genome Resources: Building a Modern Data Ecosystem for Model Organism Databases. Genetics 2019; 213:1189-1196. [PMID: 31796553 PMCID: PMC6893393 DOI: 10.1534/genetics.119.302523] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Model organisms are essential experimental platforms for discovering gene functions, defining protein and genetic networks, uncovering functional consequences of human genome variation, and for modeling human disease. For decades, researchers who use model organisms have relied on Model Organism Databases (MODs) and the Gene Ontology Consortium (GOC) for expertly curated annotations, and for access to integrated genomic and biological information obtained from the scientific literature and public data archives. Through the development and enforcement of data and semantic standards, these genome resources provide rapid access to the collected knowledge of model organisms in human readable and computation-ready formats that would otherwise require countless hours for individual researchers to assemble on their own. Since their inception, the MODs for the predominant biomedical model organisms [Mus sp (laboratory mouse), Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Danio rerio, and Rattus norvegicus] along with the GOC have operated as a network of independent, highly collaborative genome resources. In 2016, these six MODs and the GOC joined forces as the Alliance of Genome Resources (the Alliance). By implementing shared programmatic access methods and data-specific web pages with a unified "look and feel," the Alliance is tackling barriers that have limited the ability of researchers to easily compare common data types and annotations across model organisms. To adapt to the rapidly changing landscape for evaluating and funding core data resources, the Alliance is building a modern, extensible, and operationally efficient "knowledge commons" for model organisms using shared, modular infrastructure.
Collapse
|
18
|
Yakoubi R, Rollenhagen A, von Lehe M, Miller D, Walkenfort B, Hasenberg M, Sätzler K, Lübke JH. Ultrastructural heterogeneity of layer 4 excitatory synaptic boutons in the adult human temporal lobe neocortex. eLife 2019; 8:48373. [PMID: 31746736 PMCID: PMC6919978 DOI: 10.7554/elife.48373] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
Synapses are fundamental building blocks controlling and modulating the ‘behavior’ of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated. Biopsies from epilepsy surgery were used for fine-scale and tomographic electron microscopy (EM) to generate 3D-reconstructions of SBs. Particularly, the size of active zones (AZs) and that of the three functionally defined pools of synaptic vesicles (SVs) were quantified. SBs were comparatively small (~2.50 μm2), with a single AZ (~0.13 µm2); preferentially established on spines. SBs had a total pool of ~1800 SVs with strikingly large readily releasable (~20), recycling (~80) and resting pools (~850). Thus, human L4 SBs may act as ‘amplifiers’ of signals from the sensory periphery, integrate, synchronize and modulate intra- and extracortical synaptic activity.
Collapse
Affiliation(s)
- Rachida Yakoubi
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Astrid Rollenhagen
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany
| | - Marec von Lehe
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany.,Department of Neurosurgery, Brandenburg Medical School, Ruppiner Clinics, Neuruppin, Germany
| | - Dorothea Miller
- Department of Neurosurgery, Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Bernd Walkenfort
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Mike Hasenberg
- Medical Research Centre, IMCES Electron Microscopy Unit (EMU), University Hospital Essen, Essen, Germany
| | - Kurt Sätzler
- School of Biomedical Sciences, University of Ulster, Londonderry, United Kingdom
| | - Joachim Hr Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH University Hospital Aachen, Aachen, Germany.,JARA Translational Brain Medicine, Jülich/Aachen, Germany
| |
Collapse
|
19
|
Pajak A, Laine I, Clemente P, El-Fissi N, Schober FA, Maffezzini C, Calvo-Garrido J, Wibom R, Filograna R, Dhir A, Wedell A, Freyer C, Wredenberg A. Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo. PLoS Genet 2019; 15:e1008240. [PMID: 31365523 PMCID: PMC6668790 DOI: 10.1371/journal.pgen.1008240] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology. Although a number of factors have been implemented in the turnover of mitochondrial (mt) DNA-derived transcripts, their exact functions and interplay with one another is not entirely clear. Several of these factors have been proposed to co-ordinately regulate both transcript maturation, as well as degradation, but the order of events during mitochondrial RNA turnover is less well understood. Using a range of different genetically modified Drosophila melanogaster models, we studied the involvement of the RNA helicase SUV3, the polynucleotide phosphorylase PNPase, the leucine-rich pentatricopeptide repeat motif-containing protein LRPPRC, and the mitochondrial RNA poly(A) polymerase MTPAP, in stabilisation, polyadenylation, and degradation of mitochondrial transcripts. Our results show a tight collaborative activity of these factors in vivo and reveal a clear hierarchical order of events leading to mitochondrial mRNA maturation. Furthermore, we demonstrate that the loss of SUV3, PNPase, or MTPAP leads to the accumulation of mitochondrial-derived antisense RNA in the cytoplasm of cells, which is associated with an altered immune-response in flies.
Collapse
Affiliation(s)
- Aleksandra Pajak
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Laine
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paula Clemente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Najla El-Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Florian A. Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ashish Dhir
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Wedell
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| |
Collapse
|
20
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
21
|
Kong HE, Lim J, Zhang F, Huang L, Gu Y, Nelson DL, Allen EG, Jin P. Metabolic pathways modulate the neuronal toxicity associated with fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2019; 28:980-991. [PMID: 30476102 PMCID: PMC6400045 DOI: 10.1093/hmg/ddy410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is an adult-onset neurodegenerative disorder that affects premutation carriers (55-200 CGG repeats) of the fragile X mental retardation 1 (FMR1) gene. Much remains unknown regarding the metabolic alterations associated with FXTAS, especially in the brain, and the most affected region, the cerebellum. Investigating the metabolic changes in FXTAS will aid in the identification of biomarkers as well as in understanding the pathogenesis of disease. To identify the metabolic alterations associated with FXTAS, we took advantage of our FXTAS mouse model that expresses 90 CGG repeats in cerebellar Purkinje neurons and exhibits the key phenotypic features of FXTAS. We performed untargeted global metabolic profiling of age-matched control and FXTAS mice cerebella at 16-20 weeks and 55 weeks. Out of 506 metabolites measured in cerebellum, we identified 186 metabolites that demonstrate significant perturbations due to the (CGG)90 repeat (P<0.05) and found that these differences increase dramatically with age. To identify key metabolic changes in FXTAS pathogenesis, we performed a genetic screen using a Drosophila model of FXTAS. Out of 28 genes that we tested in the fly, 8 genes showed significant enhanced neuronal toxicity associated with CGG repeats, such as Schlank (ceramide synthase), Sk2 (sphingosine kinase) and Ras (IMP dehydrogenase). By combining metabolic profiling with a Drosophila genetic screen to identify genetic modifiers of FXTAS, we demonstrate an effective method for functional validation of high-throughput metabolic data and show that sphingolipid and purine metabolism are significantly perturbed in FXTAS pathogenesis.
Collapse
Affiliation(s)
- Ha Eun Kong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Junghwa Lim
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Feiran Zhang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Luoxiu Huang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Yanghong Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David L Nelson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
22
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
23
|
Abstract
Mutations of mtDNA accumulate in aging humans and other mammals to cause mitochondrial dysfunction in a subset of cells in various tissues. Furthermore, experimental induction of mtDNA mutations causes a premature aging syndrome in the mouse. To study if mitochondrial dysfunction is universally involved in shortening life span in metazoans, we generated a series of fruit fly lines with varying levels of mtDNA mutations. Unexpectedly, we report that fruit flies are remarkably tolerant to mtDNA mutations, as exemplified by their lack of effect on physiology and lifespan. Only an artificially induced, very drastic increase of the mtDNA mutation load will lead to reduced lifespan, showing that mtDNA mutations are unlikely to limit lifespan in natural fruit fly populations. Mammals develop age-associated clonal expansion of somatic mtDNA mutations resulting in severe respiratory chain deficiency in a subset of cells in a variety of tissues. Both mathematical modeling based on descriptive data from humans and experimental data from mtDNA mutator mice suggest that the somatic mutations are formed early in life and then undergo mitotic segregation during adult life to reach very high levels in certain cells. To address whether mtDNA mutations have a universal effect on aging metazoans, we investigated their role in physiology and aging of fruit flies. To this end, we utilized genetically engineered flies expressing mutant versions of the catalytic subunit of mitochondrial DNA polymerase (DmPOLγA) as a means to introduce mtDNA mutations. We report here that lifespan and health in fruit flies are remarkably tolerant to mtDNA mutations. Our results show that the short lifespan and wide genetic bottleneck of fruit flies are limiting the extent of clonal expansion of mtDNA mutations both in individuals and between generations. However, an increase of mtDNA mutations to very high levels caused sensitivity to mechanical and starvation stress, intestinal stem cell dysfunction, and reduced lifespan under standard conditions. In addition, the effects of dietary restriction, widely considered beneficial for organismal health, were attenuated in flies with very high levels of mtDNA mutations.
Collapse
|
24
|
Foriel S, Beyrath J, Eidhof I, Rodenburg RJ, Schenck A, Smeitink JAM. Feeding difficulties, a key feature of the Drosophila NDUFS4 mitochondrial disease model. Dis Model Mech 2018; 11:dmm032482. [PMID: 29590638 PMCID: PMC5897729 DOI: 10.1242/dmm.032482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases are associated with a wide variety of clinical symptoms and variable degrees of severity. Patients with such diseases generally have a poor prognosis and often an early fatal disease outcome. With an incidence of 1 in 5000 live births and no curative treatments available, relevant animal models to evaluate new therapeutic regimes for mitochondrial diseases are urgently needed. By knocking down ND-18, the unique Drosophila ortholog of NDUFS4, an accessory subunit of the NADH:ubiquinone oxidoreductase (Complex I), we developed and characterized several dNDUFS4 models that recapitulate key features of mitochondrial disease. Like in humans, the dNDUFS4 KD flies display severe feeding difficulties, an aspect of mitochondrial disorders that has so far been largely ignored in animal models. The impact of this finding, and an approach to overcome it, will be discussed in the context of interpreting disease model characterization and intervention studies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarah Foriel
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Julien Beyrath
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
| | - Ilse Eidhof
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Khondrion BV, Philips van Leydenlaan 15, 6525 EX, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM) at the Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|