1
|
Wang Y, Li Y, Lu Y, Li J. Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. CHEM REC 2024; 24:e202400087. [PMID: 39148157 DOI: 10.1002/tcr.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Indexed: 08/17/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.
Collapse
Affiliation(s)
- Yan Wang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqing Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| |
Collapse
|
2
|
Qiu Y, Ouyang Z, Zhong J, Jin L, Qin Y, Zeng Y. Syndecan-1 as a predictor of vulnerable atherosclerotic plaques. Front Cell Dev Biol 2024; 12:1415788. [PMID: 39175877 PMCID: PMC11338802 DOI: 10.3389/fcell.2024.1415788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Aims Cardiovascular disease remains a major global health concern, with atherosclerosis (AS) being a significant contributor. Vulnerable plaques play a critical role in acute cardiovascular events. Syndecan-1 (SDC-1), a vital membrane proteoglycan in the vascular endothelial glycocalyx, is believed to be associated with plaque progression. However, its precise relationship with severity and vulnerability of atherosclerotic plaque remains unclear. This study aimed to investigate SDC-1 expression and its potential correlation with plaque vulnerability in ApoE-/- atherosclerosis mouse model. Methods and results Eight-week-old mice were induced into the AS model using a high-fat diet (HFD) and/or partial ligation of the left common carotid artery (PLCA), with a chow diet (CD) control group. After 16 weeks, plaques in the aortic root showed the following order: HFD + PLCA group > HFD group > CD + PLCA group > CD group. Immunohistochemistry revealed heightened accumulation of lipid/foam cells and CD68-labeled macrophages in the plaques, elevated vascular endothelial growth factor (VEGF), and matrix Metalloproteinase-9 (MMP-9) in the HFD + PLCA group's plaques, along with reduced collagen and α-SMA-labeled smooth muscle cells, resulting in the highest vulnerability index value. Immunohistofluorescence analysis of frozen plaque sections showed significantly higher SDC-1 expression in the AS mice group compared to the CD group, both positively correlated with plaque vulnerability. Serum analysis demonstrated elevated levels of SDC1, sphingosine 1-phosphate (S1P), and VEGF-A in the AS mice, all positively correlated with plaque vulnerability. Multivariate analysis identified SDC1 as an independent predictor of plaque vulnerability. Conclusion This study enhances our understanding of plaque vulnerability mechanisms and presents SDC1 as a potential biomarker for atherosclerosis. These findings underscore the importance of addressing modifiable risk factors, such as diet and hemodynamics and suggest the utility of serum SDC1 as a valuable clinical marker. Ultimately, these insights may lead to more effective strategies in combating cardiovascular diseases and improving patient outcomes.
Collapse
Affiliation(s)
- Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
| | - Zhi Ouyang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jian Zhong
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Linlu Jin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yixue Qin
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sadovoy V, Barakova N, Baskovtceva A, Kiprushkina E, Tochilnikov G, Shamtsyan M. Modeling of lipolysis in the human body and the methodology for developing technology of supplements for obesity prevention considering the utilization of food industry by-products. Front Nutr 2023; 10:1264477. [PMID: 38144426 PMCID: PMC10739412 DOI: 10.3389/fnut.2023.1264477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Affiliation(s)
- Vladimir Sadovoy
- Department of Commodity Science and Public Catering Technology, Stavropol Institute of Cooperation (Branch), Belgorod University of Cooperation, Economics, and Law, Stavropol, Russia
- Departments of Food Technology and Commodity Science, Institute of Service, Tourism and Design (Branch), North-Caucasian Federal University, Pyatigorsk, Russia
| | - Nadezhda Barakova
- Faculty of Biotechnology, ITMO University, St. Petersburg, Russia
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| | | | - Elena Kiprushkina
- Faculty of Biotechnology, ITMO University, St. Petersburg, Russia
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| | - Grigory Tochilnikov
- N.N. Petrov National Research Center of Oncology of the Ministry of Health of Russia, St. Petersburg, Russia
| | - Mark Shamtsyan
- Department of Microbiological Synthesis Technology, St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
| |
Collapse
|
4
|
Kuzan A, Maksymowicz K, Królewicz E, Lindner-Pawłowicz K, Zatyka P, Wojnicz P, Nowaczyński M, Słomczyński A, Sobieszczańska M. Association between Leukocyte Cell-Derived Chemotaxin 2 and Metabolic and Renal Diseases in a Geriatric Population: A Pilot Study. J Clin Med 2023; 12:7544. [PMID: 38137613 PMCID: PMC10744026 DOI: 10.3390/jcm12247544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
LECT2 is not a routine diagnostic marker for any disease, but it has been associated with many pathologies, including systemic amyloidosis, rheumatoid arthritis, diabetes, atherosclerosis, and metabolic syndrome. With human aortic sections (n = 22) and sera from geriatric subjects (n = 79), we analyzed the relationships that could be observed between this protein and other parameters related to metabolic diseases. As a result, we observed a relatively high (r~0.8, p < 0.05) positive correlation between SRA and LECT2 and a negative correlation between EGFR and LECT2 (r~-0.4, p < 0.05). We observed LECT2 expression in macrophages, myocytes, and other aortic cells, with a tendency to be overexpressed in developed atherosclerotic plaques. We conclude that LECT2 exerts its chemotactic effects not only as a protein synthesized in the liver and secreted and circulating in the blood but also as a locally expressed protein within atherosclerotic plaque development. The LECT2-EGFR correlation suggests an association of this protein with loss of normal renal function. This fact can be associated with LECT2 amyloidosis, although it should be verified whether in the geriatric population there is indeed a widespread accumulation of LECT2 with the progression of aging or whether it is rather a marker of general deterioration of renal function.
Collapse
Affiliation(s)
- Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Maksymowicz
- Department of Forensic Medicine, Faculty of Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland;
| | - Emilia Królewicz
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Karolina Lindner-Pawłowicz
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.L.-P.); (M.S.)
| | - Piotr Zatyka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Piotr Wojnicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Maciej Nowaczyński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Adam Słomczyński
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.Z.); (M.N.); (A.S.)
| | - Małgorzata Sobieszczańska
- Clinical Department of Geriatrics, Wroclaw Medical University, 50-368 Wroclaw, Poland; (K.L.-P.); (M.S.)
| |
Collapse
|
5
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|