1
|
Tomkins M, Hoerbst F, Gupta S, Apelt F, Kehr J, Kragler F, Morris RJ. Exact Bayesian inference for the detection of graft-mobile transcripts from sequencing data. J R Soc Interface 2022; 19:20220644. [PMID: 36514890 PMCID: PMC9748499 DOI: 10.1098/rsif.2022.0644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The long-distance transport of messenger RNAs (mRNAs) has been shown to be important for several developmental processes in plants. A popular method for identifying travelling mRNAs is to perform RNA-Seq on grafted plants. This approach depends on the ability to correctly assign sequenced mRNAs to the genetic background from which they originated. The assignment is often based on the identification of single-nucleotide polymorphisms (SNPs) between otherwise identical sequences. A major challenge is therefore to distinguish SNPs from sequencing errors. Here, we show how Bayes factors can be computed analytically using RNA-Seq data over all the SNPs in an mRNA. We used simulations to evaluate the performance of the proposed framework and demonstrate how Bayes factors accurately identify graft-mobile transcripts. The comparison with other detection methods using simulated data shows how not taking the variability in read depth, error rates and multiple SNPs per transcript into account can lead to incorrect classification. Our results suggest experimental design criteria for successful graft-mobile mRNA detection and show the pitfalls of filtering for sequencing errors or focusing on single SNPs within an mRNA.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Franziska Hoerbst
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Julia Kehr
- Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststrasse 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Max Planck Institute, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Richard J. Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| |
Collapse
|
2
|
Li W, Chen S, Liu Y, Wang L, Jiang J, Zhao S, Fang W, Chen F, Guan Z. Long-distance transport RNAs between rootstocks and scions and graft hybridization. PLANTA 2022; 255:96. [PMID: 35348893 DOI: 10.1007/s00425-022-03863-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The present review addresses the advances of the identification methods, functions, and transportation mechanism of long-distance transport RNAs between rootstock and scion. In addition, we highlight the cognitive processes and potential mechanisms of graft hybridization. Phloem, the main transport channel of higher plants, plays an important role in the growth and development of plants. Numerous studies have identified a large number of RNAs, including mRNAs, miRNAs, siRNAs, and lncRNAs, in the plant phloem. They can not only be transported to long distances across the grafting junction in the phloem, but also act as signal molecules to regulate the growth, development, and stress resistance of remote cells or tissues, resulting in changes in the traits of rootstocks and scions. Many mobile RNAs have been discovered, but their detection methods, functions, and long-distance transport mechanisms remain to be elucidated. In addition, grafting hybridization, a phenomenon that has been questioned before, and which has an important role in selecting for superior traits, is gradually being recognized with the emergence of new evidence and the prevalence of horizontal gene transfer between parasitic plants. In this review, we outline the species, functions, identification methods, and potential mechanisms of long-distance transport RNAs between rootstocks and scions after grafting. In addition, we summarize the process of recognition and the potential mechanisms of graft hybridization. This study aimed to emphasize the role of grafting in the study of long-distance signals and selection for superior traits and to provide ideas and clues for further research on long-distance transport RNAs and graft hybridization.
Collapse
Affiliation(s)
- Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Apelt F, Mavrothalassiti E, Gupta S, Machin F, Olas JJ, Annunziata MG, Schindelasch D, Kragler F. Shoot and root single cell sequencing reveals tissue- and daytime-specific transcriptome profiles. PLANT PHYSIOLOGY 2022; 188:861-878. [PMID: 34850215 PMCID: PMC8825464 DOI: 10.1093/plphys/kiab537] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 05/13/2023]
Abstract
Although several large-scale single-cell RNA sequencing (scRNAseq) studies addressing the root of Arabidopsis (Arabidopsis thaliana) have been published, there is still need for a de novo reference map for both root and especially above-ground cell types. As the plants' transcriptome substantially changes throughout the day, shaped by the circadian clock, we performed scRNAseq on both Arabidopsis root and above-ground tissues at defined times of the day. For the root scRNAseq analysis, we used tissue-specific reporter lines grown on plates and harvested at the end of the day (ED). In addition, we submitted above-ground tissues from plants grown on soil at ED and end of the night to scRNAseq, which allowed us to identify common cell types/markers between root and shoot and uncover transcriptome changes to above-ground tissues depending on the time of the day. The dataset was also exploited beyond the traditional scRNAseq analysis to investigate non-annotated and di-cistronic transcripts. We experimentally confirmed the predicted presence of some of these transcripts and also addressed the potential function of a previously unidentified marker gene for dividing cells. In summary, this work provides insights into the spatial control of gene expression from nearly 70,000 cells of Arabidopsis for below- and whole above-ground tissue at single-cell resolution at defined time points.
Collapse
Affiliation(s)
- Federico Apelt
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Eleni Mavrothalassiti
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Frank Machin
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Justyna Jadwiga Olas
- University of Potsdam, Institute of Biochemistry and Biology, Department of Molecular Biology, Karl-Liebknecht-Strasse 24-25, Haus 20, 14476 Potsdam, Germany
| | - Maria Grazia Annunziata
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Dana Schindelasch
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Friedrich Kragler
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
- Author for communication:
| |
Collapse
|
4
|
Calderón-Pérez B, Ramírez-Pool JA, Núñez-Muñoz LA, Vargas-Hernández BY, Camacho-Romero A, Lara-Villamar M, Jiménez-López D, Xoconostle-Cázares B, Ruiz-Medrano R. Engineering Macromolecular Trafficking Into the Citrus Vasculature. FRONTIERS IN PLANT SCIENCE 2022; 13:818046. [PMID: 35178061 PMCID: PMC8844563 DOI: 10.3389/fpls.2022.818046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The plant vasculature is a central organ for long-distance transport of nutrients and signaling molecules that coordinate vegetative and reproductive processes, and adaptation response mechanisms to biotic and abiotic stress. In angiosperms, the sieve elements are devoid of nuclei, thus depending on the companion cells for the synthesis of RNA and proteins, which constitute some of the systemic signals that coordinate these processes. Massive analysis approaches have identified proteins and RNAs that could function as long-range signals in the phloem translocation stream. The selective translocation of such molecules could occur as ribonucleoprotein complexes. A key molecule facilitating this movement in Cucurbitaceae is the phloem protein CmPP16, which can facilitate the movement of RNA and other proteins into the sieve tube. The CmPP16 ortholog in Citrus CsPP16 was characterized in silico to determine its potential capacity to associate with other mobile proteins and its enrichment in the vascular tissue. The systemic nature of CsPP16 was approached by evaluating its capacity to provide phloem-mobile properties to antimicrobial peptides (AMPs), important in the innate immune defense. The engineering of macromolecular trafficking in the vasculature demonstrated the capacity to mobilize translationally fused peptides into the phloem stream for long-distance transport. The translocation into the phloem of AMPs could mitigate the growth of Candidatus Liberibacter asiaticus, with important implications for crop defense; this system also opens the possibility of translocating other molecules to modulate traits, such as plant growth, defense, and plant productivity.
Collapse
|
5
|
Paniagua C, Sinanaj B, Benitez-Alfonso Y. Plasmodesmata and their role in the regulation of phloem unloading during fruit development. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102145. [PMID: 34826657 PMCID: PMC8687135 DOI: 10.1016/j.pbi.2021.102145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/08/2023]
Abstract
Fruit consumption is fundamental to a balanced diet. The contemporary challenge of maintaining a steady food supply to meet the demands of a growing population is driving the development of strategies to improve the production and nutritional quality of fruit. Plasmodesmata, the structures that mediate symplasmic transport between plant cells, play an important role in phloem unloading and distribution of sugars and signalling molecules into developing organs. Targeted modifications to the structures and functioning of plasmodesmata have the potential to improve fruit development; however, knowledge on the mechanisms underpinning plasmodesmata regulation in this context is scarce. In this review, we have compiled current knowledge on plasmodesmata and their structural characterisation during the development of fruit organs. We discuss key questions on phloem unloading, including the pathway shift from symplasmic to apoplastic that takes place during the onset of ripening as potential targets for improving fruit quality.
Collapse
Affiliation(s)
- Candelas Paniagua
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Besiana Sinanaj
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
6
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Detection and in vitro studies of Cucurbita maxima phloem serpin-1 RNA-binding properties. Biochimie 2020; 170:118-127. [PMID: 31935442 DOI: 10.1016/j.biochi.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 11/22/2022]
Abstract
Apart from being a conduit for photoassimilate transport in plants, the phloem serves as a pathway for transport of proteins and RNAs from sites of their synthesis to distant plant parts. As demonstrated for mRNAs and small RNAs such as miRNA and siRNA, their phloem transport is largely involved in responses to environmental cues including stresses and pathogen attacks. RNA molecules are believed to be transported in the phloem in the form of complexes with RNA-binding proteins; however, proteins forming such complexes are generally poorly studied. Here, we demonstrate that the Cucurbita maxima phloem serpin-1 (CmPS1), which has been previously described as a functional protease inhibitor capable of long-distance transport via the phloem, is able to bind RNA in vitro. Among different RNAs tested, CmPS1 exhibits a preference for imperfect RNA duplexes and the highest affinity to tRNA. A characteristic complex formed by CmPS1 with tRNA is not observed upon CmPS1 binding to tRNA-like structures of plant viruses. Mutational analysis demonstrates that the CmPS1 N-terminal region is not involved in RNA binding. Since antithrombin-III, the human protease inhibitor of serpin family most closely sequence-related to CmPS1, is found to be unable to bind RNA, one can suggest that, in its evolution, CmPS1 has gained the RNA binding capability as an additional function likely relevant to its specific activities in the plant phloem.
Collapse
|
8
|
Lezzhov AA, Atabekova AK, Tolstyko EA, Lazareva EA, Solovyev AG. RNA phloem transport mediated by pre-miRNA and viral tRNA-like structures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:99-107. [PMID: 31084885 DOI: 10.1016/j.plantsci.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Phloem-mobile mRNAs are assumed to contain sequence elements directing RNA to the phloem translocation pathway. One of such elements is represented by tRNA sequences embedded in untranslated regions of many mRNAs, including those proved to be mobile. Genomic RNAs of a number of plant viruses possess a 3'-terminal tRNA-like structures (TLSs) only distantly related to genuine tRNAs, but nevertheless aminoacylated and capable of interaction with some tRNA-binding proteins. Here, we elaborated an experimental system for analysis of RNA phloem transport based on an engineered RNA of Potato virus X capable of replication, but not encapsidation and movement in plants. The TLSs of Brome mosaic virus, Tobacco mosaic virus and Turnip yellow mosaic virus were demonstrated to enable the phloem transport of foreign RNA. A miRNA precursor, pre-miR390b, was also found to render RNA competent for the phloem transport. In line with this, sequences of miRNA precursors were identified in a Cucurbita maxima phloem transcriptome, supporting the hypothesis that, at least in some cases, miRNA phloem signaling can involve miRNA precursors. Collectively, the data presented here suggest that RNA molecules can be directed into the phloem translocation pathway by structured RNA elements such as those of viral TLSs and miRNA precursors.
Collapse
Affiliation(s)
- Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119991, Russia
| | - Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia.
| |
Collapse
|
9
|
Kehr J, Kragler F. Long distance RNA movement. THE NEW PHYTOLOGIST 2018; 218:29-40. [PMID: 29418002 DOI: 10.1111/nph.15025] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/28/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 29 I. Introduction 29 II. Phloem as a conduit for macromolecules 30 III. Classes of phloem transported RNAs and their function 32 IV. Mode of RNA transport 35 V. Conclusions 37 Acknowledgements 37 References 37 SUMMARY: In higher plants, small noncoding RNAs and large messenger RNA (mRNA) molecules are transported between cells and over long distances via the phloem. These large macromolecules are thought to get access to the sugar-conducting phloem vessels via specialized plasmodesmata (PD). Analyses of the phloem exudate suggest that all classes of RNA molecules, including silencing-induced RNAs (siRNAs), micro RNAs (miRNAs), transfer RNAs (tRNAs), ribosomal RNA (rRNAs) and mRNAs, are transported via the vasculature to distant tissues. Although the functions of mobile siRNAs and miRNAs as signalling molecules are well established, we lack a profound understanding of mobile mRNA function(s) in recipient cells and tissues, and how they are selected for transport. A surprisingly high number of up to thousands of mRNAs were described in diverse plant species such as cucumber, pumpkin, Arabidopsis and grapevine to move long distances over graft junctions to distinct body parts. In this review, we present an overview of the classes of mobile RNAs, the potential mechanisms facilitating RNA long-distance transport, and the roles of mobile RNAs in regulating transcription and translation. Furthermore, we address potential function(s) of mobile protein-encoding mRNAs with respect to their characteristics and evolutionary constraints.
Collapse
Affiliation(s)
- Julia Kehr
- Biocenter Klein Flottbek, Molekulare Pflanzengenetik, University Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Friedrich Kragler
- Department II, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
10
|
Sheshukova EV, Komarova TV, Ershova NM, Shindyapina AV, Dorokhov YL. An Alternative Nested Reading Frame May Participate in the Stress-Dependent Expression of a Plant Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:2137. [PMID: 29312392 PMCID: PMC5742262 DOI: 10.3389/fpls.2017.02137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP, a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is "matryoshka," containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5'-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Komarova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia M. Ershova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia V. Shindyapina
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Kraner ME, Müller C, Sonnewald U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:696-709. [PMID: 28865150 DOI: 10.1111/tpj.13702] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 05/23/2023]
Abstract
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so-called plasmodesmata (PD). In our previous genetic screen for PD-deficient Arabidopsis mutants, we described choline transporter-like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T-DNA insertion mutant cher1-4 and report a deep comparative proteomic workflow for the identification of cell-wall-embedded PD-associated proteins. Analyzing triplicates of cell-wall-enriched fractions in depth by fractionation and quantitative high-resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col-0. This list was enriched for previously described PD-associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser-scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD-associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD-associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell-to-cell communication.
Collapse
Affiliation(s)
- Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Carmen Müller
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr 5, D-91058, Erlangen, Germany
| |
Collapse
|
12
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|