1
|
King RE, Bilger A, Rademacher J, Lambert PF, Thibeault SL. Preclinical Models of Laryngeal Papillomavirus Infection: A Scoping Review. Laryngoscope 2023; 133:3256-3268. [PMID: 37227124 PMCID: PMC10674042 DOI: 10.1002/lary.30762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Laryngeal human papillomavirus (HPV) infection causes recurrent respiratory papillomatosis (RRP) and accounts for up to 25% of laryngeal cancers. Lack of satisfactory preclinical models is one reason that treatments for these diseases are limited. We sought to assess the literature describing preclinical models of laryngeal papillomavirus infection. DATA SOURCES PubMed, Web of Science, and Scopus were searched from the inception of database through October 2022. REVIEW METHODS Studies searched were screened by two investigators. Eligible studies were peer-reviewed, published in English, presented original data, and described attempted models of laryngeal papillomavirus infection. Data examined included type of papillomavirus, infection model, and results including success rate, disease phenotype, and viral retention. RESULTS After screening 440 citations and 138 full-text studies, 77 studies published between 1923 and 2022 were included. Models used low-risk HPV or RRP (n = 51 studies), high-risk HPV or laryngeal cancer (n = 16), both low- and high-risk HPV (n = 1), and animal papillomaviruses (n = 9). For RRP, 2D and 3D cell culture models and xenografts retained disease phenotypes and HPV DNA in the short term. Two laryngeal cancer cell lines were consistently HPV-positive in multiple studies. Animal laryngeal infections with animal papillomaviruses resulted in disease and long-term retention of viral DNA. CONCLUSIONS Laryngeal papillomavirus infection models have been researched for 100 years and primarily involve low-risk HPV. Most models lose viral DNA after a short duration. Future work is needed to model persistent and recurrent diseases, consistent with RRP and HPV-positive laryngeal cancer. LEVEL OF EVIDENCE NA Laryngoscope, 133:3256-3268, 2023.
Collapse
Affiliation(s)
- Renee E King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| | - Susan L Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A
| |
Collapse
|
2
|
Patiño-Morales CC, Jaime-Cruz R, Ramírez-Fuentes TC, Villavicencio-Guzmán L, Salazar-García M. Technical Implications of the Chicken Embryo Chorioallantoic Membrane Assay to Elucidate Neuroblastoma Biology. Int J Mol Sci 2023; 24:14744. [PMID: 37834193 PMCID: PMC10572838 DOI: 10.3390/ijms241914744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The chorioallantoic membrane (CAM) can be used as a valuable research tool to examine tumors. The CAM can be used to investigate processes such as migration, invasion, and angiogenesis and to assess novel antitumor drugs. The CAM can be used to establish tumors in a straightforward, rapid, and cost-effective manner via xenotransplantation of cells or tumor tissues with reproducible results; furthermore, the use of the CAM adheres to the three "R" principle, i.e., replace, reduce, and refine. To achieve successful tumor establishment and survival, several technical aspects should be taken into consideration. The complexity and heterogeneity of diseases including neuroblastoma and cancers in general and their impact on human health highlight the importance of preclinical models that help us describe tumor-specific biological processes. These models will not only help in understanding tumor biology, but also allow clinicians to explore therapeutic alternatives that will improve current treatment strategies. In this review, we summarize the technical characteristics as well as the main findings regarding the use of this model to study neuroblastoma for angiogenesis, metastasis, drug sensitivity, and drug resistance.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Cell Biology Laboratory, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City 05348, Mexico
| | - Ricardo Jaime-Cruz
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Department of Health Sciences, Universidad Tecnológica de México-UNITEC México-Campus Sur, Mexico City 09810, Mexico
| | - Tania Cristina Ramírez-Fuentes
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Section of Graduate Studies and Research, School of Medicine of the National Polytechnic Institute, Mexico City 11340, Mexico
| | - Laura Villavicencio-Guzmán
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
| | - Marcela Salazar-García
- Developmental Biology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (C.C.P.-M.); (R.J.-C.); (T.C.R.-F.); (L.V.-G.)
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico
| |
Collapse
|
3
|
Guimarães‐Teixeira C, Lobo J, Miranda‐Gonçalves V, Barros‐Silva D, Martins‐Lima C, Monteiro‐Reis S, Sequeira JP, Carneiro I, Correia MP, Henrique R, Jerónimo C. Downregulation of m 6 A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Mol Oncol 2022; 16:1841-1856. [PMID: 35048498 PMCID: PMC9067151 DOI: 10.1002/1878-0261.13181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/06/2021] [Accepted: 01/17/2022] [Indexed: 11/08/2022] Open
Abstract
N6-methyladenosine (m6 A) and its regulatory proteins have been associated with tumorigenesis in several cancer types. However, knowledge on the mechanistic network related to m6 A in bladder cancer (BlCa) is rather limited, requiring further investigation of its functional role. We aimed to uncover the biological role of m6 A and related proteins in BlCa and understand how this influences tumor aggressiveness. N6-adenosine-methyltransferase catalytic subunit (METTL3), N6-adenosine-methyltransferase noncatalytic subunit (METTL14), protein virilizer homolog (VIRMA), and RNA demethylase ALKBH5 (ALKBH5) had significantly lower expression levels in BlCa compared to that in normal urothelium. METTL14 knockdown led to disruption of the remaining methyltransferase complex and a decrease in m6 A abundance, as well as overall reduced tumor aggressiveness (decreased cell invasion and migration capacity and increased apoptosis). Furthermore, in vivo, METTL14 knockdown caused tumor size reduction. Collectively, we propose methyltransferase METTL14 as a key component for m6 A RNA deposit and that it is closely related to BlCa progression, playing an important role in tumor aggressiveness. These data contribute to a better understanding of the m6 A writer complex, which might constitute an appealing therapeutic target.
Collapse
Affiliation(s)
- Catarina Guimarães‐Teixeira
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- PhD Programme in Pathology & Molecular GeneticsSchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - João Lobo
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- PhD Programme in Pathology & Molecular GeneticsSchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
- Department of PathologyPortuguese Oncology Institute of Porto (IPOP)Portugal
- Department of Pathology and Molecular ImmunologySchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - Vera Miranda‐Gonçalves
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- Department of Pathology and Molecular ImmunologySchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - Daniela Barros‐Silva
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- PhD Programme in Pathology & Molecular GeneticsSchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - Cláudia Martins‐Lima
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
| | - Sara Monteiro‐Reis
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
| | - José Pedro Sequeira
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
| | - Isa Carneiro
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- Department of PathologyPortuguese Oncology Institute of Porto (IPOP)Portugal
| | - Margareta P. Correia
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- Department of Pathology and Molecular ImmunologySchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- Department of PathologyPortuguese Oncology Institute of Porto (IPOP)Portugal
- Department of Pathology and Molecular ImmunologySchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics GroupResearch Center of IPO Porto (CI‐IPOP)/RISE@CI‐IPOP (Health Research Network)Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC)Portugal
- Department of Pathology and Molecular ImmunologySchool of Medicine & Biomedical Sciences–University of Porto (ICBAS‐UP)Portugal
| |
Collapse
|
4
|
Kazakova O, Șoica C, Babaev M, Petrova A, Khusnutdinova E, Poptsov A, Macașoi I, Drăghici G, Avram Ș, Vlaia L, Mioc A, Mioc M, Dehelean C, Voicu A. 3-Pyridinylidene Derivatives of Chemically Modified Lupane and Ursane Triterpenes as Promising Anticancer Agents by Targeting Apoptosis. Int J Mol Sci 2021; 22:ijms221910695. [PMID: 34639035 PMCID: PMC8509773 DOI: 10.3390/ijms221910695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer persists as a global challenge due to the extent to which conventional anticancer therapies pose high risks counterbalanced with their therapeutic benefit. Naturally occurring substances stand as an important safer alternative source for anticancer drug development. In the current study, a series of modified lupane and ursane derivatives was subjected to in vitro screening on the NCI-60 cancer cell line panel. Compounds 6 and 7 have been identified as highly active with GI50 values ranging from 0.03 µM to 5.9 µM (compound 6) and 0.18–1.53 µM (compound 7). Thus, these two compounds were further assessed in detail in order to identify a possible antiproliferative mechanism of action. DAPI (4′,6-diamidino-2-phenylindole) staining revealed that both compounds induced nuclei condensation and overall cell morphological changes consistent with apoptotic cell death. rtPCR analysis showed that both compounds induced upregulation of proapoptotic Bak and Bad genes while downregulating Bcl-XL and Bcl-2 antiapoptotic genes. Molecular docking analysis revealed that both compounds exhibited high scores for Bcl-XL inhibition, while compound 7 showed higher in silico Bcl-XL inhibition potential as compared to the native inhibitor ATB-737, suggesting that compounds may induce apoptotic cell death through targeted antiapoptotic protein inhibition, as well.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
- Correspondence: (O.K.); (M.M.)
| | - Codruța Șoica
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marat Babaev
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Alexander Poptsov
- Ufa Institute of Chemistry UFRC, Russian Academy of Science RAS, pr. Oktyabrya 71, 450054 Ufa, Russia; (M.B.); (A.P.); (E.K.); (A.P.)
| | - Ioana Macașoi
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - George Drăghici
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ștefana Avram
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Formulation and Technology of Drugs Research Center, “Victor Babeș” University of Medicine and Pharmacy, Faculty of Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Alexandra Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (O.K.); (M.M.)
| | - Cristina Dehelean
- Formulation and Technology of Drugs Research Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania; (C.Ș.); (I.M.); (G.D.); (Ș.A.); (L.V.); (A.M.); (C.D.)
- Research Centre Pharmacotoxicol Evaluat, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Adrian Voicu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania;
| |
Collapse
|
5
|
Burggren W, Rojas Antich M. Angiogenesis in the Avian Embryo Chorioallantoic Membrane: A Perspective on Research Trends and a Case Study on Toxicant Vascular Effects. J Cardiovasc Dev Dis 2020; 7:jcdd7040056. [PMID: 33291457 PMCID: PMC7762154 DOI: 10.3390/jcdd7040056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The chorioallantoic membrane (CAM) of the avian embryo is an intrinsically interesting gas exchange and osmoregulation organ. Beyond study by comparative biologists, however, the CAM vascular bed has been the focus of translational studies by cardiovascular life scientists interested in the CAM as a model for probing angiogenesis, heart development, and physiological functions. In this perspective article, we consider areas of cardiovascular research that have benefited from studies of the CAM, including the themes of investigation of the CAM's hemodynamic influence on heart and central vessel development, use of the CAM as a model vascular bed for studying angiogenesis, and the CAM as an assay tool. A case study on CAM vascularization effects of very low doses of crude oil as a toxicant is also presented that embraces some of these themes, showing the induction of subtle changes in the pattern of the CAM vasculature growth that are not readily observed by standard vascular assessment methodologies. We conclude by raising several questions in the area of CAM research, including the following: (1) Do changes in patterns of CAM growth, as opposed to absolute CAM growth, have biological significance?; (2) How does the relative amount of CAM vascularization compared to the embryo per se change during development?; and (3) Is the CAM actually representative of the mammalian systemic vascular beds that it is presumed to model?
Collapse
|
6
|
Kalot G, Godard A, Busser B, Pliquett J, Broekgaarden M, Motto-Ros V, Wegner KD, Resch-Genger U, Köster U, Denat F, Coll JL, Bodio E, Goze C, Sancey L. Aza-BODIPY: A New Vector for Enhanced Theranostic Boron Neutron Capture Therapy Applications. Cells 2020; 9:cells9091953. [PMID: 32854219 PMCID: PMC7565158 DOI: 10.3390/cells9091953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on the nuclear capture of slow neutrons by stable 10B atoms followed by charged particle emission that inducing extensive damage on a very localized level (<10 μm). To be efficient, a sufficient amount of 10B should accumulate in the tumor area while being almost cleared from the normal surroundings. A water-soluble aza-boron-dipyrromethene dyes (BODIPY) fluorophore was reported to strongly accumulate in the tumor area with high and BNCT compatible Tumor/Healthy Tissue ratios. The clinically used 10B-BSH (sodium borocaptate) was coupled to the water-soluble aza-BODIPY platform for enhanced 10B-BSH tumor vectorization. We demonstrated a strong uptake of the compound in tumor cells and determined its biodistribution in mice-bearing tumors. A model of chorioallantoic membrane-bearing glioblastoma xenograft was developed to evidence the BNCT potential of such compound, by subjecting it to slow neutrons. We demonstrated the tumor accumulation of the compound in real-time using optical imaging and ex vivo using elemental imaging based on laser-induced breakdown spectroscopy. The tumor growth was significantly reduced as compared to BNCT with 10B-BSH. Altogether, the fluorescent aza-BODIPY/10B-BSH compound is able to vectorize and image the 10B-BSH in the tumor area, increasing its theranostic potential for efficient approach of BNCT.
Collapse
Affiliation(s)
- Ghadir Kalot
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Amélie Godard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Benoît Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Grenoble Alpes University Hospital, 38043 Grenoble, France
| | - Jacques Pliquett
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Mans Broekgaarden
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Vincent Motto-Ros
- Institut Lumière Matière UMR 5306, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne, France;
| | - Karl David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489 Berlin, Germany; (K.D.W.); (U.R.-G.)
| | - Ulli Köster
- Institut Laue Langevin, 38042 Grenoble, France;
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB CNRS, UMR 6302, Université Bourgogne Franche-Comté, 21078 Dijon, France; (A.G.); (J.P.); (F.D.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (G.K.); (B.B.); (M.B.); (J.-L.C.)
- Correspondence: (E.B.); (C.G.); (L.S.); Tel.: +33-380-396-076 (E.B.); +33-380-399-043 (C.G.); +33-476-549-410 (L.S.)
| |
Collapse
|