1
|
Xu L, Zhang Y, Chen X, Hong Y, Zhang X, Hu H, Han X, Zou X, Xu M, Zhu W, Liu Y. Human Brain Organoids Model Abnormal Prenatal Neural Development Induced by Thermal Stimulation. Cell Prolif 2024:e13777. [PMID: 39668124 DOI: 10.1111/cpr.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
The developing human foetal brain is sensitive to thermal stimulation during pregnancy. However, the mechanisms by which heat exposure affects human foetal brain development remain unclear, largely due to the lack of appropriate research models for studying thermal stimulation. To address this, we have developed a periodic heating model based on brain organoids derived from human pluripotent stem cells. The model recapitulated neurodevelopmental disruptions under prenatal heat exposure at the early stages, providing a paradigm for studying the altered neurodevelopment under environmental stimulation. Our study found that periodic heat exposure led to decreased size and impaired neural tube development in the brain organoids. Bulk RNA-seq analysis revealed that the abnormal WNT signalling pathway and the reduction of G2/M progenitor cells might be involved in heat stimulation. Further investigation revealed increased neural differentiation and decreased proliferation under heat stimulation, indicating that periodic heat exposure might lead to abnormal brain development by altering key developmental processes. Hence, our model of periodically heating brain organoids provides a platform for modelling the effects of maternal fever on foetal brain development and could be extended to applications in neurodevelopmental disorders intervention.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yufan Zhang
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xingyi Chen
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yuan Hong
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Xiao Zou
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Min Xu
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Wanying Zhu
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Camps-Fajol C, Cavero D, Minguillón J, Surrallés J. Targeting protein-protein interactions in drug discovery: Modulators approved or in clinical trials for cancer treatment. Pharmacol Res 2024; 211:107544. [PMID: 39667542 DOI: 10.1016/j.phrs.2024.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Protein-protein interactions (PPIs) form complex cellular networks fundamental to many key biological processes, including signal transduction, cell proliferation and DNA repair. In consequence, their perturbation is often associated with many human diseases. Targeting PPIs offers a promising approach in drug discovery and ongoing advancements in this field hold the potential to provide highly specific therapies for a wide range of complex diseases. Despite the development of PPI modulators is challenging, advances in the genetic, proteomic and computational level have facilitated their discovery and optimization. Focusing on anticancer drugs, in the last years several PPI modulators have entered clinical trials and venetoclax, which targets Bcl-2 family proteins, has been approved for treating different types of leukemia. This review discusses the clinical development status of drugs modulating several PPIs, such as MDM2-4/p53, Hsp90/Hsp90, Hsp90/CDC37, c-Myc/Max, KRAS/SOS1, CCR5/CCL5, CCR2/CCL2 or Smac/XIAP, in cancer drug discovery.
Collapse
Affiliation(s)
- Cristina Camps-Fajol
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Debora Cavero
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain
| | - Jordi Minguillón
- CIBERER-ISCIII, IdiPAZ-CNIO Translational Research Unit in Pediatric Hemato-Oncology, La Paz University Hospital Research Institute; Spanish National Cancer Center, Madrid, Spain; Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Jordi Surrallés
- Unitat Mixta de Recerca en Medicina Genòmica, Universitat Autònoma de Barcelona (UAB)-IR SANT PAU, Barcelona, Spain; Institut de Bioenginyeria de Catalunya (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III (CIBERER, ISCIII), Madrid, Spain; Servei de Genètica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
3
|
Zhang T, Liu J, Jin W, Nie H, Chen S, Tang X, Liu R, Wang M, Chen R, Lu J, Bao J, Jiang S, Xiao Y, Yan F. The sensory nerve regulates stem cell homeostasis through Wnt5a signaling. iScience 2024; 27:111035. [PMID: 39635121 PMCID: PMC11615182 DOI: 10.1016/j.isci.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/13/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence indicates that nerves play a significant role in regulating stem cell homeostasis and developmental processes. To explore the impact of nerves on epithelial stem cell homeostasis during tooth development, the regulation of sensory nerves on stem cell homeostasis was investigated using a rat model of incisor development. Impaired mineralization, decreased enamel thickness, and fractured enamel rods of the incisor were observed after denervation. qPCR and histological staining revealed that the expression of enamel-related factors ameloblastin (AMBN), kallikrein-4, amelogenin (Amelx), collagen type XVII (col17a), and enamelin were decreased in the incisor enamel of rats with sensory nerve injure. The decreased expression of Wnt5a in ameloblasts was coupled with the downregulation of calcium ion-related calmodulin kinase II. These results implicate that the sensory nerves are essential in stem cell homeostasis for enamel mineralization and development.
Collapse
Affiliation(s)
- Ting Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiaying Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Weiqiu Jin
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Sheng Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xuna Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rong Liu
- Department of Periodontology, Guiyang Hospital of Stomatology, Guiyang 550002, GuiZhou, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Rixin Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jun Bao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shaoyun Jiang
- Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Shenzhen Clinical Research Center for Oral Diseases, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, Shenzhen 5180036, Guangdong, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lara LDS, Coletta RD, Assis Machado R, Querino Rocha de Oliveira L, Martelli Júnior H, de Almeida Reis SR, Scariot R, Evaristo Ricci Volpato L. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: a multicenter study in Brazil. J Appl Oral Sci 2024; 32:e20230353. [PMID: 38359266 PMCID: PMC11018296 DOI: 10.1590/1678-7757-2023-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Associations between the WNT5A rs566926 variant and non-syndromic orofacial cleft (NSOC) have been reported in different populations. OBJECTIVE This study aimed to investigate the role of the rs566926 single nucleotide polymorphism (SNP) in WNT5A and its interactions with SNPs in BMP4, FGFR1, GREM1, MMP2, and WNT3 in the occurrence of NSOC in a Brazilian population. METHODOLOGY A case-control genetic association study was carried out involving participants from four regions of Brazil, totaling 801 patients with non-syndromic cleft lip with or without cleft palate (NSCL±P), 273 patients with cleft palate only (NSCPO), and 881 health volunteers without any congenital condition (control). Applying TaqMan allelic discrimination assays, we evaluated WNT5A rs566926 in an ancestry-structured multiple logistic regression analysis, considering sex and genomic ancestry as covariates. Interactions between rs566926 and variants in genes involved in the WNT5A signaling pathway (BMP4, FGFR1, GREM1, MMP2, and WNT3) were also explored. RESULTS WNT5A rs566926 was significantly associated with an increased risk of NSCL±P, particularly due to a strong association with non-syndromic cleft lip only (NSCLO), in which the C allele increased the risk by 32% (OR: 1.32, 95% CI: 1.04-1.67, p=0.01). According to the proportions of European and African genomic ancestry, the association of rs566926 reached significant levels only in patients with European ancestry. Multiple interactions were detected between WNT5A rs566926 and BMP4 rs2071047, GREM1 rs16969681 and rs16969862, and FGFR1 rs7829058. CONCLUSION The WNT5A rs566926 polymorphism was associated with NSCL±P, particularly in individuals with NSCLO and high European ancestry. Epistatic interactions involving WNT5A rs566926 and variants in BMP4, GREM1, and FGFR1 may contribute to the risk of NSCL±P in the Brazilian population.
Collapse
Affiliation(s)
- Lorraynne Dos Santos Lara
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| | - Ricardo D Coletta
- Universidade Estadual de Campinas, Departamento de Diagnóstico Oral e Programa de Pós-Graduação em Biologia Buco-Dental, Faculdade de Odontologia de Piracicaba, Piracicaba, SP, Brasil
| | - Renato Assis Machado
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Lilianny Querino Rocha de Oliveira
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Programa de Pós-Graduação em Biologia Buco-Dental, Piracicaba, SP, Brasil
| | - Hercílio Martelli Júnior
- Universidade Estadual de Montes Claros, Departamento de Odontologia, Clínica de Estomatologia, Montes Claros, MG, Brasil, e
| | | | - Rafaela Scariot
- Universidade Federal do Paraná, setor de Ciências da Saúde, Departamento de Estomatologia, Disciplina de Cirurgia Bucomaxilofacial, Curitiba, PR, Brasil
| | - Luiz Evaristo Ricci Volpato
- Universidade de Cuiabá, Programa de Pós-Graduação em Ciências Odontológicas Integradas, Faculdade de Odontologia de Cuiabá, Cuiabá, MT, Brasil
| |
Collapse
|
6
|
Huang Y, Xue Q, Chang J, Wang X, Miao C. Wnt5a: A promising therapeutic target for inflammation, especially rheumatoid arthritis. Cytokine 2023; 172:156381. [PMID: 37806072 DOI: 10.1016/j.cyto.2023.156381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Wnt5a is a member of the Wnt protein family, which acts on classical or multiple non-classical Wnt signaling pathways by binding to different receptors. The expression regulation and signal transduction of Wnt5a is closely related to the inflammatory response. Abnormal activation of Wnt5a signaling is an important part of inflammation and rheumatoid arthritis (RA). OBJECTIVES This paper mainly focuses on Wnt5a protein and its mediated signaling pathway, summarizes the latest research progress of Wnt5a in the pathological process of inflammation and RA, and looks forward to the main directions of Wnt5a in RA research, aiming to provide a theoretical basis for the prevention and treatment of RA diseases by targeting Wnt5a. RESULTS Wnt5a is highly expressed in activated blood vessels, histocytes and synoviocytes in inflammatory diseases such as sepsis, sepsis, atherosclerosis and rheumatoid arthritis. It mediates the production of pro-inflammatory cytokines and chemokines, regulates the migration and recruitment of various immune effector cells, and thus participates in the inflammatory response. Wnt5a plays a pathological role in synovial inflammation and bone destruction of RA, and may be an important clinical therapeutic target for RA. CONCLUSION Wnt5a is involved in the pathological process of inflammation and interacts with inflammatory factors. Wnt5a may be a new target for regulating the progression of RA disease and intervening therapy because of its multi-modal effects on the etiology of RA, especially as a regulator of osteoclast activity and inflammation.
Collapse
Affiliation(s)
- Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Shah R, Amador C, Chun ST, Ghiam S, Saghizadeh M, Kramerov AA, Ljubimov AV. Non-canonical Wnt signaling in the eye. Prog Retin Eye Res 2023; 95:101149. [PMID: 36443219 PMCID: PMC10209355 DOI: 10.1016/j.preteyeres.2022.101149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Wnt signaling comprises a group of complex signal transduction pathways that play critical roles in cell proliferation, differentiation, and apoptosis during development, as well as in stem cell maintenance and adult tissue homeostasis. Wnt pathways are classified into two major groups, canonical (β-catenin-dependent) or non-canonical (β-catenin-independent). Most previous studies in the eye have focused on canonical Wnt signaling, and the role of non-canonical signaling remains poorly understood. Additionally, the crosstalk between canonical and non-canonical Wnt signaling in the eye has hardly been explored. In this review, we present an overview of available data on ocular non-canonical Wnt signaling, including developmental and functional aspects in different eye compartments. We also discuss important changes of this signaling in various ocular conditions, such as keratoconus, aniridia-related keratopathy, diabetes, age-related macular degeneration, optic nerve damage, pathological angiogenesis, and abnormalities in the trabecular meshwork and conjunctival cells, and limbal stem cell deficiency.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Steven T Chun
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; University of California Los Angeles, Los Angeles, CA, USA
| | - Sean Ghiam
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrei A Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Baldavira CM, Prieto TG, Machado-Rugolo J, de Miranda JT, de Oliveira LKR, Velosa APP, Teodoro WR, Ab’Saber A, Takagaki T, Capelozzi VL. Modeling extracellular matrix through histo-molecular gradient in NSCLC for clinical decisions. Front Oncol 2022; 12:1042766. [PMID: 36452484 PMCID: PMC9703002 DOI: 10.3389/fonc.2022.1042766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/27/2022] [Indexed: 09/26/2023] Open
Abstract
Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and β-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.
Collapse
Affiliation(s)
| | | | - Juliana Machado-Rugolo
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Health Technology Assessment Center, Clinical Hospital, Medical School of São Paulo State University, Botucatu, São Paulo, Brazil
| | - Jurandir Tomaz de Miranda
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Lizandre Keren Ramos de Oliveira
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Paula Pereira Velosa
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Alexandre Ab’Saber
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Teresa Takagaki
- Division of Pneumology, Instituto do Coração (Incor), University of São Paulo Medical School (USP), São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Jeensuk S, Ortega MS, Saleem M, Hawryluk B, Scheffler TL, Hansen PJ. Actions of WNT family member 5A to regulate characteristics of development of the bovine preimplantation embryo†. Biol Reprod 2022; 107:928-944. [PMID: 35765196 PMCID: PMC9562107 DOI: 10.1093/biolre/ioac127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
WNT signaling is important for regulation of embryonic development. The most abundant WNT gene expressed in the bovine endometrium during the preimplantation period is WNT5A. One objective was to determine whether WNT5A regulates competence of the bovine preimplantation embryo to become a blastocyst and alters the number of cells in the inner cell mass and trophectoderm. A second objective was to delineate features of the cell-signaling mechanisms involved in WNT5A actions. WNT5A caused a concentration-dependent increase in the proportion of embryos developing to the blastocyst stage and in the number of inner cell mass cells in the resultant blastocysts. A concentration of 200 ng/mL was most effective, and a higher concentration of 400 ng/mL was not stimulatory. Bovine serum albumin in culture reduced the magnitude of effects of WNT5A on development to the blastocyst stage. WNT5A affected expression of 173 genes at the morula stage; all were upregulated by WNT5A. Many of the upregulated genes were associated with cell signaling. Actions of WNT5A on development to the blastocyst stage were suppressed by a Rho-associated coiled-coil kinase (ROCK) signaling inhibitor, suggesting that WNT5A acts through Ras homology gene family member A (RhoA)/ROCK signaling. Other experiments indicated that actions of WNT5A are independent of the canonical β-catenin signaling pathway and RAC1/c-Jun N-terminal kinase (JNK) signaling. This is the first report outlining the actions of WNT5A to alter the development of the mammalian embryo. These findings provide insights into how embryokines regulate maternal-embryonic communication.
Collapse
Affiliation(s)
- Surawich Jeensuk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - M Sofia Ortega
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Muhammad Saleem
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
- Department of Theriogenology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Briana Hawryluk
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Tracy L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Lee SH, Hou JC, Hamidzadeh A, Yousafzai MS, Ajeti V, Chang H, Odde DJ, Murrell M, Levchenko A. A molecular clock controls periodically driven cell migration in confined spaces. Cell Syst 2022; 13:514-529.e10. [PMID: 35679858 DOI: 10.1016/j.cels.2022.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/10/2021] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca2+ levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model. We further demonstrate that an increasing frequency of the clock translates into a faster cell migration within physically confining spaces. This work lays the foundation for a better understanding of the molecular mechanisms dynamically driving cell migration in complex environments.
Collapse
Affiliation(s)
- Sung Hoon Lee
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay C Hou
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Archer Hamidzadeh
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - M Sulaiman Yousafzai
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Visar Ajeti
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Hao Chang
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Murrell
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Andre Levchenko
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Li LL, Peng Z, Hu Q, Xu LJ, Zou X, Huang DM, Yi P. Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α. World J Gastrointest Oncol 2022; 14:842-857. [PMID: 35582103 PMCID: PMC9048536 DOI: 10.4251/wjgo.v14.i4.842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is the third deadliest cancer in the world and ranks second in incidence and mortality of cancers in China. Despite advances in prevention, diagnosis, and therapy, the absolute number of cases is increasing every year due to aging and the growth of high-risk populations, and gastric cancer is still a leading cause of cancer-related death. Gastric cancer is a consequence of the complex interaction of microbial agents, with environmental and host factors, resulting in the dysregulation of multiple oncogenic and tumor-suppressing signaling pathways. Global efforts have been made to investigate in detail the genomic and epigenomic heterogeneity of this disease, resulting in the identification of new specific and sensitive predictive and prognostic biomarkers. Trastuzumab, a monoclonal antibody against the HER2 receptor, is approved in the first-line treatment of patients with HER2+ tumors, which accounts for 13%-23% of the gastric cancer population. Ramucirumab, a monoclonal antibody against VEGFR2, is currently recommended in patients progressing after first-line treatment. Several clinical trials have also tested novel agents for advanced gastric cancer but mostly with disappointing results, such as anti-EGFR and anti-MET monoclonal antibodies. Therefore, it is still of great significance to screen specific molecular targets for gastric cancer and drugs directed against the molecular targets.
AIM To investigate the effect and mechanism of berberine against tumor growth in gastric cancer xenograft models and to explore the role of hepatocyte nuclear factor 4α (HNF4α)-WNT5a/β-catenin pathways played in the antitumor effects of berberine.
METHODS MGC803 and SGC7901 subcutaneous xenograft models were established. The control group was intragastrically administrated with normal saline, and the berberine group was administrated intragastrically with 100 mg/kg/d berberine. The body weight of nude mice during the experiment was measured to assess whether berberine has any adverse reaction. The volume of subcutaneous tumors during this experiment was recorded to evaluate the inhibitory effect of berberine on the growth of MGC803 and SGC7901 subcutaneous transplantation tumors. Polymerase chain reaction assays were conducted to evaluate the alteration of transcriptional expression of HNF4α, WNT5a and β-catenin in tumor tissues and liver tissues from the MGC803 and SGC7901 xenograft models. Western blotting and IHC were performed to assess the protein expression of HNF4α, WNT5a and β-catenin in tumor tissues and liver tissues from the MGC803 and SGC7901 xenograft models.
RESULTS In the both MGC803 and SGC7901 xenograft tumor models, berberine significantly reduced tumor volume and weight and thus retarded the growth rate of tumors. In the SGC7901 and MGC803 subcutaneously transplanted tumor models, berberine down-regulated the expression of HNF4α, WNT5a and β-catenin in tumor tissues from both transcription and protein levels. Besides, berberine also suppressed the protein expression of HNF4α, WNT5a and β-catenin in liver tissues.
CONCLUSION Berberine retarded the growth of MGC803 and SGC7901 xenograft model tumors, and the mechanism behind these anti-growth effects might be the downregulation of the expression of HNF4α-WNT5a/β-catenin signaling pathways both in tumor tissues and liver tissues of the xenograft models.
Collapse
Affiliation(s)
- Ling-Li Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| | - Ze Peng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Jun Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| | - Xin Zou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| | - Dong-Mei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| | - Ping Yi
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430045, Hubei Province, China
| |
Collapse
|
12
|
Pritha A, Anderson R, Anderson DE, Nicolaides T. A Holistic Review on the Current and Future Status of Biology-Driven and Broad-Spectrum Therapeutic Options for Medulloblastoma. Cureus 2022; 14:e23447. [PMID: 35481313 PMCID: PMC9034720 DOI: 10.7759/cureus.23447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/05/2022] Open
Abstract
With a thorough investigation of the etiology of medulloblastomas, a comprehensive review was done to categorize available clinical trials in order to discuss the future potential of breakthroughs in treatment options. The pertinent issues of medulloblastoma therapy with radiation being inapplicable to children under the age of 3, and therapies causing toxicity are detailed and discussed in the context of understanding how the current therapies may address these suboptimal treatment modalities. This study aggregated published studies from the US government clinical trials website and filtered them based on their direct treatment towards medulloblastomas. Thirty-two clinical trials were applicable to be analyzed and the treatment mechanisms were discussed along with the efficacy; molecular groupings of medulloblastomas were also investigated. The investigated therapies tend to target sonic hedgehog (SHH)-subtype medulloblastomas, but there is a necessity for group 3 subtype and group 4 subtype to be targeted as well. Due to the heterogeneous nature of tumor relapse in groups 3 and 4, there are less specified trials towards those molecular groupings, and radiation seems to be the main scope of treatment. Medulloblastomas being primarily a pediatric tumor require treatment options that minimize radiation to increase the quality of living in children and to prevent long-term symptoms of over radiation. Exploring symptomatic treatment with donepezil in children with combination therapies may be a potential route for future trials; immunotherapies seem to hold potential in treating patients reacting adversely to radiation therapy.
Collapse
|
13
|
Okamoto D, Yamauchi N, Takiguchi G, Nishita M, Kakeji Y, Minami Y, Kamizaki K. Autonomous and intercellular chemokine signaling elicited from mesenchymal stem cells regulates migration of undifferentiated gastric cancer cells. Genes Cells 2022; 27:368-375. [PMID: 35261108 DOI: 10.1111/gtc.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 12/24/2022]
Abstract
Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine (s) in regulating progression of gastric cancer. Here, we show that CXCL16-CXCR6 signaling is also activated in MSCs through cell-autonomous machinery, leading to up-regulated expression of CCL5. We further show that CCR1 and CCR3, receptors of CCL5, are expressed on the surface of MKN45 cells, and that CCL5 secreted from MSCs promotes migration of MKN45 cells presumably via its binding to CCR1/CCR3. These data indicate that cell-autonomous CXCL16-CXCR6 signaling activated in MSCs up-regulates expression of CCL5, and that subsequent activation of CCL5-CCR1/3 signaling in MKN45 cells through intercellular machinery can promote migration of MKN45 cells. Collectively, these findings postulate the presence of orchestrated chemokine signaling emanated from MSCs to regulate progression of undifferentiated gastric cancer cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daiki Okamoto
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Natsuko Yamauchi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Gosuke Takiguchi
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Department of Biochemistry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
14
|
Chen M, Li Y, Xiao L, Dai G, Lu P, Rui Y. Noncanonical Wnt5a signaling regulates tendon stem/progenitor cells senescence. Stem Cell Res Ther 2021; 12:544. [PMID: 34663475 PMCID: PMC8521898 DOI: 10.1186/s13287-021-02605-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Background The structural and functional properties of tendon decline with age, and these changes contribute to tendon disorder. Tendon stem/progenitor cells (TSPCs) play a vital role in tendon repair, regeneration and homeostasis maintaining. Although studies have demonstrated that tendon aging is closely associated with the altered TSPCs function on senescence, the cellular and molecular mechanisms of TSPCs senescence remain largely unknown. This study was designed to investigate the role of Wnt5a in TSPCs senescence. Methods TSPCs were isolated from 2-month-old and 20-month-old male C57BL/6 mice. The expression of Wnt5a was determined by RNA sequencing, qRT-PCR and western blotting. TSPCs were then treated with Wnt5a shRNA or recombinant Wnt5a or AG490 or IFN-γ or Ror2-siRNA. Western blotting, β-gal staining, qRT-PCR, immunofluorescence staining and cell cycle analysis were used for confirming the role of Wnt5a in TSPCs senescence. Results We found a canonical to noncanonical Wnt signaling shift due to enhanced expression of Wnt5a in aged TSPCs. Functionally, we demonstrated that inhibition of Wnt5a attenuated TSPCs senescence, age-related cell polarity and the senescence-associated secretory phenotype (SASP) expression in aged TSPCs. Mechanistically, the JAK–STAT signaling pathway was activated in aged TSPCs, while Wnt5a knockdown inhibited the JAK–STAT signaling pathway, suggesting that Wnt5a modulates TSPCs senescence via JAK–STAT signaling pathway. Moreover, knockdown of Ror2 inhibited Wnt5a-induced activation of the JAK–STAT signaling pathway, which indicates that Wnt5a potentiates JAK–STAT signaling pathway through Ror2, and Ror2 acts as the functional receptor of Wnt5a in TSPCs senescence. Conclusion Our results demonstrate a critical role of noncanonical Wnt5a signaling in TSPCs senescence, and Wnt5a could be an attractive therapeutic target for antagonizing tendon aging. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02605-1.
Collapse
Affiliation(s)
- Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Yingjuan Li
- China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China.,Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Longfei Xiao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China.,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China. .,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, 210009, Jiangsu, China. .,Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China. .,China Orthopedic Regenerative Medicine Group, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
15
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
16
|
Jiang YQ, Wang ZX, Zhong M, Shen LJ, Han X, Zou X, Liu XY, Deng YN, Yang Y, Chen GH, Deng W, Huang JH. Investigating Mechanisms of Response or Resistance to Immune Checkpoint Inhibitors by Analyzing Cell-Cell Communications in Tumors Before and After Programmed Cell Death-1 (PD-1) Targeted Therapy: An Integrative Analysis Using Single-cell RNA and Bulk-RNA Sequencing Data. Oncoimmunology 2021; 10:1908010. [PMID: 33868792 PMCID: PMC8023241 DOI: 10.1080/2162402x.2021.1908010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Currently, a significant proportion of cancer patients do not benefit from programmed cell death-1 (PD-1)-targeted therapy. Overcoming drug resistance remains a challenge. In this study, single-cell RNA sequencing and bulk RNA sequencing data from samples collected before and after anti-PD-1 therapy were analyzed. Cell-cell interaction analyses were performed to determine the differences between pretreatment responders and nonresponders and the relative differences in changes from pretreatment to posttreatment status between responders and nonresponders to ultimately investigate the specific mechanisms underlying response and resistance to anti-PD-1 therapy. Bulk-RNA sequencing data were used to validate our results. Furthermore, we analyzed the evolutionary trajectory of ligands/receptors in specific cell types in responders and nonresponders. Based on pretreatment data from responders and nonresponders, we identified several different cell-cell interactions, like WNT5A-PTPRK, EGFR-AREG, AXL-GAS6 and ACKR3-CXCL12. Furthermore, relative differences in the changes from pretreatment to posttreatment status between responders and nonresponders existed in SELE-PSGL-1, CXCR3-CCL19, CCL4-SLC7A1, CXCL12-CXCR3, EGFR-AREG, THBS1-a3b1 complex, TNF-TNFRSF1A, TNF-FAS and TNFSF10-TNFRSF10D interactions. In trajectory analyses of tumor-specific exhausted CD8 T cells using ligand/receptor genes, we identified a cluster of T cells that presented a distinct pattern of ligand/receptor expression. They highly expressed suppressive genes like HAVCR2 and KLRC1, cytotoxic genes like GZMB and FASLG and the tissue-residence-related gene CCL5. These cells had increased expression of survival-related and tissue-residence-related genes, like heat shock protein genes and the interleukin-7 receptor (IL-7R), CACYBP and IFITM3 genes, after anti-PD-1 therapy. These results reveal the mechanisms underlying anti-PD-1 therapy response and offer abundant clues for potential strategies to improve immunotherapy.
Collapse
Affiliation(s)
- Yi-Quan Jiang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou China
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Artificial Intelligence Laboratory of Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ming Zhong
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Artificial Intelligence Laboratory of Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lu-Jun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou China
| | - Xue Han
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou China
| | - Xuxiazi Zou
- Department of Breast Surgery, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Artificial Intelligence Laboratory of Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin-Yi Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Nan Deng
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Gui-Hua Chen
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Deng
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Artificial Intelligence Laboratory of Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jin-Hua Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou China
| |
Collapse
|
17
|
Wan J, Liu Y, Long F, Tian J, Zhang C. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling. Cancer Sci 2021; 112:1707-1722. [PMID: 33369809 PMCID: PMC8088910 DOI: 10.1111/cas.14787] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is the most prevalent form of bone cancer. It has a high metastatic potential and progresses rapidly. The molecular mechanisms of OS remain unclear and this study aims to examine the functional role of circPVT1 and miR‐423‐5p in OS. Quantitative RT‐PCR (qRT‐PCR) and western blotting were used to examine levels of miR‐423‐5p, circPVT1, Wnt5a, Ror2, and glycolysis‐related proteins, including HK2, PKM2, GLUT1, and LDHA. Colony formation and transwell assays were used to test the roles of miR‐423‐5p, circPVT1, and Wnt5a/Ror2 in OS cell proliferation, migration, and invasion. Dual luciferase assay and Ago2‐RIP were used to validate the interactions of miR‐423‐5p/Wnt5a, miR‐423‐5p/Ror2, and circPVT1/miR‐423‐5p. Glucose uptake assay and measurement of lactate production were performed to assess the glycolysis process. A nude mouse xenograft model was used to evaluate the effects of sh‐circPVT1 and miR‐423‐5p mimics on tumor growth and metastasis in vivo. miR‐423‐5p was reduced in both OS tissues and OS cell lines, while Wnt5a/Ror2 and circPVT1 were elevated. miR‐423‐5p bound to 3′‐UTR of Wnt5a and Ror2 mRNA, and inhibited glycolysis and OS cell proliferation, migration, and invasion by targeting Wnt5a and Ror2. circPVT1 interacted with miR‐423‐5p and activated Wnt5a/Ror2 signaling by sponging miR‐423‐5p. Knockdown of circPVT1 or overexpression of miR‐423‐5p suppressed OS tumor growth and metastasis in vivo. miR‐423‐5p inhibited OS glycolysis, proliferation, migration, and metastasis by targeting and suppressing Wnt5a/Ror2 signaling pathway, while circPVT1 promoted those processes by acting as a sponge of miR‐423‐5p.
Collapse
Affiliation(s)
- Jun Wan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yupeng Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Feng Long
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Can Zhang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Lopez-Bergami P, Barbero G. The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer Metastasis Rev 2021; 39:933-952. [PMID: 32435939 DOI: 10.1007/s10555-020-09878-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Wnt5a is the prototypical activator of the non-canonical Wnt pathways, and its overexpression has been implicated in the progression of several tumor types by promoting cell motility, invasion, EMT, and metastasis. Recent evidences have revealed a novel role of Wnt5a in the phosphorylation of the NF-κB subunit p65 and the activation of the NF-κB pathway in cancer cells. In this article, we review the molecular mechanisms and mediators defining a Wnt5a/NF-κB signaling pathway and propose that the aberrant expression of Wnt5a in some tumors drives a Wnt5a/NF-κB/IL-6/STAT3 positive feedback loop that amplifies the effects of Wnt5a. The evidences discussed here suggest that Wnt5a has a double effect on the tumor microenvironment. First, it activates an autocrine ROR1/Akt/p65 pathway that promotes inflammation and chemotaxis of immune cells. Then, Wnt5a activates a TLR/MyD88/p50 pathway exclusively in myelomonocytic cells promoting the synthesis of the anti-inflammatory cytokine IL-10 and a tolerogenic phenotype. As a result of these mechanisms, Wnt5a plays a negative role on immune cell function that contributes to an immunosuppressive tumor microenvironment and would contribute to resistance to immunotherapy. Finally, we summarized the development of different strategies targeting either Wnt5a or the Wnt5a receptor ROR1 that can be helpful for cancer therapy by contributing to generate a more immunostimulatory tumor microenvironment.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimonides, Hidalgo 775, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Hojjat-Farsangi M, Moshfegh A, Schultz J, Norin M, Olin T, Österborg A, Mellstedt H. Targeting the Receptor Tyrosine Kinase ROR1 by Small Molecules. Handb Exp Pharmacol 2021; 269:75-99. [PMID: 34490515 DOI: 10.1007/164_2021_535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Receptor tyrosine kinases (RTKs) are frequently dysregulated in malignancies and important for the malignant characteristics of tumor cells. RTKs are attractive structures for drug targeting of cancer. The RTK ROR1 is of significance during embryogenesis but downregulated in post-partum tissues. However, ROR1 is overexpressed in several hematological and solid tumors and important for tumor cell proliferation, survival, migration, and metastasis. WNT5a is a main ligand for ROR1. Several clinical trials are ongoing using anti-ROR1 antibody based drugs directed against the external domain (monoclonal antibodies, BiTE, CAR-T). We have produced small molecules (KAN834/1571c) fitting to the ATP pocket of the intracellular tyrosine kinase (TK) domain of ROR1 (TK inhibitor, TKI). These inhibitors of ROR1 prevented ROR1 phosphorylation and inactivated the WNT/β-catenin independent as well as WNT/β-catenin dependent pathways. ROR1-TKI induced apoptosis of ROR1 positive fresh patient derived tumor cells and appropriate cell lines and a dose and time dependent tumor reduction in animal models. In combination with other clinically relevant targeting drugs as venetoclax a synergistic apoptotic effect was seen. Two other small molecules (ARI-1 and strictinin) bound also to ROR1 and inhibited tumor growth. Development of small molecule ROR1 inhibitors is warranted to include this novel therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
| | - Ali Moshfegh
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Martin Norin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Wang J, Feng D, Gao B. An Overview of Potential Therapeutic Agents Targeting WNT/PCP Signaling. Handb Exp Pharmacol 2021; 269:175-213. [PMID: 34463852 DOI: 10.1007/164_2021_533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the discovery of the proto-oncogene Wnt1 (Int1) in 1982, WNT signaling has been identified as one of the most important pathways that regulates a wide range of fundamental developmental and physiological processes in multicellular organisms. The canonical WNT signaling pathway depends on the stabilization and translocation of β-catenin and plays important roles in development and homeostasis. The WNT/planar cell polarity (WNT/PCP) signaling, also known as one of the β-catenin-independent WNT pathways, conveys directional information to coordinate polarized cell behaviors. Similar to WNT/β-catenin signaling, disruption or aberrant activation of WNT/PCP signaling also underlies a variety of developmental defects and cancers. However, the pharmacological targeting of WNT/PCP signaling for therapeutic purposes remains largely unexplored. In this review, we briefly discuss WNT/PCP signaling in development and disease and summarize the known drugs/inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
21
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
22
|
Gao JG, Yu MS, Zhang MM, Gu XW, Ren Y, Zhou XX, Chen D, Yan TL, Li YM, Jin X. Adipose-derived mesenchymal stem cells alleviate TNBS-induced colitis in rats by influencing intestinal epithelial cell regeneration, Wnt signaling, and T cell immunity. World J Gastroenterol 2020; 26:3750-3766. [PMID: 32774055 PMCID: PMC7383848 DOI: 10.3748/wjg.v26.i26.3750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conventional Crohn’s disease (CD) treatments are supportive rather than curative and have serious side effects. Adipose-derived mesenchymal stem cells (ADSCs) have been gradually applied to treat various diseases. The therapeutic effect and underlying mechanism of ADSCs on CD are still not clear.
AIM To investigate the effect of ADSC administration on CD and explore the potential mechanisms.
METHODS Wistar rats were administered with 2,4,6-trinitrobenzene sulfonic acid (TNBS) to establish a rat model of CD, followed by tail injections of green fluorescent protein (GFP)-modified ADSCs. Flow cytometry, qRT-PCR, and Western blot were used to detect changes in the Wnt signaling pathway, T cell subtypes, and their related cytokines.
RESULTS The isolated cells showed the characteristics of ADSCs, including spindle-shaped morphology, high expression of CD29, CD44, and CD90, low expression of CD34 and CD45, and osteogenic/adipogenic ability. ADSC therapy markedly reduced disease activity index and ameliorated colitis severity in the TNBS-induced rat model of CD. Furthermore, serum anti-sacchromyces cerevisiae antibody and p-anti-neutrophil cytoplasmic antibody levels were significantly reduced in ADSC-treated rats. Mechanistically, the GFP-ADSCs were colocalized with intestinal epithelial cells (IECs) in the CD rat model. GFP-ADSC delivery significantly antagonized TNBS-induced increased canonical Wnt pathway expression, decreased noncanonical Wnt signaling pathway expression, and increased apoptosis rates and protein level of cleaved caspase-3 in rats. In addition, ADSCs attenuated TNBS-induced abnormal inflammatory cytokine production, disturbed T cell subtypes, and their related markers in rats.
CONCLUSION Successfully isolated ADSCs show therapeutic effects in CD by regulating IEC proliferation, the Wnt signaling pathway, and T cell immunity.
Collapse
Affiliation(s)
- Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Mo-Sang Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xue-Wei Gu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Xin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Tian-Lian Yan
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - You-Ming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
23
|
Catalano A, Bellone F, Morabito N, Corica F. Sclerostin and Vascular Pathophysiology. Int J Mol Sci 2020; 21:ijms21134779. [PMID: 32640551 PMCID: PMC7370046 DOI: 10.3390/ijms21134779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
There is cumulating evidence for a contribution of Wnt signaling pathways in multiple processes involved in atherosclerosis and vascular aging. Wnt signaling plays a role in endothelial dysfunction, in the proliferation and migration of vascular smooth muscle cells (VSMCs) and intimal thickening. Moreover, it interferes with inflammation processes, monocyte adhesion and migration, as well as with foam cell formation and vascular calcification progression. Sclerostin is a negative regulator of the canonical Wnt signaling pathway and, accordingly, the consequence of increased sclerostin availability can be disruption of the Wnt signalling cascade. Sclerostin is becoming a marker for clinical and subclinical vascular diseases and several lines of evidence illustrate its role in the pathophysiology of the vascular system. Sclerostin levels increase with aging and persist higher in some diseases (e.g., diabetes, chronic kidney disease) that are known to precipitate atherosclerosis and enhance cardiovascular risk. Current knowledge on the association between sclerostin and vascular diseases is summarized in this review.
Collapse
Affiliation(s)
- Antonino Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3946; Fax: +39-090-221-7176
| | - Federica Bellone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| | - Nunziata Morabito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| | - Francesco Corica
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.B.); (N.M.); (F.C.)
- A.O.U. Policlinico “G.Martino”, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
24
|
Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans 2020; 48:1187-1198. [DOI: 10.1042/bst20200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
The Wnt/β-catenin signaling pathway plays fundamental roles during development, stem cell differentiation, and homeostasis, and its abnormal activation can lead to diseases. In recent years, it has become clear that this pathway integrates signals not only from Wnt ligands but also from other proteins and signaling routes. For instance, Wnt/β-catenin signaling involves YAP and TAZ, which are transcription factors with crucial roles in mechanotransduction. On the other hand, Wnt/β-catenin signaling is also modulated by integrins. Therefore, mechanical signals might similarly modulate the Wnt/β-catenin pathway. However, and despite the relevance that mechanosensitive Wnt/β-catenin signaling might have during physiology and diseases such as cancer, the role of mechanical cues on Wnt/β-catenin signaling has received less attention. This review aims to summarize recent evidence regarding the modulation of the Wnt/β-catenin signaling by a specific type of mechanical signal, the stiffness of the extracellular matrix. The review shows that mechanical stiffness can indeed modulate this pathway in several cell types, through differential expression of Wnt ligands, receptors and inhibitors, as well as by modulating β-catenin levels. However, the specific mechanisms are yet to be fully elucidated.
Collapse
|
25
|
Flores-Hernández E, Velázquez DM, Castañeda-Patlán MC, Fuentes-García G, Fonseca-Camarillo G, Yamamoto-Furusho JK, Romero-Avila MT, García-Sáinz JA, Robles-Flores M. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell Signal 2020; 72:109636. [PMID: 32283254 DOI: 10.1016/j.cellsig.2020.109636] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022]
Abstract
The Wnt signaling pathway is a crucial regulator of the intestinal epithelium homeostasis and is altered in most colon cancers. While the role of aberrant canonical, β-catenin-dependent Wnt signaling has been well established in colon cancer promotion, much less is known about the role played by noncanonical, β-catenin-independent Wnt signaling in this type of cancer. This work aimed to characterize the noncanonical signal transduction pathway in colon cancer cells. To this end, we used the prototype noncanonical ligand, Wnt5a, in comparison with Wnt3a, the prototype of a canonical β-catenin activating ligand. The analysis of the expression profile of Wnt receptors in colon cancer cell lines showed a clear increase in both level expression and variety of Frizzled receptor types expressed in colon cancer cells compared with non-malignant cells. We found that Wnt5a activates a typical Wnt/Ca++ - noncanonical signaling pathway in colon malignant cells, inducing the hyperphosphorylation of Dvl1, Dvl2 and Dvl3, promoting Ca++ mobilization as a result of phospholipase C (PLC) activation via pertussis toxin-sensitive G-protein, and inducing PLC-dependent cell migration. We also found that while the co-receptor Ror2 tyrosine kinase activity is not required for Ca++ mobilization-induced by Wnt5a, it is required for the inhibitory effects of Wnt5a on the β-catenin-dependent transcriptional activity. Unexpectedly, we found that although the prototype canonical Wnt3a ligand was unique in stimulating the β-catenin-dependent transcriptional activity, it also simultaneously activated PLC, promoted Ca++ mobilization, and induced Rho kinase and PLC-dependent cell migration. Our data indicate, therefore, that a Wnt ligand can activate at the same time the so-called Wnt canonical and noncanonical pathways inducing the formation of complex signaling networks to integrate both pathways in colon cancer cells.
Collapse
Affiliation(s)
- Eric Flores-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Dora M Velázquez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - M Cristina Castañeda-Patlán
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gabriela Fuentes-García
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Gabriela Fonseca-Camarillo
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jesús K Yamamoto-Furusho
- Inflammatory Bowel Disease Clinic, Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M Teresa Romero-Avila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - J Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
26
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
27
|
Ikeda T, Nishita M, Hoshi K, Honda T, Kakeji Y, Minami Y. Mesenchymal stem cell-derived CXCL16 promotes progression of gastric cancer cells by STAT3-mediated expression of Ror1. Cancer Sci 2020; 111:1254-1265. [PMID: 32012403 PMCID: PMC7156785 DOI: 10.1111/cas.14339] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a‐Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co–cultured MKN45 gastric cancer cells via the CXCL16‐CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co–cultured MKN45 cells. We also show that MSC‐derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co–injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti–CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co–injected with MSC. These results suggest that CXCL16 produced through Ror2‐mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6‐STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression.
Collapse
Affiliation(s)
- Taro Ikeda
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Honda
- Department of Human Life Science, Fukushima Medical University School of Nursing, Fukushima, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
28
|
WNT5a-ROR Signaling Is Essential for Alveologenesis. Cells 2020; 9:cells9020384. [PMID: 32046118 PMCID: PMC7072327 DOI: 10.3390/cells9020384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
WNT5a is a mainly “non-canonical” WNT ligand whose dysregulation is observed in lung diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and asthma. Germline deletion of Wnt5a disrupts embryonic lung development. However, the temporal-specific function of WNT5a remains unknown. In this study, we generated a conditional loss-of-function mouse model (Wnt5aCAG) and examined the specific role of Wnt5a during the saccular and alveolar phases of lung development. The lack of Wnt5a in the saccular phase blocked distal airway expansion and attenuated differentiation of endothelial and alveolar epithelial type I (AT1) cells and myofibroblasts. Postnatal Wnt5a inactivation disrupted alveologenesis, producing a phenotype resembling human bronchopulmonary dysplasia (BPD). Mutant lungs showed hypoalveolization, but endothelial and epithelial differentiation was unaffected. The major impact of Wnt5a inactivation on alveologenesis was on myofibroblast differentiation and migration, with reduced expression of key regulatory genes. These findings were validated in vitro using isolated lung fibroblasts. Conditional inactivation of the WNT5a receptors Ror1 and Ror2 in alveolar myofibroblasts recapitulated the Wnt5aCAG phenotype, demonstrating that myofibroblast defects are the major cause of arrested alveologenesis in Wnt5aCAG lungs. Finally, we show that WNT5a is reduced in human BPD lung samples, indicating the clinical relevance and potential role for WNT5a in pathogenesis of BPD.
Collapse
|
29
|
Yang H, Huang K. Dissecting the Vesicular Trafficking Function of IFT Subunits. Front Cell Dev Biol 2020; 7:352. [PMID: 32010685 PMCID: PMC6974671 DOI: 10.3389/fcell.2019.00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) was initially identified as a transport machine with multiple protein subunits, and it is essential for the assembly, disassembly, and maintenance of cilium/flagellum, which serves as the nexus of extracellular-to-intracellular signal integration. To date, in addition to its well-established and indispensable roles in ciliated cells, most IFT subunits have presented more general functions of vesicular trafficking in the non-ciliated cells. Thus, this review aims to summarize the recent progress on the vesicular trafficking functions of the IFT subunits and to highlight the issues that may arise in future research.
Collapse
Affiliation(s)
- Huihui Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Hydrobiology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
30
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
31
|
Xu W, Jones PM, Geng H, Li R, Liu X, Li Y, Lv Q, Liu Y, Wang J, Wang X, Sun Z, Liang J. Islet Stellate Cells Regulate Insulin Secretion via Wnt5a in Min6 Cells. Int J Endocrinol 2020; 2020:4708132. [PMID: 32184820 PMCID: PMC7060442 DOI: 10.1155/2020/4708132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a serious public health problem worldwide. Accumulating evidence has shown that β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. METHODS Glucose-stimulated insulin secretion (GSIS) from Min6 cells was examined by estimating the insulin levels in response to high glucose challenge after culture with ISC supernatant or exogenous Wnt5a. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to observe changes in the β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. RESULTS We observed a significant increase in insulin secretion from Min6 cells cocultured in vitro with supernatant from db/m mouse ISCs compared to that from Min6 cells cocultured with supernatant from db/db mouse ISCs; The intracellular Ca2+ concentration in Min6 cells increased in cultured in vitro with supernatant from db/m mouse ISCs and exogenous Wnt5a compared to that from control Min6 cells. Culture of Min6 cells with exogenous Wnt5a caused a significant increase in pCamKII, pFoxO1, PDX-1, and Glut2 levels compared to those in Min6 cells cultured alone; this treatment further decreased Ror2 and Cask expression but did not affect β-cell dysfunction is an important mechanism underlying diabetes mellitus. The changes in the physiological state of islet stellate cells (ISCs) and the effects of these cells on. CONCLUSION ISCs regulate insulin secretion from Min6 cells through the Wnt5a protein-induced Wnt-calcium and FoxO1-PDX1-GLUT2-insulin signalling cascades.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Peter M. Jones
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, School of Medicine, King's College London, London, UK
| | - Houfa Geng
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Rui Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xuekui Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Yinxia Li
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Qian Lv
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Xiuli Wang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Affiliated Hospital of Medical School of Southeast University, Xuzhou, Jiangsu, China
| |
Collapse
|
32
|
Patel S, Alam A, Pant R, Chattopadhyay S. Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel Therapeutic Insights. Front Immunol 2019; 10:2872. [PMID: 31921137 PMCID: PMC6927425 DOI: 10.3389/fimmu.2019.02872] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023] Open
Abstract
Wnt signaling is one of the central mechanisms regulating tissue morphogenesis during embryogenesis and repair. The pivot of this signaling cascade is the Wnt ligand, which binds to receptors belonging to the Frizzled family or the ROR1/ROR2 and RYK family. This interaction governs the downstream signaling cascade (canonical/non-canonical), ultimately extending its effect on the cellular cytoskeleton, transcriptional control of proliferation and differentiation, and organelle dynamics. Anomalous Wnt signaling has been associated with several cancers, the most prominent ones being colorectal, breast, lung, oral, cervical, and hematopoietic malignancies. It extends its effect on tumorigenesis by modulating the tumor microenvironment via fine crosstalk between transformed cells and infiltrating immune cells, such as leukocytes. This review is an attempt to highlight the latest developments in the understanding of Wnt signaling in the context of tumors and their microenvironment. A dynamic process known as immunoediting governs the fate of tumor progression based on the correlation of various signaling pathways in the tumor microenvironment and immune cells. Cancer cells also undergo a series of mutations in the tumor suppressor gene, which favors tumorigenesis. Wnt signaling, and its crosstalk with various immune cells, has both negative as well as positive effects on tumor progression. On one hand, it helps in the maintenance and renewal of the leucocytes. On the other hand, it promotes immune tolerance, limiting the antitumor response. Wnt signaling also plays a role in epithelial-mesenchymal transition (EMT), thereby promoting the maintenance of Cancer Stem Cells (CSCs). Furthermore, we have summarized the ongoing strategies used to target aberrant Wnt signaling as a novel therapeutic intervention to combat various cancers and their limitations.
Collapse
Affiliation(s)
- Sonal Patel
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Aftab Alam
- Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| | - Richa Pant
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India.,Department of Cancer Biology and Inflammatory Disorder, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
33
|
The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20:ijms20225525. [PMID: 31698687 PMCID: PMC6888566 DOI: 10.3390/ijms20225525] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
Wnt, a secreted glycoprotein, has an approximate molecular weight of 40 kDa, and it is a cytokine involved in various biological phenomena including ontogeny, morphogenesis, carcinogenesis, and maintenance of stem cells. The Wnt signaling pathway can be classified into two main pathways: canonical and non-canonical. Of these, the canonical Wnt signaling pathway promotes osteogenesis. Sclerostin produced by osteocytes is an inhibitor of this pathway, thereby inhibiting osteogenesis. Recently, osteoporosis treatment using an anti-sclerostin therapy has been introduced. In this review, the basics of Wnt signaling, its role in bone metabolism and its involvement in skeletal disorders have been covered. Furthermore, the clinical significance and future scopes of Wnt signaling in osteoporosis, osteoarthritis, rheumatoid arthritis and neoplasia are discussed.
Collapse
|
34
|
An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells 2019; 8:cells8091060. [PMID: 31510045 PMCID: PMC6770184 DOI: 10.3390/cells8091060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Wnt5a signaling has been implicated in the progression of cancer by regulating multiple cellular processes, largely migration and invasion, epithelial-mesenchymal transition (EMT), and metastasis. Since Wnt5a signaling has also been involved in inflammatory processes in infectious and inflammatory diseases, we addressed the role of Wnt5a in regulating NF-κB, a pivotal mediator of inflammatory responses, in the context of cancer. The treatment of melanoma cells with Wnt5a induced phosphorylation of the NF-κB subunit p65 as well as IKK phosphorylation and IκB degradation. By using cDNA overexpression, RNA interference, and dominant negative mutants we determined that ROR1, Dvl2, and Akt (from the Wnt5a pathway) and TRAF2 and RIP (from the NF-κB pathway) are required for the Wnt5a/NF-κB crosstalk. Wnt5a also induced p65 nuclear translocation and increased NF-κB activity as evidenced by reporter assays and a NF-κB-specific upregulation of RelB, Bcl-2, and Cyclin D1. Further, stimulation of melanoma cells with Wnt5a increased the secretion of cytokines and chemokines, including IL-6, IL-8, IL-11, and IL-6 soluble receptor, MCP-1, and TNF soluble receptor I. The inhibition of endogenous Wnt5a demonstrated that an autocrine Wnt5a loop is a major regulator of the NF-κB pathway in melanoma. Taken together, these results indicate that Wnt5a activates the NF-κB pathway and has an immunomodulatory effect on melanoma through the secretion of cytokines and chemokines.
Collapse
|
35
|
Georgiadis P, Gavriil M, Rantakokko P, Ladoukakis E, Botsivali M, Kelly RS, Bergdahl IA, Kiviranta H, Vermeulen RCH, Spaeth F, Hebbels DGAJ, Kleinjans JCS, de Kok TMCM, Palli D, Vineis P, Kyrtopoulos SA. DNA methylation profiling implicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. ENVIRONMENT INTERNATIONAL 2019; 126:24-36. [PMID: 30776747 PMCID: PMC7063446 DOI: 10.1016/j.envint.2019.01.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 05/03/2023]
Abstract
OBJECTIVES To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Marios Gavriil
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, Environmental Health unit, P.O. Box 95, Kuopio, Finland
| | - Efthymios Ladoukakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Rachel S Kelly
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Ingvar A Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Hannu Kiviranta
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Florentin Spaeth
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | | | | | | | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Paolo Vineis
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
36
|
|
37
|
Kerdidani D, Chouvardas P, Arjo AR, Giopanou I, Ntaliarda G, Guo YA, Tsikitis M, Kazamias G, Potaris K, Stathopoulos GT, Zakynthinos S, Kalomenidis I, Soumelis V, Kollias G, Tsoumakidou M. Wnt1 silences chemokine genes in dendritic cells and induces adaptive immune resistance in lung adenocarcinoma. Nat Commun 2019; 10:1405. [PMID: 30926812 PMCID: PMC6441097 DOI: 10.1038/s41467-019-09370-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD)-derived Wnts increase cancer cell proliferative/stemness potential, but whether they impact the immune microenvironment is unknown. Here we show that LUAD cells use paracrine Wnt1 signaling to induce immune resistance. In TCGA, Wnt1 correlates strongly with tolerogenic genes. In another LUAD cohort, Wnt1 inversely associates with T cell abundance. Altering Wnt1 expression profoundly affects growth of murine lung adenocarcinomas and this is dependent on conventional dendritic cells (cDCs) and T cells. Mechanistically, Wnt1 leads to transcriptional silencing of CC/CXC chemokines in cDCs, T cell exclusion and cross-tolerance. Wnt-target genes are up-regulated in human intratumoral cDCs and decrease upon silencing Wnt1, accompanied by enhanced T cell cytotoxicity. siWnt1-nanoparticles given as single therapy or part of combinatorial immunotherapies act at both arms of the cancer-immune ecosystem to halt tumor growth. Collectively, our studies show that Wnt1 induces immunologically cold tumors through cDCs and highlight its immunotherapeutic targeting.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, 3012, Switzerland.,Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Ares Rocanin Arjo
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, 138672, Singapore
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Georgios Kazamias
- Department of Histopathology, Evangelismos General Hospital, Athens, 10676, Greece
| | | | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, 26504, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Bavaria, 81377, Germany
| | - Spyros Zakynthinos
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Ioannis Kalomenidis
- 1st Department of Critical Care and Pulmonary Medicine, Medical School, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Vassili Soumelis
- Integrative Biology of Human Dendritic Cells and T Cells, Institute Curie, Paris, 75005, France
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center Alexander Fleming, Vari-Athens, 16672, Greece.
| |
Collapse
|
38
|
Ahmed K, Koval A, Xu J, Bodmer A, Katanaev VL. Towards the first targeted therapy for triple-negative breast cancer: Repositioning of clofazimine as a chemotherapy-compatible selective Wnt pathway inhibitor. Cancer Lett 2019; 449:45-55. [PMID: 30771433 DOI: 10.1016/j.canlet.2019.02.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Wnt signaling is overactivated in triple-negative breast cancer (TNBC) and several other cancers, and its suppression emerges as an effective anticancer treatment. However, no drugs targeting the Wnt pathway exist on the market nor in advanced clinical trials. Here we provide a comprehensive body of preclinical evidence that an anti-leprotic drug clofazimine is effective against TNBC. Clofazimine specifically inhibits canonical Wnt signaling in a panel of TNBC cells in vitro. In several mouse xenograft models of TNBC, clofazimine efficiently suppresses tumor growth, correlating with in vivo inhibition of the Wnt pathway in the tumors. Clofazimine is well compatible with doxorubicin, exerting additive effects on tumor growth suppression, producing no adverse effects. Its excellent and well-characterized pharmacokinetics profile, lack of serious adverse effects at moderate (yet therapeutically effective) doses, its combinability with cytotoxic therapeutics, and the novel mechanistic mode of action make clofazimine a prime candidate for the repositioning clinical trials. Our work may bring forward the anti-Wnt targeted therapy, desperately needed for thousands of patients currently lacking targeted treatments.
Collapse
Affiliation(s)
- Kamal Ahmed
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bodmer
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.
| |
Collapse
|
39
|
Xu W, Liang J, Geng HF, Lu J, Li R, Wang XL, Lv Q, Liu Y, Wang J, Liu XK, Jones PM, Sun Z. Wingless-Type MMTV Integration Site Family Member 5a Is a Key Secreted Islet Stellate Cell-Derived Product that Regulates Islet Function. Int J Endocrinol 2019; 2019:7870109. [PMID: 31097962 PMCID: PMC6487103 DOI: 10.1155/2019/7870109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/18/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that T2DM is attributable to the dysfunction of β-cells and the activation of islet stellate cells (ISCs). The wingless-type MMTV integration site family member 5a (Wnt5a)/frizzled 5 (Fzd5) signalling pathway might take part in this process. Our study is aimed at defining the status of ISCs during β-cell insulin secretion homeostasis by determining the role of the Wnt5a protein in the regulation of insulin production. We examined the effects of the status of ISCs on β-cell insulin secretion in normoglycemic db/m and hyperglycaemic db/db mice. METHODS iTRAQ protein screening and RNA interference were used to determine novel ISC-derived secretory products that may use other mechanisms to influence the function of islets. RESULTS We showed a significant reduction in insulin secretion by β-cells in vitro when they were cocultured with db/db ISCs compared to when they were cocultured with ISCs isolated from normoglycemic db/m mice; in addition, both Wnt5a and its receptor Fzd5 were more highly expressed by quiescent ISCs than by activated db/db ISCs. Treatment with exogenous Wnt5a increased the secretion of insulin in association with the deactivation of ISCs. CONCLUSION Our observations revealed that the Wnt5a protein is a key effector of ISC-mediated improvement in islet function.
Collapse
Affiliation(s)
- Wei Xu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Jun Liang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - H. F. Geng
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory of Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Rui Li
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - X. L. Wang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Qian Lv
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Jie Wang
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - X. K. Liu
- Department of Endocrinology of Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, China
| | - Peter M. Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London, UK
| | - Zl Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Li D, Li J, Jia B, Wang Y, Zhang J, Liu G. Genome-wide identification of microRNAs in decidual natural killer cells from patients with unexplained recurrent spontaneous abortion. Am J Reprod Immunol 2018; 80:e13052. [PMID: 30339301 DOI: 10.1111/aji.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/19/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
PROBLEM This study revealed miRNA regulation and functional microarray-based profiles of miRNAs in the natural killer (NK) cells of the decidual tissue obtained from patients with unexplained recurrent spontaneous abortion (URSA). METHOD OF STUDY Patients with URSA were categorized based on the occurrence of at least two or more successive spontaneous abortions between 7th and 10th gestational week. Total RNA was isolated from the NK cells of the decidual tissue obtained from patients with induced abortion at about the 8th gestational week. The potential contribution of regulatory miRNAs to a genetic predisposition to URSA was characterized by comparison with healthy and fertile controls and bioinformatics analyses. RESULTS Analysis of the miRNA expression profiles identified 50 miRNAs that were differentially expressed, including one down-regulated and 49 up-regulated miRNAs in the URSA group. MiRNA-Gene-Network, miRNA-GO-Network and miRNA-Gene-TF-Network were constructed. The key miRNAs, genes, GOs and core TFs in the network were determined. CONCLUSION Our results suggest that a close relationship exists between the aberrant miRNAs and URSA. Furthermore, these findings support the notion that altered expression of miRNAs may contribute to the clinical diagnosis of URSA and the potential to develop novel strategies for therapeutic targets against URSA.
Collapse
Affiliation(s)
- Dandan Li
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jian Li
- Family Planning Department, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Bin Jia
- Department of Urology, the Third People's Provincial Hospital of Henan Province, Zhengzhou, Henan, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Juxin Zhang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guangzhi Liu
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Veskimäe K, Scaravilli M, Niininen W, Karvonen H, Jaatinen S, Nykter M, Visakorpi T, Mäenpää J, Ungureanu D, Staff S. Expression Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals New Candidates for Targeted Therapies. Transl Oncol 2018; 11:1160-1170. [PMID: 30056367 PMCID: PMC6079561 DOI: 10.1016/j.tranon.2018.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.
Collapse
Affiliation(s)
- K Veskimäe
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland.
| | - M Scaravilli
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - W Niininen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - H Karvonen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - S Jaatinen
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - M Nykter
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - T Visakorpi
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | - J Mäenpää
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - D Ungureanu
- BioMediTech Institute, University of Tampere, Tampere, Finland.; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - S Staff
- Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland; BioMediTech Institute, University of Tampere, Tampere, Finland
| |
Collapse
|
42
|
Expression Analysis of Platinum Sensitive and Resistant Epithelial Ovarian Cancer Patient Samples Reveals New Candidates for Targeted Therapies. Transl Oncol 2018. [PMID: 30056367 DOI: 10.1016/j.tranon.2018.07.010] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer has the highest mortality rate of all gynecologic malignancies. Identification of new biomarkers is highly needed due to its late diagnosis and high recurrence rate. The objective of this study was to identify mechanisms of therapy resistance and potential biomarkers by analyzing mRNA and protein expression from samples derived from patients with platinum-sensitive and -resistant ovarian cancer (total cohort n = 53). The data revealed new candidates for targeted therapies, such as GREB1 and ROR2. We showed that the development of platinum resistance correlated with upregulation of ROR2, whereas GREB1 was downregulated. Moreover, we demonstrated that high levels of ROR2 in platinum-resistant samples were associated with upregulation of Wnt5a, STAT3 and NF-kB levels, suggesting that a crosstalk between the non-canonical Wnt5a-ROR2 and STAT3/NF-kB signaling pathways. Upregulation of ROR2, Wnt5a, STAT3 and NF-kB was further detected in a platinum-resistant cell-line model. The results of the present study provided insight into molecular mechanisms associated with platinum resistance that could be further investigated to improve treatment strategies in this clinically challenging gynecological cancer.
Collapse
|
43
|
Saji T, Nishita M, Ogawa H, Doi T, Sakai Y, Maniwa Y, Minami Y. Critical role of the Ror-family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells. Genes Cells 2018; 23:606-613. [PMID: 29845703 DOI: 10.1111/gtc.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.
Collapse
Affiliation(s)
- Takeshi Saji
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hiroyuki Ogawa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takefumi Doi
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Sakai
- Department of Pathology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
44
|
Latifi Z, Fattahi A, Hamdi K, Ghasemzadeh A, Karimi P, Nejabati HR, Novin MG, Roshangar L, Nouri M. Wnt Signaling Pathway in Uterus of Normal and Seminal Vesicle Excised Mated Mice during Pre-implantation Window. Geburtshilfe Frauenheilkd 2018; 78:412-422. [PMID: 29720747 PMCID: PMC5925692 DOI: 10.1055/a-0589-1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction
The importance of seminal vesicle secretion and uterine Wnt signaling for uterus preparation and embryo implantation has been described.
Materials and Methods
In this study, we evaluated the gene expression of Wnt ligands (Wnt4 and Wnt5a) and their corresponding receptors (Fzd2 and Fzd6) using qRT-PCR and active β-catenin protein levels using western blotting in the uterine tissue of female mice mated with intact and seminal vesicle-excised (SVX) males during the pre-implantation window. We evaluated the association between these factors and implantation rates and embryo spacing.
Results
mRNA expression of Wnt4 and Wnt5a and active β-catenin protein levels decreased from Day 1 to Day 4, but reached a peak on the fifth day of pregnancy. Fzd2 also reached its highest level on Day 5. Fzd6 expression showed a decreasing trend towards the day of implantation. Lack of seminal vesicle secretion decreased Wnt4 and Wnt5a expression on Days 1 and 5 and β-catenin levels on Day 5. There were almost no significant differences in expression levels of the Fzd2 and Fzd6 receptors between groups. There were positive and negative correlations, respectively, between implantation rates and embryo spacing and Wnt4, Wnt5a and active β-catenin in the control group, but such correlations were not observed in the SVX-mated mice.
Conclusions
Significant changes occurred in the expression of several Wnt signaling members and there was a significant association between Wnt signaling and embryo implantation. Seminal vesicle secretion affects Wnt signaling in mice and consequently also affects murine embryo implantation.
Collapse
Affiliation(s)
- Zeinab Latifi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliye Ghasemzadeh
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Zeng A, Yin J, Li Y, Li R, Wang Z, Zhou X, Jin X, Shen F, Yan W, You Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis 2018. [PMID: 29531296 PMCID: PMC5847604 DOI: 10.1038/s41419-018-0343-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Therapeutic application of microRNAs (miRNAs) in Wnt-driven glioma has been valuable; however, their specific roles and mechanisms have not been completely investigated. Real-time quantitative PCR (RT-qPCR) was used to analyse the expression of microRNA-129-5p (miR-129-5p) in human glioma samples. Cell-Counting Kit 8 (CCK-8), flow cytometry, EdU, angiogenesis, Transwell invasion, wound healing, in vitro 3D migration and neurosphere formation assays were employed to assess the role of miR-129-5p in glioblastoma multiforme (GBM) cells. Moreover, we performed the luciferase reporter assay and the RNA-ChIP (chromatin immunoprecipitation) assay to confirm whether Wnt5a was a direct target of miR-129-5p. We also confirmed the correlation between the expression profile of miR-129-5p and Wnt5a in glioma patients from the Chinese Glioma Genome Atlas (CGGA) and investigated the overall survival of GBM patients using two data sets, namely, TCGA and GSE16011, according to their Wnt5a expression status. MiR-129-5p expression levels were downregulated and inversely correlated with Wnt5a expression levels in CGGA glioma patients. Restored expression of miR-129-5p blocked GBM cell proliferation, invasion, migration, angiogenesis, neurosphere formation and resistance to temozolomide. We reported that miR-129-5p directly targeted Wnt5a in glioma. Furthermore, we observed that overexpression of miR-129-5p inhibited the expression of Wnt5a, thus blocking the protein kinase C(PKC)/ERK/NF-κB and JNK pathways. Inhibiting Wnt5a rescued the effects of miR-129-5p loss and increased Wnt5a expression was associated with reduced overall survival of GBM patients. We also demonstrated the inhibitory effect of miR-129-5p on tumour growth in GBM using an in vivo model. The miR-129-5p/Wnt5a-axis-mediated PKC/ERK/NF-κB and JNK pathways have therapeutic potential in GBM treatment.
Collapse
Affiliation(s)
- Ailiang Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Yan Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Zheng Wang
- Beijing Neurosurgical Institute, Capital Medical University, 100050, Beijing, PR China
| | - Xu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Xin Jin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Feng Shen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China.
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, PR China.
| |
Collapse
|
46
|
β-catenin-independent regulation of Wnt target genes by RoR2 and ATF2/ATF4 in colon cancer cells. Sci Rep 2018; 8:3178. [PMID: 29453334 PMCID: PMC5816634 DOI: 10.1038/s41598-018-20641-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/21/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling is an evolutionarily conserved signaling route required for development and homeostasis. While canonical, β-catenin-dependent Wnt signaling is well studied and has been linked to many forms of cancer, much less is known about the role of non-canonical, β-catenin-independent Wnt signaling. Here, we aimed at identifying a β-catenin-independent Wnt target gene signature in order to understand the functional significance of non-canonical signaling in colon cancer cells. Gene expression profiling was performed after silencing of key components of Wnt signaling pathway and an iterative signature algorithm was applied to predict pathway-dependent gene signatures. Independent experiments confirmed several target genes, including PLOD2, HADH, LCOR and REEP1 as non-canonical target genes in various colon cancer cells. Moreover, non-canonical Wnt target genes are regulated via RoR2, Dvl2, ATF2 and ATF4. Furthermore, we show that the ligands Wnt5a/b are upstream regulators of the non-canonical signature and moreover regulate proliferation of cancer cells in a β-catenin-independent manner. Our experiments indicate that colon cancer cells are dependent on both β-catenin-dependent and –independent Wnt signaling routes for growth and proliferation.
Collapse
|
47
|
Wang W, Yu X, Wu C, Jin H. Differential effects of Wnt5a on the proliferation, differentiation and inflammatory response of keratinocytes. Mol Med Rep 2017; 17:4043-4048. [PMID: 29286164 DOI: 10.3892/mmr.2017.8358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/24/2017] [Indexed: 11/06/2022] Open
Abstract
The predominant role of Wnt family member 5A (Wnt5a) is to induce non-canonical Wnt signalling pathways, including the Wnt‑Ca2+ and Wnt‑planar cell polarity pathways. Enhanced Wnt5a expression is involved in the formation of psoriatic plaques; however, its mechanistic role remains to be determined. In the present study, the effects of Wnt5a expression on HaCaT keratinocytes were investigated. HaCaT cells were cultured in medium supplemented with 0, 40 or 80 ng/ml Wnt5a for 24 h. Cell proliferation, the cell cycle, gene expression and inflammatory responses were investigated using Cell‑Counting Kit‑8 assays, flow cytometry analyses, reverse transcription‑quantitative polymerase chain reaction analyses and enzyme‑linked immunosorbent assays, respectively. Wnt5a treatment was revealed to suppress cell proliferation in HaCaT cells. Furthermore, Wnt5a was also demonstrated to increase the proportion of HaCaT cells arrested at the G2/M phase of the cell cycle, but reduce the proportion of HaCaT cells arrested at G0/G1 phase cells. In addition, the expression levels of the differentiation markers, including filaggrin, keratin 1 and keratin 10 were revealed to be downregulated in HaCaT cells. Expression of the canonical Wnt signalling genes (β‑catenin and cyclin D1) and proliferation markers, such as Ki‑67 and proliferating cell nuclear antigen in HaCaT cells were also revealed to be downregulated. However, the expression levels of inflammatory response markers (interferon‑γ, interleukin‑8 and interleukin‑17A) were revealed to be upregulated in HaCaT cells following Wnt5a treatment. These findings suggest that Wnt5a expression may be involved in the inhibition of cell differentiation and the induction of an inflammatory response in patients with psoriasis.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xiaoling Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Chao Wu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Hongzhong Jin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
48
|
Canesin G, Evans-Axelsson S, Hellsten R, Krzyzanowska A, Prasad CP, Bjartell A, Andersson T. Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One 2017; 12:e0184418. [PMID: 28886116 PMCID: PMC5590932 DOI: 10.1371/journal.pone.0184418] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/23/2017] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer patients with high WNT5A expression in their tumors have been shown to have more favorable prognosis than those with low WNT5A expression. This suggests that reconstitution of Wnt5a in low WNT5A-expressing tumors might be an attractive therapeutic approach. To explore this idea, we have in the present study used Foxy-5, a WNT5A mimicking peptide, to investigate its impact on primary tumor and metastasis in vivo and on prostate cancer cell viability, apoptosis and invasion in vitro. We used an in vivo orthotopic xenograft mouse model with metastatic luciferase-labeled WNT5A-low DU145 cells and metastatic luciferase-labeled WNT5A-high PC3prostate cancer cells. We provide here the first evidence that Foxy-5 significantly inhibits the initial metastatic dissemination of tumor cells to regional and distal lymph nodes by 90% and 75%, respectively. Importantly, this effect was seen only with the WNT5A-low DU145 cells and not with the WNT5A-high PC3 cells. The inhibiting effect in the DU145-based model occurred despite the fact that no effects were observed on primary tumor growth, apoptosis or proliferation. These findings are consistent with and supported by the in vitro data, where Foxy-5 specifically targets invasion without affecting apoptosis or viability of WNT5A-low prostate cancer cells. To conclude, our data indicate that the WNT5A-mimicking peptide Foxy-5, which has been recently used in a phase 1 clinical trial, is an attractive candidate for complimentary anti-metastatic treatment of prostate cancer patients with tumors exhibiting absent or low WNT5A expression.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Susan Evans-Axelsson
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rebecka Hellsten
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Chandra P. Prasad
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tommy Andersson
- Department of Translational Medicine, Division of Cell and Experimental Pathology, Lund University, Clinical Research Centre, Skåne University Hospital Malmö, Malmö, Sweden
- * E-mail:
| |
Collapse
|
49
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
50
|
Bu Q, Li Z, Zhang J, Xu F, Liu J, Liu H. The crystal structure of full-length Sizzled from Xenopus laevis yields insights into Wnt-antagonistic function of secreted Frizzled-related proteins. J Biol Chem 2017; 292:16055-16069. [PMID: 28808056 DOI: 10.1074/jbc.m117.791756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/13/2017] [Indexed: 01/05/2023] Open
Abstract
The Wnt-signaling pathway is crucial to cell proliferation, differentiation, and migration. The secreted Frizzled-related proteins (sFRPs) represent the largest family of secreted Wnt inhibitors. However, their function in antagonizing Wnt signaling has remained somewhat controversial. Here, we report the crystal structure of Sizzled from Xenopus laevis, the first full-length structure of an sFRP. Tethered by an inter-domain disulfide bond and a linker, the N-terminal cysteine-rich domain (CRD) and the C-terminal netrin-like domain (NTR) of Sizzled are arranged in a tandem fashion, with the NTR domain occluding the groove of CRD for Wnt accessibility. A Dual-Luciferase assay demonstrated that removing the NTR domain and replacing the CRD groove residues His-116 and His-118 with aromatic residues may significantly enhance antagonistic function of Sizzled in inhibiting Wnt3A signaling. Sizzled is a monomer in solution, and Sizzled CRD exhibited different packing in the crystal, suggesting that sFRPs do not have a conserved CRD dimerization mode. Distinct from the canonical NTR domain, the Sizzled NTR adopts a novel α/β folding with two perpendicular helices facing the central mixed β-sheet. The subgroup of human sFRP1/2/5 and Sizzled should have a similar NTR domain that features a highly positively charged region, opposite the NTR-CRD interface, suggesting that the NTR domain in human sFRPs, at least sFRP1/2/5, is unlikely to bind to Wnt but is likely involved in biphasic Wnt signaling modulation. In summary, the Sizzled structure provides the first insights into how the CRD and the NTR domains relate to each other for modulating Wnt-antagonistic function of sFRPs.
Collapse
Affiliation(s)
- Qixin Bu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Zhiqiang Li
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Junying Zhang
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Fei Xu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jianmei Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and.,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Heli Liu
- From the State Key Laboratory of Natural and Biomimetic Drugs and .,Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|