1
|
Kim DS, Cheah JS, Lai TW, Zhao KX, Foust SR, Julie Lee YR, Lo SH, Heinrich V, Yamada S. Tandem LIM domain-containing proteins, LIMK1 and LMO1, directly bind to force-bearing keratin intermediate filaments. Cell Rep 2024; 43:114480. [PMID: 39003737 PMCID: PMC11610427 DOI: 10.1016/j.celrep.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/10/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.
Collapse
Affiliation(s)
- Dah Som Kim
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Joleen S Cheah
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Tzu Wei Lai
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Karen X Zhao
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Skylar R Foust
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, Davis CA 95616, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis CA 95616 USA
| | - Volkmar Heinrich
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA
| | - Soichiro Yamada
- Biomedical Engineering Department, University of California, Davis, Davis CA 95616, USA.
| |
Collapse
|
2
|
Mykhaliuk VV, Havryliak VV, Salyha YT. The Role of Cytokeratins in Ensuring the Basic Cellular Functions and in Dignosis of Disorders. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Identification of Molecular Markers Related to Immune Infiltration in Patients with Severe Asthma: A Comprehensive Bioinformatics Analysis Based on the Human Bronchial Epithelial Transcriptome. DISEASE MARKERS 2022; 2022:8906064. [DOI: 10.1155/2022/8906064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background. Severe asthma (SA), a heterogeneous inflammatory disease characterized by immune cell infiltration, is particularly difficult to treat and manage. The airway epithelium is an important tissue in regulating innate and adaptive immunity, and targeting airway epithelial cell may contribute to improving the efficacy of asthma therapy. Methods. Bioinformatics methods were utilized to identify the hub genes and signaling pathways involved in SA. Experiments were performed to determine whether these hub genes and signaling pathways were affected by the differences in immune cell infiltration. Results. The weighted gene coexpression network analysis identified 14 coexpression modules, among which the blue and salmon modules exhibited the strongest associations with SA. The blue module was mainly enriched in actomyosin structure organization and was associated with regulating stem cell pluripotency signaling pathways. The salmon module was mainly involved in cornification, skin development, and glycosphingolipid biosynthesis-lacto and neolacto series. The protein-protein interaction network and module analysis identified 11 hub genes in the key modules. The CIBERSORTx algorithm revealed statistically significant differences in CD8+ T cells (
), T follicular helper cells (
), resting mast cells (
), and neutrophils (
) between patients with SA and mild-moderate asthma patients. Pearson’s correlation analysis identified 11 genes that were significantly associated with a variety of immune cells. We further predicted the utility of some potential drugs and validated our results in external datasets. Conclusion. Our results may help provide a better understanding of the relationship between the airway epithelial transcriptome and clinical data of SA. And this study will help to guide the development of SA-targeted molecular therapy.
Collapse
|
4
|
Ratajczyk S, Drexler C, Windoffer R, Leube RE, Fuchs P. A Ca 2+-Mediated Switch of Epiplakin from a Diffuse to Keratin-Bound State Affects Keratin Dynamics. Cells 2022; 11:cells11193077. [PMID: 36231039 PMCID: PMC9563781 DOI: 10.3390/cells11193077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Keratins exert important structural but also cytoprotective functions. They have to be adaptable to support cellular homeostasis. Epiplakin (EPPK1) has been shown to decorate keratin filaments in epithelial cells and to play a protective role under stress, but the mechanism is still unclear. Using live-cell imaging of epithelial cells expressing fluorescently tagged EPPK1 and keratin, we report here an unexpected dynamic behavior of EPPK1 upon stress. EPPK1 was diffusely distributed throughout the cytoplasm and not associated with keratin filaments in living cells under standard culture conditions. However, ER-, oxidative and UV-stress, as well as cell fixation, induced a rapid association of EPPK1 with keratin filaments. This re-localization of EPPK1 was reversible and dependent on the elevation of cytoplasmic Ca2+ levels. Moreover, keratin filament association of EPPK1 led to significantly reduced keratin dynamics. Thus, we propose that EPPK1 stabilizes the keratin network in stress conditions, which involve increased cytoplasmic Ca2+.
Collapse
Affiliation(s)
- Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-4277-52855
| |
Collapse
|
5
|
Senturk A, Sahin AT, Armutlu A, Kiremit MC, Acar O, Erdem S, Bagbudar S, Esen T, Ozlu N. Quantitative Phosphoproteomics Analysis Uncovers PAK2- and CDK1-Mediated Malignant Signaling Pathways in Clear Cell Renal Cell Carcinoma. Mol Cell Proteomics 2022; 21:100417. [PMID: 36152754 PMCID: PMC9637947 DOI: 10.1016/j.mcpro.2022.100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 08/23/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
Clear cell Renal Cell Carcinoma (ccRCC) is among the 10 most common cancers in both men and women and causes more than 140,000 deaths worldwide every year. In order to elucidate the underlying molecular mechanisms orchestrated by phosphorylation modifications, we performed a comprehensive quantitative phosphoproteomics characterization of ccRCC tumor and normal adjacent tissues. Here, we identified 16,253 phosphopeptides, of which more than 9000 were singly quantified. Our in-depth analysis revealed 600 phosphopeptides to be significantly differentially regulated between tumor and normal tissues. Moreover, our data revealed that significantly up-regulated phosphoproteins are associated with protein synthesis and cytoskeletal re-organization which suggests proliferative and migratory behavior of renal tumors. This is supported by a mesenchymal profile of ccRCC phosphorylation events. Our rigorous characterization of the renal phosphoproteome also suggests that both epidermal growth factor receptor and vascular endothelial growth factor receptor are important mediators of phospho signaling in RCC pathogenesis. Furthermore, we determined the kinases p21-activated kinase 2, cyclin-dependent kinase 1 and c-Jun N-terminal kinase 1 to be master kinases that are responsible for phosphorylation of many substrates associated with cell proliferation, inflammation and migration. Moreover, high expression of p21-activated kinase 2 is associated with worse survival outcome of ccRCC patients. These master kinases are targetable by inhibitory drugs such as fostamatinib, minocycline, tamoxifen and bosutinib which can serve as novel therapeutic agents for ccRCC treatment.
Collapse
Affiliation(s)
- Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse T. Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Ayse Armutlu
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Murat Can Kiremit
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Omer Acar
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Selcuk Erdem
- Department of Urology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Sidar Bagbudar
- Department of Pathology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tarik Esen
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey,Koc University Research Center for Translational Medicine (KUTTAM), Omics Laboratory, Istanbul, Turkey,For correspondence: Nurhan Ozlu
| |
Collapse
|
6
|
Büchau F, Vielmuth F, Waschke J, Magin TM. Bidirectional regulation of desmosome hyperadhesion by keratin isotypes and desmosomal components. Cell Mol Life Sci 2022; 79:223. [PMID: 35380280 PMCID: PMC8983532 DOI: 10.1007/s00018-022-04244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.
Collapse
Affiliation(s)
- Fanny Büchau
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany.
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Evtushenko NA, Beilin AK, Kosykh AV, Vorotelyak EA, Gurskaya NG. Keratins as an Inflammation Trigger Point in Epidermolysis Bullosa Simplex. Int J Mol Sci 2021; 22:ijms222212446. [PMID: 34830328 PMCID: PMC8624175 DOI: 10.3390/ijms222212446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.
Collapse
Affiliation(s)
- Nadezhda A. Evtushenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Arkadii K. Beilin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Anastasiya V. Kosykh
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Vavilova 26, 119334 Moscow, Russia;
| | - Nadya G. Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Ostrovityanova 1, 117997 Moscow, Russia; (N.A.E.); (A.K.B.); (A.V.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
8
|
Huang R, Fu Y, Deng Y. KLF4 transactivates TRIM29 expression and modulates keratin network. Biochem Biophys Rep 2021; 28:101117. [PMID: 34485714 PMCID: PMC8403550 DOI: 10.1016/j.bbrep.2021.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The Krüppel-like factor 4 (KLF4) is well known to be a conserved zinc-containing transcription factor that participates in diverse biological processes such as cell proliferation and differentiation. In this study, we found KLF4 can bind specific site in the promoter of TRIM29 to transactivate its transcription, and sumoylation modification on 278 lysine site was not essential for KLF4 to transactivate TRIM29 transcription. It also was showed that KLF4 promoted cell migration when overexpressed, and knockdown of TRIM29 abrogated the migration triggered by KLF4. In addition, overexpression of KLF4 reduced the phosphorylation level of keratin 8 at 432 amino acid site. Our study demonstrated that KLF4 is an important transcription factor on regulating TRIM29 expression and modulates the keratin network.
Collapse
Affiliation(s)
- Runqing Huang
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Fu
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanhong Deng
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
10
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
11
|
Tiwari R, Ganguli N, Alam H, Sahu I, Vadivel CK, Sinha S, Patel S, Jamghare SN, Bane S, Thorat R, Majumdar SS, Vaidya MM. Generation of a tissue-specific transgenic model for K8 phosphomutants: A tool to investigate the role of K8 phosphorylation during skin carcinogenesis in vivo. Cell Biol Int 2021; 45:1720-1732. [PMID: 33847415 DOI: 10.1002/cbin.11611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73 /Serine431 ) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.
Collapse
Affiliation(s)
- Richa Tiwari
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Hunain Alam
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | - Indrajit Sahu
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | | | - Shruti Sinha
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | - Shweta Patel
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | - Sayli Nitin Jamghare
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | - Sanjay Bane
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India
| | | | | | - Milind M Vaidya
- Advanced Centre for Treatment Research, and Education in Cancer, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
De Conto F, Conversano F, Razin SV, Belletti S, Arcangeletti MC, Chezzi C, Calderaro A. Host-cell dependent role of phosphorylated keratin 8 during influenza A/NWS/33 virus (H1N1) infection in mammalian cells. Virus Res 2021; 295:198333. [PMID: 33556415 DOI: 10.1016/j.virusres.2021.198333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the involvement of keratin 8 during human influenza A/NWS/33 virus (H1N1) infection in semi-permissive rhesus monkey-kidney (LLC-MK2) and permissive human type II alveolar epithelial (A549) cells. In A549 cells, keratin 8 showed major expression and phosphorylation levels. Influenza A/NWS/33 virus was able to subvert keratin 8 structural organization at late stages of infection in both cell models, promoting keratin 8 phosphorylation in A549 cells at early phases of infection. Accordingly, partial colocalizations of the viral nucleoprotein with keratin 8 and its phosphorylated form were assessed by confocal microscopy at early stages of infection in A549 cells. The employment of chemical activators of phosphorylation resulted in structural changes as well as increased phosphorylation of keratin 8 in both cell models, favoring the influenza A/NWS/33 virus's replicative efficiency in A549 but not in LLC-MK2 cells. In A549 and human larynx epidermoid carcinoma (HEp-2) cells inoculated with respiratory secretions from pediatric patients positive for, respectively, influenza A virus or respiratory syncytial virus, the keratin 8 phosphorylation level had increased only in the case of influenza A virus infection. The results obtained suggest that in A549 cells the influenza virus is able to induce keratin 8 phosphorylation thereby enhancing its replicative efficiency.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | | | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosov Moscow State University, Moscow, Russia
| | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Lehmann SM, Leube RE, Windoffer R. Growth, lifetime, directional movement and myosin-dependent motility of mutant keratin granules in cultured cells. Sci Rep 2021; 11:2379. [PMID: 33504849 PMCID: PMC7840912 DOI: 10.1038/s41598-021-81542-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022] Open
Abstract
Intermediate filament polypeptides (IFPs) are prominent components of cytoplasmic aggregates, which are pathognomonic for multiple diseases. Recent observations in cultured cells suggest that they are dynamic and subject to regulated turnover. The emerging concept is that multiple factors contribute to motility and turnover of IFP-containing aggregates. To understand their relative contribution, quantitative tools are needed. The current study addresses this need using epithelial cells producing mutant keratin IFPs that have been identified as the cause of the hereditary blister-forming skin disease epidermolysis bullosa simplex. Digital image analysis of individual granules allowed mapping of their complete life cycle, with information on multiple characteristics at any given time-point. The deduced signet features revealed rapid granule fusion and directed transport from the periphery towards the cell centre, and a limited, ~ 30 min lifetime with a slow, continuous growth phase followed by fast disassembly. As paradigmatic proof-of-principle, we demonstrate that inhibition of myosin II selectively reduces granule movement, linking keratin granule motility to retrograde cortical acto-myosin flow. The newly developed methods and established parameters will help in the characterization of known and the identification of novel regulators of IFP-containing aggregates.
Collapse
Affiliation(s)
- S M Lehmann
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - R E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - R Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| |
Collapse
|
14
|
Lutz A, Jung D, Diem K, Fauler M, Port F, Gottschalk K, Felder E. Acute effects of cell stretch on keratin filaments in A549 lung cells. FASEB J 2020; 34:11227-11242. [PMID: 32632966 DOI: 10.1096/fj.201903160rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022]
Abstract
Keratin filaments (KFs) comprise the intermediate filaments of epithelial cells and are well known for their cytoprotective properties and their mechanical resilience. Although, several studies have demonstrated KFs' remarkable tensile properties relatively little is known about acute implications of mechanical stretch on KFs in living cells. This includes structural effects on the KFs and their higher level assembly structures as well as posttranslational response mechanisms to possibly modify KF's properties. We subjected simple epithelial A549 lung cells to 30% unidirectional stretch and already after 10 seconds we observed morphological changes of the KF-network as well as structural effects on their desmosomal anchor sites-both apparently caused by the tensile strain. Interestingly, the effect on the desmosomes was attenuated after 30 seconds of cell stretch with a concomitant increase in phosphorylation of keratin8-S432, keratin18-S53, and keratin18-S34 without an apparent increase in keratin solubility. When mimicking the phosphorylation of keratin18-S34 the stretch-induced effect on the desmosomes could be diminished and probing the cell surface with atomic force microscopy showed a lowered elastic modulus. We conclude that the stretch-induced KF phosphorylation affects KF's tensile properties, probably to lower the mechanical load on strained desmosomal cell-cell contacts, and hence, preserve epithelial integrity.
Collapse
Affiliation(s)
- Anngrit Lutz
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Dominik Jung
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Kathrin Diem
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Department of General Physiology, Ulm University, Ulm, Germany
| | - Fabian Port
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Kay Gottschalk
- Department of Experimental Physics, Ulm University, Ulm, Germany
| | - Edward Felder
- Department of General Physiology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Keratin intermediate filaments: intermediaries of epithelial cell migration. Essays Biochem 2020; 63:521-533. [PMID: 31652439 DOI: 10.1042/ebc20190017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Migration of epithelial cells is fundamental to multiple developmental processes, epithelial tissue morphogenesis and maintenance, wound healing and metastasis. While migrating epithelial cells utilize the basic acto-myosin based machinery as do other non-epithelial cells, they are distinguished by their copious keratin intermediate filament (KF) cytoskeleton, which comprises differentially expressed members of two large multigene families and presents highly complex patterns of post-translational modification. We will discuss how the unique mechanophysical and biochemical properties conferred by the different keratin isotypes and their modifications serve as finely tunable modulators of epithelial cell migration. We will furthermore argue that KFs together with their associated desmosomal cell-cell junctions and hemidesmosomal cell-extracellular matrix (ECM) adhesions serve as important counterbalances to the contractile acto-myosin apparatus either allowing and optimizing directed cell migration or preventing it. The differential keratin expression in leaders and followers of collectively migrating epithelial cell sheets provides a compelling example of isotype-specific keratin functions. Taken together, we conclude that the expression levels and specific combination of keratins impinge on cell migration by conferring biomechanical properties on any given epithelial cell affecting cytoplasmic viscoelasticity and adhesion to neighboring cells and the ECM.
Collapse
|
16
|
Xia B, Zhang H, Yang M, Du S, Wei J, Ding L. Leukamenin E Induces K8/18 Phosphorylation and Blocks the Assembly of Keratin Filament Networks Through ERK Activation. Int J Mol Sci 2020; 21:ijms21093164. [PMID: 32365802 PMCID: PMC7246489 DOI: 10.3390/ijms21093164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Leukamenin E is a natural ent-kaurane diterpenoid isolated from Isodon racemosa (Hemsl) Hara that has been found to be a novel and potential keratin filament inhibitor, but its underlying mechanisms remain largely unknown. Here, we show that leukamenin E induces keratin filaments (KFs) depolymerization, largely independently of microfilament (MFs) and microtubules (MTs) in well-spread cells and inhibition of KFs assembly in spreading cells. These effects are accompanied by keratin phosphorylation at K8-Ser73/Ser431 and K18-Ser52 via the by extracellular signal-regulated kinases (ERK) pathway in primary liver carcinoma cells (PLC) and human umbilical vein endothelial cells (HUVECs). Moreover, leukamenin E increases soluble pK8-Ser73/Ser431, pK18-Ser52, and pan-keratin in the cytoplasmic supernatant by immunofluorescence imaging and Western blotting assay. Accordingly, leukamenin E inhibits the spreading and migration of cells. We propose that leukamenin E-induced keratin phosphorylation may interfere with the initiation of KFs assembly and block the formation of a new KFs network, leading to the inhibition of cell spreading. Leukamenin E is a potential target drug for inhibition of KFs assembly.
Collapse
|
17
|
The Cytoskeleton as Regulator of Cell Signaling Pathways. Trends Biochem Sci 2019; 45:96-107. [PMID: 31812462 DOI: 10.1016/j.tibs.2019.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
During interphase, filamentous actin, microtubules, and intermediate filaments regulate cell shape, motility, transport, and interactions with the environment. These activities rely on signaling events that control cytoskeleton properties. Recent studies uncovered mechanisms that go far beyond this one-directional flow of information. Thus, the three branches of the cytoskeleton impinge on signaling pathways to determine their activities. We propose that this regulatory role of the cytoskeleton provides sophisticated mechanisms to control the spatiotemporal output and the intensity of signaling events. Specific examples emphasize these emerging contributions of the cytoskeleton to cell physiology. In our opinion, further exploration of these pathways will uncover new concepts of cellular communication that originate from the cytoskeleton.
Collapse
|
18
|
Sümer C, Boz Er AB, Dinçer T. Keratin 14 is a novel interaction partner of keratinocyte differentiation regulator: receptor-interacting protein kinase 4. ACTA ACUST UNITED AC 2019; 43:225-234. [PMID: 31582880 PMCID: PMC6713913 DOI: 10.3906/biy-1904-37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The epidermis, the outer layer of the skin, is formed by stratified keratinocyte layers. The self-renewal of the epidermis is provided by sustained proliferation and differentiation of the keratinocyte stem cells localized to the basal layer of the epidermis. Receptor-interacting protein kinase 4 (RIPK4) is an important regulator of keratinocyte differentiation, mutations of which are associated with congenital ectodermal malformations. In an attempt to identify the molecular basis of RIPK4’s function, we applied yeast two-hybrid screen (Y2H) and found basal layer-specific keratin filament component keratin 14 (KRT14) as a novel RIPK4-interacting partner. During keratinocyte differentiation, layer-specific keratin composition is tightly regulated. Likewise, the basal layer specific KRT14/keratin 5 (KRT5) heterodimers are replaced by keratin 1 (KRT1)/keratin 10 (KRT10) in suprabasal layers. The regulation of keratin turnover is under the control of signaling associated with posttranslational modifications in which phosphorylation plays a major role. In this study, we verified the KRT14-RIPK4 interaction, which was identified with Y2H, in mammalian cells and showed that the interaction was direct by using proteins expressed in bacteria. According to our results, the N-terminal kinase domain of RIPK4 is responsible for KRT14-RIPK4 interaction; however, the RIPK4 kinase activity is dispensable for the interaction. In accordance with their interaction, RIPK4 and KRT14 colocalize within the cells, particularly at keratin filaments associated with perinuclear ring-like structures. Moreover, RIPK4 did not show any effect on KRT14/KRT5 heterodimer formation. Our results suggest that RIPK4 may regulate the keratin turnover required for keratinocyte differentiation through interacting with KRT14.
Collapse
Affiliation(s)
- Ceren Sümer
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, Trabzon Turkey
| | - Asiye Büşra Boz Er
- Department of Medical Biology, Institute of Health Science, Karadeniz Technical University, Trabzon Turkey
| | - Tuba Dinçer
- Department of Medical Biology, Faculty of Medicine, Karadeniz Technical University, Trabzon Turkey
| |
Collapse
|
19
|
Tsai FJ, Lai MT, Cheng J, Chao SCC, Korla PK, Chen HJ, Lin CM, Tsai MH, Hua CH, Jan CI, Jinawath N, Wu CC, Chen CM, Kuo BYT, Chen LW, Yang J, Hwang T, Sheu JJC. Novel K6-K14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene 2019; 38:5113-5126. [PMID: 30867567 DOI: 10.1038/s41388-019-0781-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Keratin intermediate filament (IF) is one component of cellular architectures, which provides necessary mechanical support to conquer environmental stresses. Recent findings reveal its involvement in mechano-transduction and the associated stem cell reprogramming, suggesting the possible roles in cancer development. Here, we report t(12;17)(q13.13;q21.2) chromosomal rearrangement as the most common fusion event in OSCC, resulting in a variety of inter-keratin fusions. Junction site mapping verified 9 in-frame K6-K14 variants, three of which were correlated with lymph node invasion, late tumor stages (T3/T4) and shorter disease-free survival times. When expressed in OSCC cells, those fusion variants disturbed wild-type K14 organization through direct interaction or aggregate formation, leading to perinuclear structure loss and nuclear deformation. Protein array analyses showed the ability of K6-K14 variant 7 (K6-K14/V7) to upregulate TGF-β and G-CSF signaling, which contributed to cell stemness, drug tolerance, and cell aggressiveness. Notably, K6-K14/V7-expressing cells easily adapted to a soft 3-D culture condition in vitro and formed larger, less differentiated tumors in vivo. In addition to the anti-mechanical-stress activity, our data uncover oncogenic functionality of novel keratin filaments caused by gene fusions during OSCC development.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, 40343, Taiwan
| | - Jack Cheng
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Stev Chun-Chin Chao
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Praveen Kumar Korla
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Hui-Jye Chen
- School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chung-Ming Lin
- Department of Biotechnology, Ming Chuan University, Taoyuan, 33348, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chun-Hung Hua
- Department of Otolaryngology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Chia-Ing Jan
- Department of Pathology, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Natini Jinawath
- Program in Translation Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Chia-Chen Wu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Brian Yu-Ting Kuo
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Li-Wen Chen
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jacky Yang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, 80424, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
20
|
Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport. J Theor Biol 2019; 464:132-148. [DOI: 10.1016/j.jtbi.2018.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023]
|
21
|
Weingarten G, Ben Yaakov A, Dror E, Russ J, Magin TM, Kahn CR, Wertheimer E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly. FASEB J 2018; 33:2241-2251. [PMID: 30332298 DOI: 10.1096/fj.201800847r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus prevalence is increasing rapidly and is a major cause of mortality and morbidity worldwide. In addition to the known severe complications associated with the disease, in recent years diabetes has been recognized as a major risk factor for cancer. Patients with diabetes experience significantly higher incidence of and higher mortality rates from many types of cancer. However, to date there are no conclusive data on the pathophysiology underlying the association between these two diseases. We previously reported that insulin regulates skin proliferation and differentiation, while IGF1 had different sometimes contrasting effects to those of insulin, suggesting direct involvement of insulin in transformation. To this end, we developed an epidermal skin-specific insulin receptor knockout (SIRKO) mouse, in which the insulin receptor (IR) is inactivated only in skin, with no other metabolic consequences. We found that IR inactivation by itself resulted in a marked decrease in skin tumorigenesis. In the control group 100% of the mice developed tumors, but in the SIRKO group tumor incidence was over 60% lower, and 25% of the SIRKO mice did not develop tumors at all, and the tumors that did develop were smaller and benign in their appearance. Furthermore, IR inactivation in vitro not only prevented cell transformation but also reversed the keratinocyte-transformed phenotype. We found that IR inactivation led to a striking abnormality in the major keratin cytoskeleton filaments structure in both in vivo and in vitro, a change that we were able to link to the decreased transformation potential in IR-null cells. In summary, we identified a unique pathway in which IR regulates cytoskeletal assembly, thus affecting skin transformation, opening a new potential target for cancer treatment and prevention.-Weingarten, G., Ben Yaakov, A., Dror, E., Russ, J., Magin, T. M., Kahn, C. R., Wertheimer, E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly.
Collapse
Affiliation(s)
- Galina Weingarten
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aya Ben Yaakov
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Dror
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jenny Russ
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thomas M Magin
- Institute of Biology and Sächsischer Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany; and
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Efrat Wertheimer
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
23
|
HIF stabilization inhibits renal epithelial cell migration and is associated with cytoskeletal alterations. Sci Rep 2018; 8:9497. [PMID: 29934555 PMCID: PMC6015081 DOI: 10.1038/s41598-018-27918-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/13/2018] [Indexed: 11/23/2022] Open
Abstract
Acute kidney injury (AKI) is a common and potentially lethal complication in the hospitalized patients, with hypoxic injury being as a major cause. The loss of renal tubular epithelial cells (TEC), one of the AKI hallmarks, is potentially followed by tubular regeneration process orchestrated by the remaining uninjured TECs that undergo proliferation and migration. In this study, we used human primary TEC to investigate the initiation of tubular cell migration and associated cytoskeletal alterations in response to pharmacological HIF stabilization which resembles the pathophysiology of hypoxia. Tubular cells have been shown to migrate as cohorts in a wound healing assay. Importantly, cells of distal tubular origin moved faster than those of proximal origin. HIF stabilization impaired TEC migration, which was confirmed by live single cell tracking. HIF stabilization significantly reduced tubular cell migration velocity and promoted cell spreading. In contrast to the control conditions, HIF stabilization induced actin filaments rearrangement and cell adhesion molecules including paxillin and focal adhesion kinase. Condensed bundling of keratin fibers was also observed, while the expression of different types of keratins, phosphorylation of keratin 18, and the microtubule structure were not altered. In summary, HIF stabilization reduced the ability of renal tubular cells to migrate and led to cytoskeleton reorganization. Our data suggested an important involvement of HIF stabilization during the epithelial migration underlying the mechanism of renal regeneration in response to AKI.
Collapse
|
24
|
Mücke N, Kämmerer L, Winheim S, Kirmse R, Krieger J, Mildenberger M, Baßler J, Hurt E, Goldmann WH, Aebi U, Toth K, Langowski J, Herrmann H. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophys J 2018; 114:2408-2418. [PMID: 29754715 DOI: 10.1016/j.bpj.2018.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Intermediate filaments (IFs) are principal components of the cytoskeleton, a dynamic integrated system of structural proteins that provides the functional architecture of metazoan cells. They are major contributors to the elasticity of cells and tissues due to their high mechanical stability and intrinsic flexibility. The basic building block for the assembly of IFs is a rod-like, 60-nm-long tetrameric complex made from two antiparallel, half-staggered coiled coils. In low ionic strength, tetramers form stable complexes that rapidly assemble into filaments upon raising the ionic strength. The first assembly products, "frozen" by instantaneous chemical fixation and viewed by electron microscopy, are 60-nm-long "unit-length" filaments (ULFs) that apparently form by lateral in-register association of tetramers. ULFs are the active elements of IF growth, undergoing longitudinal end-to-end annealing with one another and with growing filaments. Originally, we have employed quantitative time-lapse atomic force and electron microscopy to analyze the kinetics of vimentin-filament assembly starting from a few seconds to several hours. To obtain detailed quantitative insight into the productive reactions that drive ULF formation, we now introduce a "stopped-flow" approach in combination with static light-scattering measurements. Thereby, we determine the basic rate constants for lateral assembly of tetramers to ULFs. Processing of the recorded data by a global fitting procedure enables us to describe the hierarchical steps of IF formation. Specifically, we propose that tetramers are consumed within milliseconds to yield octamers that are obligatory intermediates toward ULF formation. Although the interaction of tetramers is diffusion controlled, it is strongly driven by their geometry to mediate effective subunit targeting. Importantly, our model conclusively reflects the previously described occurrence of polymorphic ULF and mature filaments in terms of their number of tetramers per cross section.
Collapse
Affiliation(s)
- Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Lara Kämmerer
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Winheim
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Robert Kirmse
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jan Krieger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Maria Mildenberger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jochen Baßler
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics group, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Katalin Toth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
25
|
Schlögl E, Radeva MY, Vielmuth F, Schinner C, Waschke J, Spindler V. Keratin Retraction and Desmoglein3 Internalization Independently Contribute to Autoantibody-Induced Cell Dissociation in Pemphigus Vulgaris. Front Immunol 2018; 9:858. [PMID: 29922278 PMCID: PMC5996934 DOI: 10.3389/fimmu.2018.00858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 01/12/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune disease characterized by blister formation of the skin and mucous membranes and is caused by autoantibodies against desmoglein (Dsg) 1 and Dsg3. Dsg1 and Dsg3 are linked to keratin filaments in desmosomes, adhering junctions abundant in tissues exposed to high levels of mechanical stress. The binding of the autoantibodies leads to internalization of Dsg3 and a collapse of the keratin cytoskeleton-yet, the relevance and interdependence of these changes for loss of cell-cell adhesion and blistering is poorly understood. In live-cell imaging studies, loss of the keratin network at the cell periphery was detectable starting after 60 min of incubation with immunoglobulin G fractions of PV patients (PV-IgG). These rapid changes correlated with loss of cell-cell adhesion detected by dispase-based dissociation assays and were followed by a condensation of keratin filaments into thick bundles after several hours. Dsg3 internalization started at 90 min of PV-IgG treatment, thus following the early keratin changes. By inhibiting casein kinase 1 (CK-1), we provoked keratin alterations resembling the effects of PV-IgG. Although CK-1-induced loss of peripheral keratin network correlated with loss of cell cohesion and Dsg3 clustering in the membrane, it was not sufficient to trigger the internalization of Dsg3. However, additional incubation with PV-IgG was effective to promote Dsg3 loss at the membrane, indicating that Dsg3 internalization is independent from keratin alterations. Vice versa, inhibiting Dsg3 internalization did not prevent PV-IgG-induced keratin retraction and only partially rescued cell cohesion. Together, keratin changes appear very early after autoantibody binding and temporally overlap with loss of cell cohesion. These early alterations appear to be distinct from Dsg3 internalization, suggesting a crucial role for initial loss of cell cohesion in PV.
Collapse
Affiliation(s)
- Elisabeth Schlögl
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mariya Y Radeva
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Camilla Schinner
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Volker Spindler
- Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Chan JKL, Yuen D, Too PHM, Sun Y, Willard B, Man D, Tam C. Keratin 6a reorganization for ubiquitin-proteasomal processing is a direct antimicrobial response. J Cell Biol 2018; 217:731-744. [PMID: 29191848 PMCID: PMC5800800 DOI: 10.1083/jcb.201704186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/01/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
Skin and mucosal epithelia deploy antimicrobial peptides (AMPs) to eliminate harmful microbes. We reported that the intermediate filament keratin 6a (K6a) is constitutively processed into antimicrobial fragments in corneal epithelial cells. In this study, we show that K6a network remodeling is a host defense response that directly up-regulates production of keratin-derived AMPs (KAMPs) by the ubiquitin-proteasome system (UPS). Bacterial ligands trigger K6a phosphorylation at S19, S22, S37, and S60, leading to network disassembly. Mutagenic analysis of K6a confirmed that the site-specific phosphorylation augmented its solubility. K6a in the cytosol is ubiquitinated by cullin-RING E3 ligases for subsequent proteasomal processing. Without an appreciable increase in K6a gene expression and proteasome activity, a higher level of cytosolic K6a results in enhanced KAMP production. Although proteasome-mediated proteolysis is known to produce antigenic peptides in adaptive immunity, our findings demonstrate its new role in producing AMPs for innate immune defense. Manipulating K6a phosphorylation or UPS activity may provide opportunities to harness the innate immunity of epithelia against infection.
Collapse
Affiliation(s)
- Jonathan K L Chan
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| | - Don Yuen
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Priscilla Hiu-Mei Too
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Belinda Willard
- Proteomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - David Man
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
27
|
Rietscher K, Keil R, Jordan A, Hatzfeld M. 14-3-3 proteins regulate desmosomal adhesion via plakophilins. J Cell Sci 2018; 131:jcs.212191. [DOI: 10.1242/jcs.212191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Desmosomes are essential for strong intercellular adhesion and are abundant in tissues exposed to mechanical strain. At the same time, desmosomes need to be dynamic to allow for remodeling of epithelia during differentiation or wound healing. Phosphorylation of desmosomal plaque proteins appears essential for desmosome dynamics. However, the mechanisms how context-dependent post-translational modifications regulate desmosome formation, dynamics or stability are incompletely understood. Here, we show that growth factor signaling regulates the phosphorylation-dependent association of plakophilins 1 and 3 with 14-3-3 protein isoforms and uncover unique and partially antagonistic functions of members of the 14-3-3 family in the regulation of desmosomes. 14-3-3γ associated primarily with cytoplasmic plakophilin 1 phosphorylated at S155 and destabilized intercellular cohesion of keratinocytes by reducing its incorporation into desmosomes. In contrast, stratifin/14-3-3σ interacted preferentially with S285-phosphorylated plakophilin 3 to promote its accumulation at tricellular contact sites, leading to stable desmosomes. Taken together, our study identifies a new layer of regulation of intercellular adhesion by 14-3-3 proteins.
Collapse
Affiliation(s)
- Katrin Rietscher
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Annemarie Jordan
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Sawant M, Schwarz N, Windoffer R, Magin TM, Krieger J, Mücke N, Obara B, Jankowski V, Jankowski J, Wally V, Lettner T, Leube RE. Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability. J Invest Dermatol 2017; 138:627-636. [PMID: 29080682 DOI: 10.1016/j.jid.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII-/-) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.
Collapse
Affiliation(s)
- Mugdha Sawant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Jan Krieger
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Boguslaw Obara
- School of Engineering and Computing Sciences, Durham University, Durham, UK
| | - Vera Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|