1
|
Jenner P, Falup-Pecurariu C, Leta V, Verin M, Auffret M, Bhidayasiri R, Weiss D, Borovečki F, Jost WH. Adopting the Rumsfeld approach to understanding the action of levodopa and apomorphine in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:1337-1347. [PMID: 37210460 PMCID: PMC10645644 DOI: 10.1007/s00702-023-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/14/2023] [Indexed: 05/22/2023]
Abstract
Dopaminergic therapies dominate the treatment of the motor and non-motor symptoms of Parkinson's disease (PD) but there have been no major advances in therapy in many decades. Two of the oldest drugs used appear more effective than others-levodopa and apomorphine-but the reasons for this are seldom discussed and this may be one cause for a lack of progress. This short review questions current thinking on drug action and looks at whether adopting the philosophy of ex-US Secretary of State Donald Rumsfeld reveals 'unknown' aspects of the actions of levodopa and apomorphine that provide clues for a way forward. It appears that both levodopa and apomorphine have a more complex pharmacology than classical views would suggest. In addition, there are unexpected facets to the mechanisms through which levodopa acts that are either forgotten as 'known unknowns' or ignored as 'unknown unknowns'. The conclusion reached is that we may not know as much as we think about drug action in PD and there is a case for looking beyond the obvious.
Collapse
Affiliation(s)
- P Jenner
- Faculty of Life Sciences and Medicine, Institute of Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| | - C Falup-Pecurariu
- Department of Neurology, Transylvania University, 500036, Brasov, Romania
| | - V Leta
- Parkinson's Foundation Center of Excellence at King's College Hospital; Department of Basic and Clinical Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London and National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - M Verin
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
| | - M Auffret
- Institut des Neurosciences Cliniques de Rennes (INCR); Behavior and Basal Ganglia Research Unit, CIC-IT, CIC1414, Pontchaillou University Hospital and University of Rennes, Rennes, France
- France Développement Electronique (FDE), Monswiller, France
| | - Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand
| | - D Weiss
- Department for Neurodegenerative Diseases, Centre for Neurology, Hertie-Institute for Clinical Brain Research, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - F Borovečki
- Division for Neurodegenerative Diseases and Neurogenomics, Department of Neurology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - W H Jost
- Parkinson-Klinik Ortenau, Kreuzbergstr. 12-16, 77709, Wolfach, Germany
| |
Collapse
|
2
|
Zhang S, Gan L, Cao F, Wang H, Gong P, Ma C, Ren L, Lin Y, Lin X. The barrier and interface mechanisms of the brain barrier, and brain drug delivery. Brain Res Bull 2022; 190:69-83. [PMID: 36162603 DOI: 10.1016/j.brainresbull.2022.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
Abstract
Three different barriers are formed between the cerebrovascular and the brain parenchyma: the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the cerebrospinal fluid-brain barrier (CBB). The BBB is the main regulator of blood and central nervous system (CNS) material exchange. The semipermeable nature of the BBB limits the passage of larger molecules and hydrophilic small molecules, Food and Drug Administration (FDA)-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Although the complexity of the BBB affects CNS drug delivery, understanding the composition and function of the BBB can provide a platform for the development of new methods for CNS drug delivery. This review summarizes the classification of the brain barrier, the composition and role of the basic structures of the BBB, and the transport, barrier, and destruction mechanisms of the BBB; discusses the advantages and disadvantages of different drug delivery methods and prospects for future drug delivery strategies.
Collapse
Affiliation(s)
- Shanshan Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Lin Gan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Fengye Cao
- Yiyang The First Hospital of Traditional Chinese Medicine, Yiyang, Hunan Province, 413000, China
| | - Hao Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Peng Gong
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Congcong Ma
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Li Ren
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Yubo Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China
| | - Xianming Lin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
3
|
Barrett MJ, Sargent L, Nawaz H, Weintraub D, Price ET, Willis AW. Antimuscarinic Anticholinergic Medications in Parkinson Disease: To Prescribe or Deprescribe? Mov Disord Clin Pract 2021; 8:1181-1188. [PMID: 34765683 DOI: 10.1002/mdc3.13347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
The relative importance of antimuscarinic anticholinergic medications for Parkinson's disease (PD) declined after the introduction of levodopa, such that anticholinergic medications are now much more likely to be prescribed for clinical indications other than parkinsonism. Recent studies have found an association between anticholinergic medication exposure and future risk of dementia in older individuals and those with PD. These findings provide a further reason to avoid the use of anticholinergic medications to treat motor symptoms of PD. More importantly, they raise the question of whether one of the goals of PD treatment should be to deprescribe all medications with anticholinergic properties, regardless of their indication, to reduce dementia risk. In this review, we discuss the use of anticholinergic medications in PD, the evidence supporting the association between anticholinergic medications and future dementia risk, and the potential implications of these findings for clinical care in PD.
Collapse
Affiliation(s)
- Matthew J Barrett
- Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| | - Lana Sargent
- School of Nursing Virginia Commonwealth University Richmond Virginia USA.,Department of Pharmacotherapy and Outcomes Science, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Geriatric Pharmacotherapy Program, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Institute for Inclusion Inquiry and Innovation (iCubed): Health and Wellness in Aging Populations Core Richmond Virginia USA
| | - Huma Nawaz
- Department of Neurology Virginia Commonwealth University Richmond Virginia USA
| | - Daniel Weintraub
- Department of Neurology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Parkinson's Disease Research, Education and Clinical Center Corporal Michael J. Crescenz VA Medical Center Philadelphia Pennsylvania USA.,Department of Psychiatry University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA
| | - Elvin T Price
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Geriatric Pharmacotherapy Program, School of Pharmacy Virginia Commonwealth University Richmond Virginia USA.,Institute for Inclusion Inquiry and Innovation (iCubed): Health and Wellness in Aging Populations Core Richmond Virginia USA
| | - Allison W Willis
- Department of Neurology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Center for Pharmacoepidemiology Research and Training, Department of Epidemiology University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA.,Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania School of Medicine Philadelphia Pennsylvania USA
| |
Collapse
|
4
|
Anwar F, Naqvi S, Al-Abbasi FA, Neelofar N, Kumar V, Sahoo A, Kamal MA. Targeting COVID-19 in Parkinson's Patients: Drugs Repurposed. Curr Med Chem 2021; 28:2392-2408. [PMID: 32881656 DOI: 10.2174/0929867327666200903115138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/18/2023]
Abstract
The last couple of months have witnessed the world in a state of virtual standstill. The SARS-CoV-2 virus has overtaken the globe to economic and social lockdown. Many patients with COVID-19 have compromised immunity, especially in an aged population suffering from Parkinson 's disease (PD). Alteration in dopaminergic neurons and deficiency of dopamine in PD patients are the most common symptoms affecting 1% population above the age of 60 years. The compromised immune system and inflammatory manifestation in PD patients make them an easy target. The most common drugs under trial for COVID-19 are remdesivir, favipiravir, chloroquine and hydroxychloroquine, azithromycin along with adjunct drugs like amantadine with some monoclonal antibodies. Presently, clinically US FDA approved drugs in PD include Levodopa, catechol-O-methyl transferase (COMT) inhibitors, (Entacapone and Tolcapone), dopamine agonists (Bromocriptine, Ropinirole, Pramipexole, and Rotigotine), monoamine oxidase B (MAO-B) inhibitors (Selegiline and Rasagiline), amantadine and antimuscarinic drugs. The drugs have established mechanisms of action on PD patients with known pharmacodynamics and pharmacokinetic properties along with dose and adverse effects. Conclusion and relevance of this review focus on the drugs that can be tried on PD patients with SAR CoV-2 infection, in particular, amantadine that has been approved by all the developed countries as a common drug possessing both antiviral properties by downregulation of CTSL, lysosomal pathway disturbance and change in pH necessary to uncoat the viral proteins and anti- Parkinson properties. To deal with the significant prognostic adverse effect of SARS-CoV-2 on PD, the present-day treatment options, clinical presentation and various mechanisms are the need of the hour.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Naqvi
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nauroz Neelofar
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehra Dun, Uttarakhand, India
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Ankit Sahoo
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Rosqvist K, Kylberg M, Löfqvist C, Schrag A, Odin P, Iwarsson S. Perspectives on Care for Late-Stage Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:9475026. [PMID: 33815742 PMCID: PMC7987470 DOI: 10.1155/2021/9475026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/28/2022]
Abstract
In the late stage of Parkinson's disease (PD), there is an increasing disease burden not only for the patients but also for their informal caregivers and the health and social services systems. The aim of this study was to explore experiences of late-stage PD patients' and their informal caregivers' satisfaction with care and support, in order to better understand how they perceive the treatment and care they receive. This qualitative substudy was part of the longitudinal European multicentre Care of Late Stage Parkinsonism (CLaSP) project. Individual semistructured interviews were conducted with patients (n = 11) and informal caregivers (n = 9) in Sweden. Data were analysed through the content analysis technique. The final analyses generated one main category: "We are trying to get by both with and without the formal care" and five subcategories: "Availability of health care is important for managing symptoms and everyday life"; "Dependence on others and scheduled days form everyday life"; "There is a wish to get adequate help when it is needed"; "Mixed feelings on future housing and respite care"; and "Family responsibility and loyalty for a functioning everyday life". Having regular contact with PD-specialised health care was perceived as important. Greater access to physiotherapy was wished for. Maintaining autonomy was perceived as important by patients, in both home health care and a future residential care setting. Responsibility and loyalty between spouses and support from children enabled everyday life to carry on at home, indicating a vulnerability for those without an informal caregiver. The results suggest that regular access to PD-specialised health care is important and that a specialised and multidisciplinary approach to the management of PD symptomatology is likely necessary. Non-PD-specialised staff in home health care and residential care facilities should regularly be given opportunities to obtain PD-specific education and information.
Collapse
Affiliation(s)
- Kristina Rosqvist
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
| | - Marianne Kylberg
- Lund University, Faculty of Medicine, Department of Health Sciences, Lund, Sweden
| | - Charlotte Löfqvist
- Lund University, Faculty of Medicine, Department of Health Sciences, Lund, Sweden
| | - Anette Schrag
- University College London, Queen Square Institute of Neurology, London, UK
| | - Per Odin
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Susanne Iwarsson
- Lund University, Faculty of Medicine, Department of Health Sciences, Lund, Sweden
| |
Collapse
|
6
|
Microfluidics in Biotechnology: Quo Vadis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 179:355-380. [PMID: 33495924 DOI: 10.1007/10_2020_162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The emerging technique of microfluidics offers new approaches for precisely controlling fluidic conditions on a small scale, while simultaneously facilitating data collection in both high-throughput and quantitative manners. As such, the so-called lab-on-a-chip (LOC) systems have the potential to revolutionize the field of biotechnology. But what needs to happen in order to truly integrate them into routine biotechnological applications? In this chapter, some of the most promising applications of microfluidic technology within the field of biotechnology are surveyed, and a few strategies for overcoming current challenges posed by microfluidic LOC systems are examined. In addition, we also discuss the intensifying trend (across all biotechnology fields) of using point-of-use applications which is being facilitated by new technological achievements.
Collapse
|
7
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Patient-Derived Induced Pluripotent Stem Cell-Based Models in Parkinson's Disease for Drug Identification. Int J Mol Sci 2020; 21:ijms21197113. [PMID: 32993172 PMCID: PMC7582359 DOI: 10.3390/ijms21197113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder characterized by loss of striatal-projecting dopaminergic neurons of the ventral forebrain, resulting in motor and cognitive deficits. Despite extensive efforts in understanding PD pathogenesis, no disease-modifying drugs exist. Recent advances in cell reprogramming technologies have facilitated the generation of patient-derived models for sporadic or familial PD and the identification of early, potentially triggering, pathological phenotypes while they provide amenable systems for drug discovery. Emerging developments highlight the enhanced potential of using more sophisticated cellular systems, including neuronal and glial co-cultures as well as three-dimensional systems that better simulate the human pathophysiology. In combination with high-throughput high-content screening technologies, these approaches open new perspectives for the identification of disease-modifying compounds. In this review, we discuss current advances and the challenges ahead in the use of patient-derived induced pluripotent stem cells for drug discovery in PD. We address new concepts implicating non-neuronal cells in disease pathogenesis and highlight the necessity for functional assays, such as calcium imaging and multi-electrode array recordings, to predict drug efficacy. Finally, we argue that artificial intelligence technologies will be pivotal for analysis of the large and complex data sets obtained, becoming game-changers in the process of drug discovery.
Collapse
|
9
|
K channel blockage with 3,4-diaminopyridine potentiates the effect of L-DOPA on dopamine release in striatal slices prepared from 6-OHDA pre-treated rats. Exp Brain Res 2020; 238:2539-2548. [PMID: 32870323 DOI: 10.1007/s00221-020-05912-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
Although L-DOPA revolutionized in the treatment of Parkinson's disease, most patients developed motor complications after several years of treatment. Adjunctive therapy to L-DOPA with drugs related to dopaminergic signaling may reduce its dose without decreasing the therapeutic efficiency and thus ameliorates its adverse effects. It has been shown that 3,4-diaminopyridine (3,4-DAP), a K channel blocker, increased dopamine release from striatal slices by increasing neuronal firing in striatal dopaminergic terminals. The current study investigates whether 3,4-DAP may enhance L-DOPA-induced dopamine (DA) release from striatal slices by increasing neuronal firing in striatal dopaminergic terminals. The effects of L-DOPA and 3,4-DAP on spontaneous DA and DOPAC release were tested in vitro, on acute rat striatal slices prepared from non-treated and 6-hydroxydopamine-pre-treated rats. DA and DOPAC levels were determined by HPLC methods. When 3,4-diaminopyridine was combined with L-DOPA, the observed effect was considerably greater than the increases induced by L-DOPA or 3,4-DAP alone in normoxic and neurodegenerative conditions produced by FeSO4 and 6-hydroxydopamine. Furthermore, L-DOPA plus 3,4-DAP also ameliorated DOPAC levels in neurodegenerative conditions. These data indicate that 3,4 DAP plus L-DOPA activates striatal dopaminergic terminals by increasing the DA release and, thus, could be considered as a promising finding in treatment of acute and chronic injury in dopaminergic neurons.
Collapse
|
10
|
Karthivashan G, Ganesan P, Park SY, Lee HW, Choi DK. Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials 2019; 232:119704. [PMID: 31901690 DOI: 10.1016/j.biomaterials.2019.119704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
The incidence of Parkinson's disease (PD), the second most common neurodegenerative disorder, has increased exponentially as the global population continues to age. Although the etiological factors contributing to PD remain uncertain, its average incidence rate is reported to be 1% of the global population older than 60 years. PD is primarily characterized by the progressive loss of dopaminergic (DAergic) neurons and/or associated neuronal networks and the subsequent depletion of dopamine (DA) levels in the brain. Thus, DA or levodopa (l-dopa), a precursor of DA, represent cardinal targets for both idiopathic and symptomatic PD therapeutics. While several therapeutic strategies have been investigated over the past decade for their abilities to curb the progression of PD, an effective cure for PD is currently unavailable. Even DA replacement therapy, an effective PD therapeutic strategy that provides an exogenous supply of DA or l-dopa, has been hindered by severe challenges, such as a poor capacity to bypass the blood-brain barrier and inadequate bioavailability. Nevertheless, with recent advances in nanotechnology, several drug delivery systems have been developed to bypass the barriers associated with central nervous system therapeutics. In here, we sought to describe the adapted lipid-based nanodrug delivery systems used in the field of PD therapeutics and their recent advances, with a particular focus placed on DA replacement therapies. This work initially explores the background of PD; offers descriptions of the most recent molecular targets; currently available clinical medications/limitations; an overview of several lipid-based PD nanotherapeutics, functionalized nanoparticles, and technical aspects in brain delivery; and, finally, presents future perspectives to enhance the use of nanotherapeutics in PD treatment.
Collapse
Affiliation(s)
- Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea
| | - Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Department of Biomedical Chemistry, Nanotechnology Research Center, Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shin-Young Park
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University School of Medicine and Brain Science & Engineering Institute, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, 27478, Republic of Korea; Research Institute of Inflammatory Diseases (RID), College of Biomedical and Health Science and BK21plus Glocal Education Program of Nutraceuticals Development, Konkuk University, Chungju, 27478, Republic of Korea.
| |
Collapse
|
11
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
12
|
Xu S, Yang B, Tao T, Zhang J, Liu Y, Hu J, Fan Y, Zhang G. Activation of α7-nAChRs protects SH-SY5Y cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death via ERK/p53 signaling pathway. J Cell Physiol 2019; 234:18480-18491. [PMID: 30912145 DOI: 10.1002/jcp.28484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies have shown a reduced risk of developing Parkinson's disease (PD) among cigarette smokers. Nicotine, as a key component in tobacco products, is thought as a possible candidate for action of smoking in neuroprotection. α7 nicotinic acetylcholine receptors (α7-nAChRs) is one of the most abundant nAChRs in the mammalian brain. Although nicotine is thought to exert this protective action by acting on nicotinic receptors, including the α7-nAChRs; the mechanisms underlying how α7-nAChRs protect against dopaminergic neuron loss are highly complex. Using nicotine and a selective α7-nAChR agonist PNU-282987, we first confirmed that their addition to SH-SY5Y cells challenged with 1-methyl-4-phenylpyridinium (MPP+ ) could afford neuroprotection and result in a reduction in apoptotic cell death. Then, we found that the pretreatment with nicotine and PNU-282987 showed the neuroprotective antiapoptotic effects via activating the α7-nAChRs/MAPK/p53 axis. Furthermore, we used RNA interference to silence the expression of α7-nAChRs in SH-SY5Y cells and found that suppressing α7-nAChR expression diminished the antiapoptotic effects of nicotine and PNU-282987, not the toxic effects of MPP+ . Moreover, α7-nAChR knockdown could only decrease the inhibitory effects of nicotine and PNU-282987 on the phosphorylated extracellular signal-regulated kinase (ERK), not c-Jun amino-terminal kinase and p38. Therefore, our findings indicate the important roles of ERK/MAPK signaling in the neuroprotective effects of α7-nAChRs and suggest that α7-nAChR agonists may be validated as novel treatments for PD.
Collapse
Affiliation(s)
- Shi Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Beibei Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingting Tao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji Zhang
- Department of Pharmacy, Division of Clinical Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangdong Zhang
- Jiangsu Key Laboratory of Oral Diseases, Department of Endodontics and Operative Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Zeuner KE, Schäffer E, Hopfner F, Brüggemann N, Berg D. Progress of Pharmacological Approaches in Parkinson's Disease. Clin Pharmacol Ther 2019; 105:1106-1120. [PMID: 30661251 DOI: 10.1002/cpt.1374] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/22/2018] [Indexed: 12/20/2022]
Abstract
The progressive neurodegenerative process in Parkinson's disease (PD) is not restricted to dopaminergic midbrain neurons but involves the entire nervous system. In this review, we outline established treatment options at different disease stages and address new therapeutic approaches. These include, based on recent advances in the understanding of the pathophysiology of PD, genetic and disease-modifying approaches to reduce abnormal accumulation and aggregation of alpha-synuclein (aSYN), mitochondrial dysfunction, and dysfunction of lysosomal proteins. Moreover, we highlight clinical trials to reduce neuroinflammation and increase neurorestoration.
Collapse
Affiliation(s)
- Kirsten E Zeuner
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eva Schäffer
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Franziska Hopfner
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Daniela Berg
- Department of Neurology, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
14
|
Seifert R. Rethinking Pharmacological Nomenclature. Trends Pharmacol Sci 2018; 39:785-797. [PMID: 30025604 DOI: 10.1016/j.tips.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Pharmacological nomenclature has been continuously developed over the last century and taught to generations of medical, pharmacy, and science students. Many pharmacological terms coined decades ago remain in textbooks and the scientific literature. With the advancement in the field and the identification of molecular drug targets, rethinking the pharmacological terms in the context of these new findings has become imperative. Some examples of such terms are antihistamine, beta blocker, calcium antagonist, disease-modifying antirheumatic drug (DMARD), and non-steroidal anti-inflammatory drug (NSAID). This opinion article is an attempt to generate discussion in the community that the better way forward to name/rename pharmacological terms would be according to their mechanism of action. A mechanism-based nomenclature provides important information about therapeutic and adverse effects of drugs. Abbreviations for drug classes have also been suggested. A parsimonious, practical, and mechanism-oriented pharmacological nomenclature will ultimately improve quality and safety of drug therapy.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany.
| |
Collapse
|