1
|
Kaszyńska AA. Cannabinoids: Potential for Modulation and Enhancement When Combined with Vitamin B12 in Case of Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:813. [PMID: 38931480 PMCID: PMC11207064 DOI: 10.3390/ph17060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The enduring relationship between humanity and the cannabis plant has witnessed significant transformations, particularly with the widespread legalization of medical cannabis. This has led to the recognition of diverse pharmacological formulations of medical cannabis, containing 545 identified natural compounds, including 144 phytocannabinoids like Δ9-THC and CBD. Cannabinoids exert distinct regulatory effects on physiological processes, prompting their investigation in neurodegenerative diseases. Recent research highlights their potential in modulating protein aggregation and mitochondrial dysfunction, crucial factors in conditions such as Alzheimer's Disease, multiple sclerosis, or Parkinson's disease. The discussion emphasizes the importance of maintaining homeodynamics in neurodegenerative disorders and explores innovative therapeutic approaches such as nanoparticles and RNA aptamers. Moreover, cannabinoids, particularly CBD, demonstrate anti-inflammatory effects through the modulation of microglial activity, offering multifaceted neuroprotection including mitigating aggregation. Additionally, the potential integration of cannabinoids with vitamin B12 presents a holistic framework for addressing neurodegeneration, considering their roles in homeodynamics and nervous system functioning including the hippocampal neurogenesis. The potential synergistic therapeutic benefits of combining CBD with vitamin B12 underscore a promising avenue for advancing treatment strategies in neurodegenerative diseases. However, further research is imperative to fully elucidate their effects and potential applications, emphasizing the dynamic nature of this field and its potential to reshape neurodegenerative disease treatment paradigms.
Collapse
Affiliation(s)
- Anna Aleksandra Kaszyńska
- The Centre of Neurocognitive Research, Institute of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warszawa, Poland
| |
Collapse
|
2
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
3
|
De Picker LJ, Morrens M, Branchi I, Haarman BCM, Terada T, Kang MS, Boche D, Tremblay ME, Leroy C, Bottlaender M, Ottoy J. TSPO PET brain inflammation imaging: A transdiagnostic systematic review and meta-analysis of 156 case-control studies. Brain Behav Immun 2023; 113:415-431. [PMID: 37543251 DOI: 10.1016/j.bbi.2023.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
INTRODUCTION The 18-kDa translocator protein (TSPO) is increasingly recognized as a molecular target for PET imaging of inflammatory responses in various central nervous system (CNS) disorders. However, the reported sensitivity and specificity of TSPO PET to identify brain inflammatory processes appears to vary greatly across disorders, disease stages, and applied quantification methods. To advance TSPO PET as a potential biomarker to evaluate brain inflammation and anti-inflammatory therapies, a better understanding of its applicability across disorders is needed. We conducted a transdiagnostic systematic review and meta-analysis of all in vivo human TSPO PET imaging case-control studies in the CNS. Specifically, we investigated the direction, strength, and heterogeneity associated with the TSPO PET signal across disorders in pre-specified brain regions, and explored the demographic and methodological sources of heterogeneity. METHODS We searched for English peer-reviewed articles that reported in vivo human case-control TSPO PET differences. We extracted the demographic details, TSPO PET outcomes, and technical variables of the PET procedure. A random-effects meta-analysis was applied to estimate case-control standardized mean differences (SMD) of the TSPO PET signal in the lobar/whole-brain cortical grey matter (cGM), thalamus, and cortico-limbic circuitry between different illness categories. Heterogeneity was evaluated with the I2 statistic and explored using subgroup and meta-regression analyses for radioligand generation, PET quantification method, age, sex, and publication year. Significance was set at the False Discovery Rate (FDR)-corrected P < 0.05. RESULTS 156 individual case-control studies were included in the systematic review, incorporating data for 2381 healthy controls and 2626 patients. 139 studies documented meta-analysable data and were grouped into 11 illness categories. Across all the illness categories, we observed a significantly higher TSPO PET signal in cases compared to controls for the cGM (n = 121 studies, SMD = 0.358, PFDR < 0.001, I2 = 68%), with a significant difference between the illness categories (P = 0.004). cGM increases were only significant for Alzheimer's disease (SMD = 0.693, PFDR < 0.001, I2 = 64%) and other neurodegenerative disorders (SMD = 0.929, PFDR < 0.001, I2 = 73%). Cortico-limbic increases (n = 97 studies, SMD = 0.541, P < 0.001, I2 = 67%) were most prominent for Alzheimer's disease, mild cognitive impairment, other neurodegenerative disorders, mood disorders and multiple sclerosis. Thalamic involvement (n = 79 studies, SMD = 0.393, P < 0.001, I2 = 71%) was observed for Alzheimer's disease, other neurodegenerative disorders, multiple sclerosis, and chronic pain and functional disorders (all PFDR < 0.05). Main outcomes for systemic immunological disorders, viral infections, substance use disorders, schizophrenia and traumatic brain injury were not significant. We identified multiple sources of between-study variance to the TSPO PET signal including a strong transdiagnostic effect of the quantification method (explaining 25% of between-study variance; VT-based SMD = 0.000 versus reference tissue-based studies SMD = 0.630; F = 20.49, df = 1;103, P < 0.001), patient age (9% of variance), and radioligand generation (5% of variance). CONCLUSION This study is the first overarching transdiagnostic meta-analysis of case-control TSPO PET findings in humans across several brain regions. We observed robust increases in the TSPO signal for specific types of disorders, which were widespread or focal depending on illness category. We also found a large and transdiagnostic horizontal (positive) shift of the effect estimates of reference tissue-based compared to VT-based studies. Our results can support future studies to optimize experimental design and power calculations, by taking into account the type of disorder, brain region-of-interest, radioligand, and quantification method.
Collapse
Affiliation(s)
- Livia J De Picker
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium.
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Scientific Initiative of Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Centre Campus Duffel, Duffel, Belgium
| | - Igor Branchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tatsuhiro Terada
- Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Min Su Kang
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, UK
| | - Marie-Eve Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, BC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Claire Leroy
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Orsay, France; Université Paris-Saclay, UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Julie Ottoy
- LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Rodríguez-Carreiro S, Navarro E, Muñoz E, Fernández-Ruiz J. The Cannabigerol Derivative VCE-003.2 Exerts Therapeutic Effects in 6-Hydroxydopamine-Lesioned Mice: Comparison with The Classic Dopaminergic Replacement Therapy. Brain Sci 2023; 13:1272. [PMID: 37759872 PMCID: PMC10527302 DOI: 10.3390/brainsci13091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: A cannabigerol aminoquinone derivative, so-called VCE-003.2, has been found to behave as a neuroprotective agent (administered both i.p. and orally) in different experimental models of Parkinson's disease (PD) in mice. These effects were exerted through mechanisms that involved the activation of a regulatory site within the peroxisome proliferator-activated receptor-γ (PPAR-γ). (2) Methods: We are now interested in comparing such neuroprotective potential of VCE-003.2, orally administered, with the effect of the classic dopaminergic replacement therapy with L-DOPA/benserazide in similar conditions, using 6-hydroxydopamine-lesioned mice. (3) Results: The oral administration of VCE-003.2 during 14 days at the dose of 20 mg/kg improved, as expected, the neurological status (measured in motor tests) in these mice. This correlated with a preservation of TH-labelled neurons in the substantia nigra. By contrast, the treatment with L-DOPA/benserazide (during 7 days at 2 mg/kg) was significantly less active in these experimental conditions, in concordance with their profile as a mere symptom-alleviating agent. (4) Conclusions: Our results confirmed again the therapeutic profile of VCE-003.2 in experimental PD and revealed a different and more relevant effect, as a disease modifier, compared to the classic symptom-alleviating L-DOPA treatment. This reinforces the interest in VCE-003.2 for a future clinical development in this disease.
Collapse
Affiliation(s)
- Santiago Rodríguez-Carreiro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.R.-C.); (E.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Elisa Navarro
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.R.-C.); (E.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain;
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain; (S.R.-C.); (E.N.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
5
|
McDew-White M, Lee E, Premadasa LS, Alvarez X, Okeoma CM, Mohan M. Cannabinoids modulate the microbiota-gut-brain axis in HIV/SIV infection by reducing neuroinflammation and dysbiosis while concurrently elevating endocannabinoid and indole-3-propionate levels. J Neuroinflammation 2023; 20:62. [PMID: 36890518 PMCID: PMC9993397 DOI: 10.1186/s12974-023-02729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Although the advent of combination anti-retroviral therapy (cART) has transformed HIV into a manageable chronic disease, an estimated 30-50% of people living with HIV (PLWH) exhibit cognitive and motor deficits collectively known as HIV-associated neurocognitive disorders (HAND). A key driver of HAND neuropathology is chronic neuroinflammation, where proinflammatory mediators produced by activated microglia and macrophages are thought to inflict neuronal injury and loss. Moreover, the dysregulation of the microbiota-gut-brain axis (MGBA) in PLWH, consequent to gastrointestinal dysfunction and dysbiosis, can lead to neuroinflammation and persistent cognitive impairment, which underscores the need for new interventions. METHODS We performed RNA-seq and microRNA profiling in basal ganglia (BG), metabolomics (plasma) and shotgun metagenomic sequencing (colon contents) in uninfected and SIV-infected rhesus macaques (RMs) administered vehicle (VEH/SIV) or delta-9-tetrahydrocannabinol (THC) (THC/SIV). RESULTS Long-term, low-dose THC reduced neuroinflammation and dysbiosis and significantly increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid and indole-3-propionate levels in chronically SIV-infected RMs. Chronic THC potently blocked the upregulation of genes associated with type-I interferon responses (NLRC5, CCL2, CXCL10, IRF1, IRF7, STAT2, BST2), excitotoxicity (SLC7A11), and enhanced protein expression of WFS1 (endoplasmic reticulum stress) and CRYM (oxidative stress) in BG. Additionally, THC successfully countered miR-142-3p-mediated suppression of WFS1 protein expression via a cannabinoid receptor-1-mediated mechanism in HCN2 neuronal cells. Most importantly, THC significantly increased the relative abundance of Firmicutes and Clostridia including indole-3-propionate (C. botulinum, C. paraputrificum, and C. cadaveris) and butyrate (C. butyricum, Faecalibacterium prausnitzii and Butyricicoccus pullicaecorum) producers in colonic contents. CONCLUSION This study demonstrates the potential of long-term, low-dose THC to positively modulate the MGBA by reducing neuroinflammation, enhancing endocannabinoid levels and promoting the growth of gut bacterial species that produce neuroprotective metabolites, like indole-3-propionate. The findings from this study may benefit not only PLWH on cART, but also those with no access to cART and more importantly, those who fail to suppress the virus under cART.
Collapse
Affiliation(s)
- Marina McDew-White
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Eunhee Lee
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Lakmini S Premadasa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA
| | - Chioma M Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, 10595-1524, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, TX, 78227-5302, USA.
| |
Collapse
|
6
|
Therapeutic Molecular Insights into the Active Engagement of Cannabinoids in the Therapy of Parkinson's Disease: A Novel and Futuristic Approach. Neurotox Res 2023; 41:85-102. [PMID: 36567416 DOI: 10.1007/s12640-022-00619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death. Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain's dopaminergic systems, a condition for which there is now no treatment. The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson's disease, making it immensely useful in the treatment of such a debilitating illness.
Collapse
|
7
|
Kip E, Parr-Brownlie LC. Healthy lifestyles and wellbeing reduce neuroinflammation and prevent neurodegenerative and psychiatric disorders. Front Neurosci 2023; 17:1092537. [PMID: 36875655 PMCID: PMC9975355 DOI: 10.3389/fnins.2023.1092537] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Since the mid-20th century, Western societies have considered productivity and economic outcomes are more important than focusing on people's health and wellbeing. This focus has created lifestyles with high stress levels, associated with overconsumption of unhealthy foods and little exercise, which negatively affect people's lives, and subsequently lead to the development of pathologies, including neurodegenerative and psychiatric disorders. Prioritizing a healthy lifestyle to maintain wellbeing may slow the onset or reduce the severity of pathologies. It is a win-win for everyone; for societies and for individuals. A balanced lifestyle is increasingly being adopted globally, with many doctors encouraging meditation and prescribing non-pharmaceutical interventions to treat depression. In psychiatric and neurodegenerative disorders, the inflammatory response system of the brain (neuroinflammation) is activated. Many risks factors are now known to be linked to neuroinflammation such as stress, pollution, and a high saturated and trans fat diet. On the other hand, many studies have linked healthy habits and anti-inflammatory products with lower levels of neuroinflammation and a reduced risk of neurodegenerative and psychiatric disorders. Sharing risk and protective factors is critical so that individuals can make informed choices that promote positive aging throughout their lifespan. Most strategies to manage neurodegenerative diseases are palliative because neurodegeneration has been progressing silently for decades before symptoms appear. Here, we focus on preventing neurodegenerative diseases by adopting an integrated "healthy" lifestyle approach. This review summarizes the role of neuroinflammation on risk and protective factors of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Elodie Kip
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Louise C Parr-Brownlie
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Kluger BM, Huang AP, Miyasaki JM. Cannabinoids in movement disorders. Parkinsonism Relat Disord 2022; 102:124-130. [PMID: 36038457 DOI: 10.1016/j.parkreldis.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION On the basis of both scientific progress and popular lore, there is growing optimism in the therapeutic potential of cannabis (marijuana) and cannabinoid-based chemicals for movement disorders. There is also notable skepticism regarding the scientific basis for this therapeutic optimism and significant concerns regarding the safety and regulation of cannabinoid products, particularly those available without prescription. METHODS In recognition of the high interest and controversial nature of this subject, the meeting committee of the International Parkinson and Movement Disorders Society arranged for a talk on cannabis at the 2019 annual meeting's Controversies in Movement Disorders plenary session. This paper summarizes the highlights of this session. RESULTS The endocannabinoid system is strongly tied to motor function and dysfunction, with basic research suggesting several promising therapeutic targets related to cannabinoids for movement disorders. Clinical research on cannabinoids for motor and nonmotor symptoms in Parkinson's disease, Huntington's disease, Tourette's syndrome, dystonia, and other movement disorders to date are promising at best and inconclusive or negative at worst. Research in other populations suggest efficacy for common symptoms like pain. While social campaigns against recreational cannabinoid use focus on cognitive changes in adolescents, the long-term sequelae of regulated medical use in older adults with movement disorders is unknown. The overall risks of cannabinoids may be similar to other commonly used medications and include falls and apathy. CONCLUSION Further research is greatly needed to better understand the actual clinical benefits and long-term side effects of medical cannabis products for movement disorders indications and populations.
Collapse
Affiliation(s)
- Benzi M Kluger
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Huang
- Departments of Neurology and Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janis M Miyasaki
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
10
|
Wang M, Liu H, Ma Z. Roles of the Cannabinoid System in the Basal Ganglia in Parkinson’s Disease. Front Cell Neurosci 2022; 16:832854. [PMID: 35264932 PMCID: PMC8900732 DOI: 10.3389/fncel.2022.832854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease usually caused by neuroinflammation, oxidative stress and other etiologies. Recent studies have found that the cannabinoid system present in the basal ganglia has a strong influence on the progression of PD. Altering the cannabinoid receptor activation status by modulating endogenous cannabinoid (eCB) levels can exert an anti-movement disorder effect. Therefore, the development of drugs that modulate the endocannabinoid system may be a novel strategy for the treatment of PD. However, eCB regulation is complex, with diverse cannabinoid receptor functions and the presence of dopaminergic, glutamatergic, and γ-aminobutyric signals interacting with cannabinoid signaling in the basal ganglia region. Therefore, the study of eCB is challenging. Here, we have described the function of the cannabinoid system in the basal ganglia and its association with PD in three parts (eCBs, cannabinoid receptors, and factors regulating the cannabinoid metabolism) and summarized the mechanisms of action related to the cannabinoid analogs currently aimed at treating PD. The shortcomings identified from previous studies and the directions that should be explored in the future will provide insights into new approaches and ideas for the future development of cannabinoid-based drugs and the treatment of PD.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
| | - Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zegang Ma
- Department of Physiology, School of Basic Medicine, Institute of Brain Science and Disorders, Qingdao University, Qingdao, China
- *Correspondence: Zegang Ma,
| |
Collapse
|
11
|
Tetrahydrocannabinol fails to reduce hair pulling or skin picking: results of a double-blind, placebo-controlled study of dronabinol. Int Clin Psychopharmacol 2022; 37:14-20. [PMID: 34825898 DOI: 10.1097/yic.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Body-focused repetitive behaviors (BFRBs) such as trichotillomania and skin picking disorder are associated with decreased self-esteem and poor quality of life. The objective of this study was to evaluate dronabinol, a cannabinoid agonist, for the reduction of BFRB symptoms. Fifty adults with either trichotillomania (n = 34) or skin picking disorder (n = 16) were recruited for a randomized, double-blind, placebo-controlled study. Participants received 10-week treatment with dronabinol (5-15 mg/day) or placebo. The primary efficacy outcome measure was the change on the clinician-rated National Institute of Mental Health scale for hair pulling or skin picking. Both dronabinol and placebo treatment were associated with significant reductions in BFRB symptoms. Dronabinol did not significantly separate from placebo on any efficacy measure. At week 10, 67% of the treatment group were classified as responders (Clinical Global Impressions-Improvement Score of very much or much improved) compared to 50% in the placebo group (P value = 0.459). This study assessed the efficacy of dronabinol, a synthetic form of tetrahydrocannabinol, in the treatment of BFRBs, and found no differences in symptom reductions between dronabinol and placebo.
Collapse
|
12
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
13
|
Lillo J, Lillo A, Zafra DA, Miralpeix C, Rivas-Santisteban R, Casals N, Navarro G, Franco R. Identification of the Ghrelin and Cannabinoid CB 2 Receptor Heteromer Functionality and Marked Upregulation in Striatal Neurons from Offspring of Mice under a High-Fat Diet. Int J Mol Sci 2021; 22:ijms22168928. [PMID: 34445634 PMCID: PMC8396234 DOI: 10.3390/ijms22168928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoids have been reported as orexigenic, i.e., as promoting food intake that, among others, is controlled by the so-called “hunger” hormone, ghrelin. The aim of this paper was to look for functional and/or molecular interactions between ghrelin GHSR1a and cannabinoid CB2 receptors at the central nervous system (CNS) level. In a heterologous system we identified CB2-GHSR1a receptor complexes with a particular heteromer print consisting of impairment of CB2 receptor/Gi-mediated signaling. The blockade was due to allosteric interactions within the heteromeric complex as it was reverted by antagonists of the GHSR1a receptor. Cannabinoids acting on the CB2 receptor did not affect cytosolic increases of calcium ions induced by ghrelin acting on the GHSR1a receptor. In situ proximity ligation imaging assays confirmed the expression of CB2-GHSR1a receptor complexes in both heterologous cells and primary striatal neurons. We tested heteromer expression in neurons from offspring of high-fat-diet mouse mothers as they have more risk to be obese. Interestingly, there was a marked upregulation of those complexes in striatal neurons from siblings of pregnant female mice under a high-fat diet.
Collapse
Affiliation(s)
- Jaume Lillo
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - David A. Zafra
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
| | - Cristina Miralpeix
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
| | - Rafael Rivas-Santisteban
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08190 Sant Cugat del Vallès, Spain; (C.M.); (N.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos, 3, 28029 Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.L.); (D.A.Z.)
- Institut de Neurociències, Universitat de Barcelona (UBNeuro), 08035 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| | - Rafael Franco
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, Valderrebollo, 5, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
- School of Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (G.N.); (R.F.); Tel.: +34-934021208 (R.F.)
| |
Collapse
|
14
|
Burgaz S, García C, Gómez-Cañas M, Rolland A, Muñoz E, Fernández-Ruiz J. Neuroprotection with the Cannabidiol Quinone Derivative VCE-004.8 (EHP-101) against 6-Hydroxydopamine in Cell and Murine Models of Parkinson's Disease. Molecules 2021; 26:molecules26113245. [PMID: 34071302 PMCID: PMC8198479 DOI: 10.3390/molecules26113245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The 3-hydroxyquinone derivative of the non-psychotrophic phytocannabinoid cannabigerol, so-called VCE-003.2, and some other derivatives have been recently investigated for neuroprotective properties in experimental models of Parkinson's disease (PD) in mice. The pharmacological effects in those models were related to the activity on the peroxisome proliferator-activated receptor-γ (PPAR-γ) and possibly other pathways. In the present study, we investigated VCE-004.8 (formulated as EHP-101 for oral administration), the 3-hydroxyquinone derivative of cannabidiol (CBD), with agonist activity at the cannabinoid receptor type-2 (CB2) receptor in addition to its activity at the PPAR-γ receptor. Studies were conducted in both in vivo (lesioned-mice) and in vitro (SH-SY5Y cells) models using the classic parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA). Our data confirmed that the treatment with VCE-004.8 partially reduced the loss of tyrosine hydroxylase (TH)-positive neurons measured in the substantia nigra of 6-OHDA-lesioned mice, in parallel with an almost complete reversal of the astroglial (GFAP) and microglial (CD68) reactivity occurring in this structure. Such neuroprotective effects attenuated the motor deficiencies shown by 6-OHDA-lesioned mice in the cylinder rearing test, but not in the pole test. Next, we explored the mechanism involved in the beneficial effect of VCE-004.8 in vivo, by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-004.8 at a concentration of 10 µM, which was completely reversed by the addition of antagonists, T0070907 and SR144528, aimed at blocking PPAR-γ and CB2 receptors, respectively. The treatment with T0070907 alone only caused a partial reversal, whereas SR144528 alone had no effect, indicating a major contribution of PPAR-γ receptors in the cytoprotective effect of VCE-004.8 at 10 µM. In summary, our data confirmed the neuroprotective potential of VCE-004.8 in 6-OHDA-lesioned mice, and in vitro studies confirmed a greater relevance for PPAR-γ receptors rather than CB2 receptors in these effects.
Collapse
Affiliation(s)
- Sonia Burgaz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Concepción García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - María Gómez-Cañas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Alain Rolland
- Emerald Health Pharmaceuticals, San Diego, CA 92121, USA; (A.R.); (E.M.)
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, CA 92121, USA; (A.R.); (E.M.)
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cellular Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Javier Fernández-Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Institute on Neurochemistry Research, Complutense University, 28040 Madrid, Spain; (S.B.); (C.G.); (M.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Correspondence: ; Tel.: +34-913941450
| |
Collapse
|
15
|
Echeverry C, Prunell G, Narbondo C, de Medina VS, Nadal X, Reyes-Parada M, Scorza C. A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT 1A Receptors. Neurotox Res 2021; 39:335-348. [PMID: 32886342 DOI: 10.1007/s12640-020-00277-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Previous preclinical studies have demonstrated that cannabidiol (CBD) and cannabigerol (CBG), two non-psychotomimetic phytocannabinoids from Cannabis sativa, induce neuroprotective effects on toxic and neurodegenerative processes. However, a comparative study of both compounds has not been reported so far, and the targets involved in this effect remain unknown. The ability of CBD and CBG to attenuate the neurotoxicity induced by two insults involving oxidative stress (hydrogen peroxide, H2O2) and mitochondrial dysfunction (rotenone) was evaluated in neural cell cultures. The involvement of CB-1 and CB-2 or 5-HT1A receptors was investigated. The neuroprotective effect of their respective acids forms, cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA), was also analyzed. MTT and immunocytochemistry assays were used to evaluate cell viability. No significant variation on cell viability was per se induced by the lower concentrations tested of CBD and CBG or CBDA and CBGA; however, high concentrations of CBD, CBDA, or CBGA were toxic since a 40-50% reduction of cell viability was observed. CBD and CBG showed neuroprotective effects against H2O2 or rotenone; however, both compounds were more effective in attenuating the rotenone-induced neurotoxicity. A high concentration of CBDA reduced the rotenone-induced neurotoxicity. WAY100635 (5-HT1A receptor antagonist) but not AM251 and AM630 (CB1 or CB2 receptor antagonists, respectively) significantly diminished the neuroprotective effect induced by CBG only against rotenone. Our results contribute to the understanding of the neuroprotective effect of CBD and CBG, showing differences with their acid forms, and also highlight the role of 5-HT1A receptors in the mechanisms of action of CBG.
Collapse
Affiliation(s)
- Carolina Echeverry
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay.
| | - Giselle Prunell
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | - Camila Narbondo
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, CP 11600, Montevideo, Uruguay
| | | | - Xavier Nadal
- EthnoPhytoTech Research & Consulting S.L.U., Sant Cugat del Valles, Spain
| | - Miguel Reyes-Parada
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, IIBCE, Montevideo, Uruguay
| |
Collapse
|
16
|
Burgaz S, García C, Gómez-Cañas M, Navarrete C, García-Martín A, Rolland A, Del Río C, Casarejos MJ, Muñoz E, Gonzalo-Consuegra C, Muñoz E, Fernández-Ruiz J. Neuroprotection with the cannabigerol quinone derivative VCE-003.2 and its analogs CBGA-Q and CBGA-Q-Salt in Parkinson's disease using 6-hydroxydopamine-lesioned mice. Mol Cell Neurosci 2020; 110:103583. [PMID: 33338634 DOI: 10.1016/j.mcn.2020.103583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The quinone derivative of the non-psychotropic cannabinoid cannabigerol (CBG), so-called VCE-003.2, has been recently investigated for its neuroprotective properties in inflammatory models of Parkinson's disease (PD) in mice. Such potential derives from its activity at the peroxisome proliferator-activated receptor-γ (PPAR-γ). In the present study, we investigated the neuroprotective properties of VCE-003.2 against the parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA), in comparison with two new CBG-related derivatives, the cannabigerolic acid quinone (CBGA-Q) and its sodium salt CBGA-Q-Salt, which, similarly to VCE-003.2, were found to be active at the PPAR-γ receptor, but not at the cannabinoid CB1 and CB2 receptors. First, we investigated their cytoprotective properties in vitro by analyzing cell survival in cultured SH-SY5Y cells exposed to 6-OHDA. We found an important cytoprotective effect of VCE-003.2 at a concentration of 20 μM, which was not reversed by the blockade of PPAR-γ receptors with GW9662, supporting its activity at an alternative site (non-sensitive to classic antagonists) in this receptor. We also found CBGA-Q and CBGA-Q-Salt being cytoprotective in this cell assay, but their effects were completely eliminated by GW9662, thus indicating that they are active at the canonical site in the PPAR-γ receptor. Then, we moved to in vivo testing using mice unilaterally lesioned with 6-OHDA. Our data confirmed that VCE-003.2 administered orally (20 mg/kg) preserved tyrosine hydroxylase (TH)-positive nigral neurons against 6-OHDA-induced damage, whereas it completely attenuated the astroglial (GFAP) and microglial (CD68) reactivity found in the substantia nigra of lesioned mice. Such neuroprotective effects caused an important recovery in the motor deficiencies displayed by 6-OHDA-lesioned mice in the pole test and the cylinder rearing test. We also investigated CBGA-Q, given orally (20 mg/kg) or intraperitoneally (10 mg/kg, i.p.), having similar benefits compared to VCE-003.2 against the loss of TH-positive nigral neurons, glial reactivity and motor defects caused by 6-OHDA. Lastly, the sodium salt of CBGA-Q, given orally (40 mg/kg) to 6-OHDA-lesioned mice, also showed benefits at behavioral and histopathological levels, but to a lower extent compared to the other two compounds. In contrast, when given i.p., CBGA-Q-Salt (10 mg/kg) was poorly active. We also analyzed the concentrations of dopamine and its metabolite DOPAC in the striatum of 6-OHDA-lesioned mice after the treatment with the different compounds, but recovery in the contents of both dopamine and DOPAC was only found after the treatment with VCE-003.2. In summary, our data confirmed the neuroprotective potential of VCE-003.2 in 6-OHDA-lesioned mice, which adds to its previous activity found in an inflammatory model of PD (LPS-lesioned mice). Additional phytocannabinoid derivatives, CBGA-Q and CBGA-Q-Salt, also afforded neuroprotection in 6-OHDA-lesioned mice, but their effects were lower compared to VCE-003.2, in particular in the case of CBGA-Q-Salt. In vitro studies confirmed the relevance of PPAR-γ receptors for these effects.
Collapse
Affiliation(s)
- Sonia Burgaz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Gómez-Cañas
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | - Carmen Del Río
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - María J Casarejos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eva Muñoz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Eduardo Muñoz
- Emerald Health Pharmaceuticals, San Diego, USA; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain; Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Spain; Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
17
|
Adamson M, Di Giovanni B, Delgado DH. The positive and negative cardiovascular effects of cannabis. Expert Rev Cardiovasc Ther 2020; 18:905-917. [PMID: 33054426 DOI: 10.1080/14779072.2020.1837625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The use of cannabis and its derivatives have increased steadily over the past few decades, prompting patients and clinicians to increasingly inquire about its health effects and safety profile. However, despite promising evidence suggesting therapeutic utilization, cannabis remains a controlled substance in most countries and is largely considered to have no medical or recreational benefit; thus, a lack of observational studies and randomized control trials exist to outline positive and negative health implications. Ultimately, this leaves patients, health-care professionals, and policymakers without necessary evidence required to make informed decisions on cannabis use. AREAS COVERED This review outlines cannabis in a clinical setting and delves into specific effects of cannabinoids on cardiovascular health and disease. It discusses positive and negative health implications associated with cannabis, mechanisms in cardiovascular disease, and reveals methods guiding cannabis use in the clinical setting. EXPERT OPINION Advances in research are necessary to guide decisions regarding cannabinoid use. Countries that have federally legalized cannabis have a unique opportunity to study cardiovascular implications in an unbiased and comprehensive manner. Ultimately, as cannabis use will inevitably increase, researchers, clinicians, and policymakers must work together to ensure cannabis is utilized in a way that is therapeutically beneficial.
Collapse
Affiliation(s)
- Mitchell Adamson
- Department of Medicine, Institute of Medical Sciences, University of Toronto , Toronto, ON, Canada.,Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| | - Bennett Di Giovanni
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| | - Diego H Delgado
- Division of Cardiology, Heart Failure and Transplant Program, Toronto General Hospital, University Health Network , Toronto, ON, Canada
| |
Collapse
|
18
|
Espadas I, Keifman E, Palomo-Garo C, Burgaz S, García C, Fernández-Ruiz J, Moratalla R. Beneficial effects of the phytocannabinoid Δ 9-THCV in L-DOPA-induced dyskinesia in Parkinson's disease. Neurobiol Dis 2020; 141:104892. [PMID: 32387338 DOI: 10.1016/j.nbd.2020.104892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
The antioxidant and CB2 receptor agonist properties of Δ9-tetrahydrocannabivarin (Δ9-THCV) afforded neuroprotection in experimental Parkinson's disease (PD), whereas its CB1 receptor antagonist profile at doses lower than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential of Δ9-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic model of dopaminergic deficiency, Pitx3ak mutant mice, which serves as a useful model for testing anti-dyskinetic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly, when combined with L-DOPA from the first injection, Δ9-THCV delayed the appearance of all these signs and decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced dyskinesia. In addition to the anti-dyskinetic effects of Δ9-THCV when administered at the onset of L-DOPA treatment, Δ9-THCV was also effective in attenuating the intensity of dyskinesia when administered for three consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In summary, our data support the anti-dyskinetic potential of Δ9-THCV, both to delay the occurrence and to attenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical significance of these data in humans, the results nevertheless situate Δ9-THCV in a promising position for developing a cannabinoid-based therapy for patients with PD.
Collapse
Affiliation(s)
- Isabel Espadas
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | | | - Cristina Palomo-Garo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Sonia Burgaz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Concepción García
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Rosario Moratalla
- Instituto Cajal-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Wilson JL, Gregory A, Wakeman K, Freed A, Rai P, Roberts C, Hayflick SJ, Hogarth P. Cannabis Use in Children With Pantothenate Kinase-Associated Neurodegeneration. J Child Neurol 2020; 35:259-264. [PMID: 31823681 DOI: 10.1177/0883073819890516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pantothenate kinase-associated neurodegeneration is characterized by severe, progressive dystonia. This study aims to describe the reported usage of cannabis products among children with pantothenate kinase-associated neurodegeneration. METHODS A cross-sectional, 37-item survey was distributed in April 2019 to the families of 44 children who participate in a clinical registry of individuals with pantothenate kinase-associated neurodegeneration. RESULTS We received 18 responses (40.9% response rate). Children were a mean of 11.0 (SD 4.3) years old. The 15 respondents with dystonia or spasticity were on a median of 2 tone medications (range 0-9). Seven children had ever used cannabis (38.9%). The most common source of information about cannabis was other parents. Children who had ever used cannabis were on more tone medications, were more likely to have used opiates, were less likely to be able to roll, and less likely to sit comfortably, than children who had never used cannabis. Four children reported moderate or significant improvement in dystonia with cannabis. Other areas reported to be moderate or significantly improved were pain (n = 3), sleep (n = 4), anxiety (n = 3), and behavior (n = 2). Adverse effects included sadness (n = 1), agitation/behavior change (n = 1), and tiredness (n = 1). CONCLUSION Cannabis use was commonly reported among children with pantothenate kinase-associated neurodegeneration whose parents responded to a survey, particularly when many other dystonia treatments had been tried. Physicians should be aware that parents may treat their child with severe, painful dystonia with cannabis. Placebo-controlled studies of products containing cannabidiol and 9-tetrahydrocannabinol are needed for pediatric tone disorders.
Collapse
Affiliation(s)
- Jenny L Wilson
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Katrina Wakeman
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Alison Freed
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Puneet Rai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Colin Roberts
- Division of Pediatric Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Pennylope Hogarth
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|