1
|
Travnickova J, Muise S, Wojciechowska S, Brombin A, Zeng Z, Young AIJ, Wyatt C, Patton EE. Fate mapping melanoma persister cells through regression and into recurrent disease in adult zebrafish. Dis Model Mech 2022; 15:276219. [PMID: 35929478 PMCID: PMC9509888 DOI: 10.1242/dmm.049566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma heterogeneity and plasticity underlie therapy resistance. Some tumour cells possess innate resistance, while others reprogramme during drug exposure and survive to form persister cells, a source of potential cancer cells for recurrent disease. Tracing individual melanoma cell populations through tumour regression and into recurrent disease remains largely unexplored, in part, because complex animal models are required for live imaging of cell populations over time. Here, we applied tamoxifen-inducible creERt2/loxP lineage tracing to a zebrafish model of MITF-dependent melanoma regression and recurrence to image and trace cell populations in vivo through disease stages. Using this strategy, we show that melanoma persister cells at the minimal residual disease site originate from the primary tumour. Next, we fate mapped rare MITF-independent persister cells and demonstrate that these cells directly contribute to progressive disease. Multiplex immunohistochemistry confirmed that MITF-independent persister cells give rise to Mitfa+ cells in recurrent disease. Taken together, our work reveals a direct contribution of persister cell populations to recurrent disease, and provides a resource for lineage-tracing methodology in adult zebrafish cancer models. Summary: We fate map melanoma cells from the primary tumour into a persister cell state and show that persister cells directly contribute to recurrent disease.
Collapse
Affiliation(s)
- Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sarah Muise
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Sonia Wojciechowska
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Zhiqiang Zeng
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Adelaide I J Young
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| | - Cameron Wyatt
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK.,Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, EH4 2XU, Edinburgh, UK
| |
Collapse
|
2
|
Yang J, Li Y, Zong C, Zhang Q, Ge S, Ma L, Fan J, Zhang J, Jia R. Xanthatin Selectively Targets Retinoblastoma by Inhibiting the PLK1-Mediated Cell Cycle. Invest Ophthalmol Vis Sci 2021; 62:11. [PMID: 34901994 PMCID: PMC8684308 DOI: 10.1167/iovs.62.15.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose Retinoblastoma is the most common primary intraocular malignant tumor in children. Although intra-arterial chemotherapy and conventional chemotherapy have become promising therapeutic approaches for advanced intraocular retinoblastoma, the side effects threaten health and are unavoidable, making the development of targeted therapy an urgent need. Therefore, we intended to find a potential drug for human retinoblastoma by screening an in-house compound library that included 89 purified and well-characterized natural products. Methods We screened a panel of 89 natural products in retinoblastoma cell lines to find the inhibitor. The inhibition of the identified inhibitor xanthatin on cell growth was detected through half-maximal inhibitory concentration (IC50), flow cytometry assay, and zebrafish model system. RNA-seq further selected the target gene PLK1. Results We reported the discovery of xanthatin as an effective inhibitor of retinoblastoma. Mechanistically, xanthatin selectively inhibited the proliferation of retinoblastoma cells by inducing cell cycle arrest and promoting apoptosis. Interestingly, xanthatin targeted PLK1-mediated cell cycle progression. The efficacy of xanthatin was further confirmed in zebrafish models. Conclusions Collectively, our data suggested that xanthatin significantly inhibited tumor growth in vitro and in vivo, and xanthatin could be a potential drug treatment for retinoblastoma.
Collapse
Affiliation(s)
- Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chunyan Zong
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiayan Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
3
|
Minnoye L, Taskiran II, Mauduit D, Fazio M, Van Aerschot L, Hulselmans G, Christiaens V, Makhzami S, Seltenhammer M, Karras P, Primot A, Cadieu E, van Rooijen E, Marine JC, Egidy G, Ghanem GE, Zon L, Wouters J, Aerts S. Cross-species analysis of enhancer logic using deep learning. Genome Res 2020; 30:1815-1834. [PMID: 32732264 PMCID: PMC7706731 DOI: 10.1101/gr.260844.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022]
Abstract
Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Ibrahim Ihsan Taskiran
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - David Mauduit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Maurizio Fazio
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Linde Van Aerschot
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
- Laboratory for Disease Mechanisms in Cancer, KU Leuven, 3000 Leuven, Belgium
| | - Gert Hulselmans
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Valerie Christiaens
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Samira Makhzami
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Monika Seltenhammer
- Center for Forensic Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Division of Livestock Sciences (NUWI) - BOKU University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Panagiotis Karras
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, 35000 Rennes, France
| | - Ellen van Rooijen
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jean-Christophe Marine
- VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium
- KU Leuven, Department of Oncology KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Egidy
- Université Paris-Saclay, INRA, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Ghanem-Elias Ghanem
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Leonard Zon
- Howard Hughes Medical Institute, Stem Cell Program and the Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Jasper Wouters
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| | - Stein Aerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Human Genetics KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
5
|
Wilk R, Ali N, England SJ, Lewis KE. Using Zebrafish to Bring Hands-On Laboratory Experiences to Urban Classrooms. Zebrafish 2018; 15:156-178. [PMID: 29356617 DOI: 10.1089/zeb.2017.1503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Zebrafish are widely used as a model organism for research. Zebrafish embryos are also a useful resource for teaching students about vertebrate development. Here we describe a collaboration between two high school teachers and two university professors that used zebrafish to bring hands-on laboratory experiences to inner-city students, with the aim of increasing tangibility, and improving student understanding and retention, of several fundamental scientific concepts, such as the scientific method, cell division, mitosis, and Mendelian genetics. We describe and provide supporting material for each of the four laboratory modules that we developed. We also discuss the obstacles that we encountered and include suggestions of ways to overcome these. This collaboration provides an example of how high school teachers with very little zebrafish experience can gain the knowledge and confidence to develop and implement modules such as these in a relatively short period of time. Owing to the wide availability of zebrafish resources, these laboratories should provide a useful resource for other teachers who are interested in integrating more hands-on, inquiry-based investigations using live animals into their classes. We also hope to encourage other zebrafish researchers to collaborate with local teachers in similar projects.
Collapse
Affiliation(s)
| | - Naomi Ali
- 1 Nottingham High School , Syracuse, New York
| | | | | |
Collapse
|
6
|
Scahill CM, Digby Z, Sealy IM, Wojciechowska S, White RJ, Collins JE, Stemple DL, Bartke T, Mathers ME, Patton EE, Busch-Nentwich EM. Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish. PLoS Genet 2017; 13:e1006959. [PMID: 28806732 PMCID: PMC5570503 DOI: 10.1371/journal.pgen.1006959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022] Open
Abstract
KDM2A is a histone demethylase associated with transcriptional silencing, however very little is known about its in vivo role in development and disease. Here we demonstrate that loss of the orthologue kdm2aa in zebrafish causes widespread transcriptional disruption and leads to spontaneous melanomas at a high frequency. Fish homozygous for two independent premature stop codon alleles show reduced growth and survival, a strong male sex bias, and homozygous females exhibit a progressive oogenesis defect. kdm2aa mutant fish also develop melanomas from early adulthood onwards which are independent from mutations in braf and other common oncogenes and tumour suppressors as revealed by deep whole exome sequencing. In addition to effects on translation and DNA replication gene expression, high-replicate RNA-seq in morphologically normal individuals demonstrates a stable regulatory response of epigenetic modifiers and the specific de-repression of a group of zinc finger genes residing in constitutive heterochromatin. Together our data reveal a complex role for Kdm2aa in regulating normal mRNA levels and carcinogenesis. These findings establish kdm2aa mutants as the first single gene knockout model of melanoma biology.
Collapse
Affiliation(s)
- Catherine M. Scahill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Zsofia Digby
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian M. Sealy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Sonia Wojciechowska
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & The University of Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard J. White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - John E. Collins
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Derek L. Stemple
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Till Bartke
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marie E. Mathers
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | - E. Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit & The University of Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
van Rooijen E, Fazio M, Zon LI. From fish bowl to bedside: The power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell Melanoma Res 2017; 30:402-412. [PMID: 28379616 PMCID: PMC6038924 DOI: 10.1111/pcmr.12592] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/22/2017] [Indexed: 12/28/2022]
Abstract
Melanoma is the most aggressive and deadliest form of skin cancer. A detailed knowledge of the cellular, molecular, and genetic events underlying melanoma progression is highly relevant to diagnosis, prognosis and risk stratification, and the development of new therapies. In the last decade, zebrafish have emerged as a valuable model system for the study of melanoma. Pathway conservation, coupled with the availability of robust genetic, transgenic, and chemical tools, has made the zebrafish a powerful model for identifying novel disease genes, visualizing cancer initiation, interrogating tumor-microenvironment interactions, and discovering new therapeutics that regulate melanocyte and melanoma development. In this review, we will give an overview of these studies, and highlight recent advancements that will help unravel melanoma pathogenesis and impact human disease.
Collapse
Affiliation(s)
- Ellen van Rooijen
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- PhD program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Fazio M, Avagyan S, van Rooijen E, Mannherz W, Kaufman CK, Lobbardi R, Langenau DM, Zon LI. Efficient Transduction of Zebrafish Melanoma Cell Lines and Embryos Using Lentiviral Vectors. Zebrafish 2017; 14:379-382. [PMID: 28557653 DOI: 10.1089/zeb.2017.1434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The establishment of in vitro cultures of zebrafish cancer cells has expanded the potential of zebrafish as a disease model. However, the lack of effective methods for gene delivery and genetic manipulation has limited the experimental applications of these cultures. To overcome this barrier, we tested and optimized vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral and retroviral vector transduction protocols. We show that lentivirus successfully and efficiently transduced zebrafish melanoma cell lines in vitro, allowing antibiotic selection, fluorescence-based sorting, and in vivo allotransplantation. In addition, injection of concentrated lentiviral particles into embryos and tumors established the feasibility of in vivo gene delivery.
Collapse
Affiliation(s)
- Maurizio Fazio
- 1 Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts
| | - Serine Avagyan
- 2 Dana Farber Cancer Institute/Boston Children's Hospital Cancer and Blood Disorders Center , Boston, Massachusetts
| | - Ellen van Rooijen
- 1 Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts
| | - William Mannherz
- 1 Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts
| | - Charles K Kaufman
- 3 Division of Medical Oncology, Department of Medicine, Washington University in Saint Louis , Missouri.,4 Department of Developmental Biology, Washington University in Saint Louis , St. Louis, Missouri
| | - Riadh Lobbardi
- 5 Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital , Charlestown, Massachusetts
| | - David M Langenau
- 5 Molecular Pathology Unit, Department of Pathology, Massachusetts General Hospital , Charlestown, Massachusetts
| | - Leonard I Zon
- 1 Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital , Boston, Massachusetts.,6 Howard Hughes Medical Institute, Harvard Stem Cell Institute , Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|