1
|
Su KC, Radul E, Maier NK, Tsang MJ, Goul C, Moodie B, Marescal O, Keys HR, Cheeseman IM. Functional genetics reveals modulators of antimicrotubule drug sensitivity. J Cell Biol 2025; 224:e202403065. [PMID: 39570287 PMCID: PMC11590752 DOI: 10.1083/jcb.202403065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/04/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Microtubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to antimicrotubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug paclitaxel. We further conducted a focused secondary screen to test drug sensitivity for ∼1,400 gene targets across two distinct human cell lines and to additionally test sensitivity to the KIF11 inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to antimicrotubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Elena Radul
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Nolan K. Maier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Claire Goul
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather R. Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Wysong BC, Schuck PL, Sridharan M, Carrison S, Murakami Y, Balakrishnan L, Stewart JA. Human CST Stimulates Base Excision Repair to Prevent the Accumulation of Oxidative DNA Damage. J Mol Biol 2024; 436:168672. [PMID: 38908783 DOI: 10.1016/j.jmb.2024.168672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CTC1-STN1-TEN1 (CST) is a single-stranded DNA binding protein vital for telomere length maintenance with additional genome-wide roles in DNA replication and repair. While CST was previously shown to function in double-strand break repair and promote replication restart, it is currently unclear whether it has specialized roles in other DNA repair pathways. Proper and efficient repair of DNA is critical to protecting genome integrity. Telomeres and other G-rich regions are strongly predisposed to oxidative DNA damage in the form of 8-oxoguanines, which are typically repaired by the base-excision repair (BER) pathway. Moreover, recent studies suggest that CST functions in the repair of oxidative DNA lesions. Therefore, we tested whether CST interacts with and regulates BER protein activity. Here, we show that CST robustly stimulates proteins involved in BER, including OGG1, Pol β, APE1, and LIGI, on both telomeric and non-telomeric DNA substrates. Biochemical reconstitution of the pathway indicates that CST stimulates BER. Finally, knockout of STN1 or CTC1 leads to increased levels of 8-oxoguanine, suggesting defective BER in the absence of CST. Combined, our results define an undiscovered function of CST in BER, where it acts as a stimulatory factor to promote efficient genome-wide oxidative repair.
Collapse
Affiliation(s)
- Brandon C Wysong
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, USA
| | - Madhumita Sridharan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Sophie Carrison
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Yuichihiro Murakami
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University, Indianapolis, IN, USA.
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, USA; Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
| |
Collapse
|
3
|
Su KC, Radul E, Maier NK, Tsang MJ, Goul C, Moodie B, Keys HR, Cheeseman IM. Functional genetics reveals modulators of anti-microtubule drug sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584469. [PMID: 38559203 PMCID: PMC10979949 DOI: 10.1101/2024.03.12.584469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microtubules play essential roles in diverse cellular processes and are important pharmacological targets for treating human disease. Here, we sought to identify cellular factors that modulate the sensitivity of cells to anti-microtubule drugs. We conducted a genome-wide CRISPR/Cas9-based functional genetics screen in human cells treated with the microtubule-destabilizing drug nocodazole or the microtubule-stabilizing drug taxol. We further conducted a focused secondary screen to test drug sensitivity for ~1400 gene targets across two distinct human cell lines and to additionally test sensitivity to the Kif11-inhibitor, STLC. These screens defined gene targets whose loss enhances or suppresses sensitivity to anti-microtubule drugs. In addition to gene targets whose loss sensitized cells to multiple compounds, we observed cases of differential sensitivity to specific compounds and differing requirements between cell lines. Our downstream molecular analysis further revealed additional roles for established microtubule-associated proteins and identified new players in microtubule function.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- These authors contributed equally
| | - Elena Radul
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- These authors contributed equally
- Present address: Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Nolan K Maier
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- These authors contributed equally
- Present address: Department of Microbiology, Harvard Medical School, Boston, MA
| | - Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- These authors contributed equally
- Present address: Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Claire Goul
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Present address: Department of Molecular and Cellular Biology, UC Berkeley, Berkeley, CA
| | - Brittania Moodie
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
| | - Heather R. Keys
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
4
|
Zwick RK, Kasparek P, Palikuqi B, Viragova S, Weichselbaum L, McGinnis CS, McKinley KL, Rathnayake A, Vaka D, Nguyen V, Trentesaux C, Reyes E, Gupta AR, Gartner ZJ, Locksley RM, Gardner JM, Itzkovitz S, Boffelli D, Klein OD. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. Nat Cell Biol 2024; 26:250-262. [PMID: 38321203 PMCID: PMC11654995 DOI: 10.1038/s41556-023-01337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/13/2023] [Indexed: 02/08/2024]
Abstract
A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.
Collapse
Affiliation(s)
- Rachel K Zwick
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Petr Kasparek
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Brisa Palikuqi
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Viragova
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Weichselbaum
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Kara L McKinley
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Asoka Rathnayake
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dedeepya Vaka
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Vinh Nguyen
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Efren Reyes
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander R Gupta
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Chan Zuckerberg BioHub and Center for Cellular Construction 94158, University of California San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine and Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - James M Gardner
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dario Boffelli
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Mason FM, Kounlavong ES, Tebeje AT, Dahiya R, Guess T, Khan A, Vlach L, Norris SR, Lovejoy CA, Dere R, Strahl BD, Ohi R, Ly P, Walker CL, Rathmell WK. SETD2 safeguards the genome against isochromosome formation. Proc Natl Acad Sci U S A 2023; 120:e2303752120. [PMID: 37722039 PMCID: PMC10523680 DOI: 10.1073/pnas.2303752120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Isochromosomes are mirror-imaged chromosomes with simultaneous duplication and deletion of genetic material which may contain two centromeres to create isodicentric chromosomes. Although isochromosomes commonly occur in cancer and developmental disorders and promote genome instability, mechanisms that prevent isochromosomes are not well understood. We show here that the tumor suppressor and methyltransferase SETD2 is essential to prevent these errors. Using cellular and cytogenetic approaches, we demonstrate that loss of SETD2 or its epigenetic mark, histone H3 lysine 36 trimethylation (H3K36me3), results in the formation of isochromosomes as well as isodicentric and acentric chromosomes. These defects arise during DNA replication and are likely due to faulty homologous recombination by RAD52. These data provide a mechanism for isochromosome generation and demonstrate that SETD2 and H3K36me3 are essential to prevent the formation of this common mutable chromatin structure known to initiate a cascade of genomic instability in cancer.
Collapse
Affiliation(s)
- Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Emily S. Kounlavong
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Anteneh T. Tebeje
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Tiffany Guess
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
| | - Abid Khan
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Stephen R. Norris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - Brian D. Strahl
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX77030
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
6
|
Zwick RK, Kasparek P, Palikuqi B, Viragova S, Weichselbaum L, McGinnis CS, McKinley KL, Rathnayake A, Vaka D, Nguyen V, Trentesaux C, Reyes E, Gupta AR, Gartner ZJ, Locksley RM, Gardner JM, Itzkovitz S, Boffelli D, Klein OD. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558726. [PMID: 37790430 PMCID: PMC10542170 DOI: 10.1101/2023.09.20.558726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A key aspect of nutrient absorption is the exquisite division of labor across the length of the small intestine, with individual classes of micronutrients taken up at different positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum, and ileum. By examining fine-scale longitudinal segmentation of the mouse and human small intestines, we identified transcriptional signatures and upstream regulatory factors that define five domains of nutrient absorption, distinct from the three traditional sections. Spatially restricted expression programs were most prominent in nutrient-absorbing enterocytes but initially arose in intestinal stem cells residing in three regional populations. While a core signature was maintained across mice and humans with different diets and environments, domain properties were influenced by dietary changes. We established the functions of Ppar-ẟ and Cdx1 in patterning lipid metabolism in distal domains and generated a predictive model of additional transcription factors that direct domain identity. Molecular domain identity can be detected with machine learning, representing the first systematic method to computationally identify specific intestinal regions in mice. These findings provide a foundational framework for the identity and control of longitudinal zonation of absorption along the proximal:distal small intestinal axis.
Collapse
|
7
|
Belyy V, Zuazo-Gaztelu I, Alamban A, Ashkenazi A, Walter P. Endoplasmic reticulum stress activates human IRE1α through reversible assembly of inactive dimers into small oligomers. eLife 2022; 11:e74342. [PMID: 35730415 PMCID: PMC9217129 DOI: 10.7554/elife.74342] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/19/2022] [Indexed: 01/24/2023] Open
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) is regulated by a signaling network, termed the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER membrane-resident kinase/RNase that mediates signal transmission in the most evolutionarily conserved branch of the UPR. Dimerization and/or higher-order oligomerization of IRE1 are thought to be important for its activation mechanism, yet the actual oligomeric states of inactive, active, and attenuated mammalian IRE1 complexes remain unknown. We developed an automated two-color single-molecule tracking approach to dissect the oligomerization of tagged endogenous human IRE1 in live cells. In contrast to previous models, our data indicate that IRE1 exists as a constitutive homodimer at baseline and assembles into small oligomers upon ER stress. We demonstrate that the formation of inactive dimers and stress-dependent oligomers is fully governed by IRE1's lumenal domain. Phosphorylation of IRE1's kinase domain occurs more slowly than oligomerization and is retained after oligomers disassemble back into dimers. Our findings suggest that assembly of IRE1 dimers into larger oligomers specifically enables trans-autophosphorylation, which in turn drives IRE1's RNase activity.
Collapse
Affiliation(s)
- Vladislav Belyy
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | | | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, IncSouth San FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|