1
|
de Mora F, Messlinger K. Is calcitonin gene-related peptide (CGRP) the missing link in food histamine-induced migraine? A review of functional gut-to-trigeminovascular system connections. Drug Discov Today 2024; 29:103941. [PMID: 38447930 DOI: 10.1016/j.drudis.2024.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Calcitonin gene-related peptide (CGRP) and histamine plasma concentrations increase during migraine attacks. Both mediators are potent vasodilators, and they have been shown to reciprocally contribute to the release of each other in the trigeminovascular system, possibly driving migraine development. A high-histamine-content diet triggers migraine in patients who have histamine degradation deficiency owing to diaminooxidase (DAO) gene mutations. Therefore, studying functional links between exogenous histamine and CGRP seems promising for the understanding of diet-induced migraine generation. Notably, there is a lack of knowledge about the interplay of the enteric nervous system and the spinal/trigeminal somatosensory system with regard to CGRP and histamine. Based on background evidence, we propose that a functional interconnection between exogenous histamine and CGRP contributes to migraine development.
Collapse
Affiliation(s)
- Fernando de Mora
- Department of Pharmacology, Therapeutics and Toxicology, Edificio V, Universidad Autónoma de Barcelona, Campus UAB - 08193 Bellaterra, Barcelona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, D-91054 Erlangen, Germany.
| |
Collapse
|
2
|
Szabo E, Ashina S, Melo-Carrillo A, Bolo NR, Borsook D, Burstein R. Peripherally acting anti-CGRP monoclonal antibodies alter cortical gray matter thickness in migraine patients: A prospective cohort study. Neuroimage Clin 2023; 40:103531. [PMID: 37866119 PMCID: PMC10623369 DOI: 10.1016/j.nicl.2023.103531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
Migraine is underpinned by central nervous system neuroplastic alterations thought to be caused by the repetitive peripheral afferent barrage the brain receives during the headache phase (cortical hyperexcitability). Calcitonin gene-related peptide monoclonal antibodies (anti-CGRP-mAbs) are highly effective migraine preventative treatments. Their ability to alter brain morphometry in treatment-responders vs. non-responders is not well understood. Our aim was to determine the effects of the anti-CGRP-mAb galcanezumab on cortical thickness after 3-month treatment of patients with high-frequency episodic or chronic migraine. High-resolution magnetic resonance imaging was performed pre- and post-treatment in 36 migraine patients. In this group, 19 patients were classified responders (≥50 % reduction in monthly migraine days) and 17 were considered non-responders (<50 % reduction in monthly migraine days). Following cross-sectional processing to analyze the baseline differences in cortical thickness, two-stage longitudinal processing and symmetrized percent change were conducted to investigate treatment-related brain changes. At baseline, no significant differences were found between the responders and non-responders. After 3-month treatment, decreased cortical thickness (compared to baseline) was observed in the responders in regions of the somatosensory cortex, anterior cingulate cortex, medial frontal cortex, superior frontal gyrus, and supramarginal gyrus. Non-responders demonstrated decreased cortical thickness in the left dorsomedial cortex and superior frontal gyrus. We interpret the cortical thinning seen in the responder group as suggesting that reduction in head pain could lead to changes in neural swelling and dendritic complexity and that such changes reflect the recovery process from maladaptive neural activity. This conclusion is further supported by our recent study showing that 3 months after treatment initiation, the incidence of premonitory symptoms and prodromes that are followed by headache decreases but not the incidence of the premonitory symptoms or prodromes themselves (that is, cortical thinning relates to reductions in the nociceptive signals in the responders). We speculate that a much longer recovery period is required to allow the brain to return to a more 'normal' functioning state whereby prodromes and premonitory symptoms no longer occur.
Collapse
Affiliation(s)
- Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA
| | - Nicolas R Bolo
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David Borsook
- Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Anaesthesiology, Harvard Medical School, Boston, MA 02215, USA; Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Wang Z, Lin Q, Peng YB. Multi-region local field potential signatures and brain coherence alternations in response to nitroglycerin-induced migraine attacks. Headache 2023; 63:523-538. [PMID: 37036141 DOI: 10.1111/head.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE To decipher the underlying mechanisms of nitroglycerin (NTG)-induced migraine electrophysiologically. BACKGROUND Migraine is a recurrent primary headache disorder with moderate to severe disability; however, the pathophysiology is not fully understood. Consequently, safe and effective therapies to alleviate migraine headaches are limited. Local field potential (LFP) recording, as a neurophysiological tool, has been widely utilized to investigate combined neuronal activity. METHODS We recorded LFP changes simultaneously from the anterior cingulate cortex, posterior nucleus of the thalamus, trigeminal ganglion, and primary visual cortex after NTG injection in both anesthetized and freely moving rats. Additionally, brain coherence was processed, and light-aversive behavior measurements were implemented. RESULTS Significant elevations of LFP powers with various response patterns for the delta, theta, alpha, beta, and gamma bands following NTG injection were detected in both anesthetized and freely moving rats; however, a surge of coherence alternations was exclusively observed in freely moving rats after NTG injection. CONCLUSION The multi-region LFP signatures and brain coherence alternations in response to NTG-induced migraine attacks were determined. Furthermore, the results of behavior measurements in the freely moving group indicated that NTG induced the phenomenon of photophobia in our study. All these findings offer novel insights into the interpretation of migraine mechanisms and related treatments.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Qing Lin
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| | - Yuan B Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
4
|
Tu T, Peng Z, Song Z, Ma Y, Zhang H. New insight into DAVF pathology—Clues from meningeal immunity. Front Immunol 2022; 13:858924. [PMID: 36189220 PMCID: PMC9520480 DOI: 10.3389/fimmu.2022.858924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, with the current access in techniques, studies have significantly advanced the knowledge on meningeal immunity, revealing that the central nervous system (CNS) border acts as an immune landscape. The latest concept of meningeal immune system is a tertiary structure, which is a comprehensive overview of the meningeal immune system from macro to micro. We comprehensively reviewed recent advances in meningeal immunity, particularly the new understanding of the dural sinus and meningeal lymphatics. Moreover, based on the clues from the meningeal immunity, new insights were proposed into the dural arteriovenous fistula (DAVF) pathology, aiming to provide novel ideas for DAVF understanding.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Department of Health Management Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zihao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yongjie Ma, ; Hongqi Zhang,
| |
Collapse
|
5
|
Balcziak LK, Russo AF. Dural Immune Cells, CGRP, and Migraine. Front Neurol 2022; 13:874193. [PMID: 35432179 PMCID: PMC9009415 DOI: 10.3389/fneur.2022.874193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Migraine is the most common neurological disorder in the world, affecting 12% of the population. Migraine involves the central nervous system, trigeminal nerves and meninges. Recent advances have shown that targeting calcitonin gene-related peptide (CGRP) through either antibodies or small molecule receptor antagonists is effective at reducing episodic and chronic migraine episodes, but these therapeutics are not effective in all patients. This suggests that migraine does not have a singular molecular cause but is likely due to dysregulated physiology of multiple mechanisms. An often-overlooked part of migraine is the potential involvement of the immune system. Clinical studies have shown that migraine patients may have dysregulation in their immune system, with abnormal plasma cytokine levels either during the attack or at baseline. In addition, those who are immunocompromised appear to be at a higher risk of migraine-like disorders. A recent study showed that migraine caused changes to transcription of immune genes in the blood, even following treatment with sumatriptan. The dura mater is densely packed with macrophages, mast and dendritic cells, and they have been found to associate with meningeal blood vessels and trigeminal afferent endings. Recent work in mice shows activation and morphological changes of these cells in rodents following the migraine trigger cortical spreading depression. Importantly, each of these immune cell types can respond directly to CGRP. Since immune cells make up a large portion of the dura, have functional responses to CGRP, and interact with trigeminal afferents, CGRP actions on the dural immune system are likely to play key roles in migraine.
Collapse
Affiliation(s)
- Louis K. Balcziak
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, United States
- *Correspondence: Louis K. Balcziak
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| |
Collapse
|
6
|
Zheng G, Gan L, Jia LY, Zhou DC, Bi S, Meng ZQ, Guan GJ, Huang MM, He X, Zhang CF, Wang CZ, Yuan CS. Screen of anti-migraine active compounds from Duijinsan by spectrum-effect relationship analysis and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114352. [PMID: 34161797 DOI: 10.1016/j.jep.2021.114352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duijinsan (DJS) is a famous Chinese medicine prescription composed of Radix scutellariae (RS) and Rhei Radix (RRR), which has been mainly used for treating migraine. AIM OF THE STUDY This study aimed to uncover the anti-migraine active compounds from DJS and preliminary predicted the pharmacological mechanism by evaluating the spectrum-effect relationship between high-performance liquid chromatography (HPLC) fingerprints and anti-migraine effects of Duijinsan (DJS) extract combined with molecular docking. MATERIALS AND METHODS HPLC and LC-MS were applied for chemical analyses of DJS extracts in different proportions. Inhibition of DJS extracts on trigeminal nerve cell releasing calcitonin gene related peptide (CGRP) experiment was performed. The active compounds were screened by spectrum-effect relationship analysis and confirmed by molecular docking and the activities of major predicted compounds were validated in vitro. RESULTS Twenty-six common peaks were assigned and identified from the fingerprints of different proportions DJS extracts. In vitro experimental results showed that DJS extracts inhibited inflammation and release of CGRP from trigeminal nerve cells. Five predicted active compounds, Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide were sorted out according to spectrum-effect relationship analysis and molecular docking comprehensively. In vitro validation experiments showed that all the predicted compounds inhibited the CGRP releasing and the activation of TRPV1 channel. Baicalin, chrysin-7-O-β-D-glucuronide and Oroxylin A-7-glucoronide significantly inhibited the activation of TRPV1 channel. CONCLUSION Chrysin 6-C-arabinoside 8-C-glucoside, Chrysin 6-C-glucoside 8-C-arabinoside, baicalin, Chrysin-7-O-Beta-D-glucoronide and Oroxylin A 7-O-glucuronide which can inhibit the CGRP releasing and the activation of TRPV1 channel were screened as the anti-migraine active compounds by spectrum-effect relationship analysis and molecular docking.
Collapse
Affiliation(s)
- Guo Zheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Lu Gan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Ying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - De-Cui Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Sheng Bi
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Zhao-Qing Meng
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Gui-Ju Guan
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Meng-Meng Huang
- Shandong Hongjitang Pharmaceutical Group Co., Ltd, Jinan, 250103, PR China.
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry 2021; 11:388. [PMID: 34247185 PMCID: PMC8272715 DOI: 10.1038/s41398-021-01511-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
There is evidence of the therapeutic potential of intranasal oxytocin for the treatment of pain and various psychiatric disorders, however, there is scant evidence that oxytocin reaches the brain. We quantified the concentration and distribution pattern of [125I]-radiolabeled oxytocin in the brains and peripheral tissues of rats after intranasal delivery using gamma counting and autoradiography, respectively. Radiolabel was detected in high concentrations in the trigeminal and olfactory nerves as well as in brain regions along their trajectories. Considerable concentrations were observed in the blood, however, relatively low levels of radiolabel were measured in peripheral tissues. The addition of a mucoadhesive did not enhance brain concentrations. These results provide support for intranasal OT reaching the brain via the olfactory and trigeminal neural pathways. These findings will inform the design and interpretation of clinical studies with intranasal oxytocin.
Collapse
|
8
|
Transient activation of spinal trigeminal neurons in a rat model of hypoxia-induced headache. Pain 2021; 162:1153-1162. [PMID: 33065738 DOI: 10.1097/j.pain.0000000000002114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT The mechanisms underlying headaches attributed to hypoxia are poorly known. The activation of spinal trigeminal neurons with meningeal afferent input is believed to be responsible for the generation of headaches. In the caudal spinal trigeminal nucleus of anaesthetized and ventilated rats, the spontaneous firing of neurons with input from the exposed parietal dura mater and the activity evoked by mechanical stimuli to the dura and the adjacent periosteum were recorded, whereas the O2 fraction of the ventilation gas was stepwise reduced by omitting O2 and adding nitrogen. The expiratory CO2 level, the arterial pressure, the pulse rate, and the peripheral O2 saturation (SpO2) were registered. The meningeal blood flow was recorded using laser Doppler flowmetry; video imaging was used to measure the diameter of dural and medullary arteries. Lowering O2 in the ventilation gas from hyperoxic to normoxic and finally hypoxic conditions was followed by an increase in spontaneous activity up to 300% of the initial activity in most neurons, whereas the activity in a minor fraction of neurons ceased. The mechanical threshold was reduced under hypoxia. Arterial pressure, pulse rate, and SpO2 fell during stepwise lowering of the O2 concentration, whereas the arteries of the dura mater and the medulla dilated. Increased neuronal activity in the spinal trigeminal nucleus following lowering of the inhaled O2 goes along with variations in cardiovascular parameters. The experiments may partly model the conditions of high altitudes and other hypoxic states as risk factors for headache generation.
Collapse
|
9
|
Aurora SK, Shrewsbury SB, Ray S, Hindiyeh N, Nguyen L. A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection. Headache 2021; 61:576-589. [PMID: 33793965 PMCID: PMC8251535 DOI: 10.1111/head.14099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Background Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut–brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions. Objective To summarize the available studies supporting a link between GI comorbidities and migraine, including historical and current scientific evidence, as well as provide evidence that symptoms of GI disorders are also observed outside of migraine attacks during the interictal period. Additionally, the importance of route of administration and formulation of migraine therapies for patients with GI symptoms will be discussed. Methods A literature search of PubMed for articles relating to the relationship between the gut and the brain with no restriction on the publication year was performed. Studies providing scientific support for associations of gastroparesis, functional dyspepsia, and CVS with migraine and the impact these associations may have on migraine treatment were the primary focus. This is a narrative review of identified studies. Results Although the association between migraine and GI disorders has received very little attention in the literature, the existing evidence suggests that they may share a common etiology. In particular, the relationship between migraine, gastric motility, and vomiting has important clinical implications in the treatment of migraine, as delayed gastric emptying and vomiting may affect oral dosing compliance, and thus, the absorption and efficacy of oral migraine treatments. Conclusions There is evidence of a link between migraine and GI comorbidities, including those under the DGBI classification. Many patients do not find adequate relief with oral migraine therapies, which further necessitates increased recognition of GI disorders in patients with migraine by the headache community.
Collapse
Affiliation(s)
- Sheena K Aurora
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA.,Department of Neurology, Stanford University, Stanford, CA, USA
| | | | - Sutapa Ray
- Medical Affairs, Impel NeuroPharma, Seattle, WA, USA
| | - Nada Hindiyeh
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Linda Nguyen
- Department of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Liu TH, Wang Z, Xie F, Liu YQ, Lin Q. Contributions of aversive environmental stress to migraine chronification: Research update of migraine pathophysiology. World J Clin Cases 2021; 9:2136-2145. [PMID: 33850932 PMCID: PMC8017499 DOI: 10.12998/wjcc.v9.i9.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Clinical studies have suggested that internal and/or external aversive cues may produce a negative affective-motivational component whereby maladaptive responses (plasticity) of dural afferent neurons are initiated contributing to migraine chronification. However, pathophysiological processes and neural circuitry involved in aversion (unpleasantness)-producing migraine chronification are still evolving. An interdisciplinary team conducted this narrative review aimed at reviewing neuronal plasticity for developing migraine chronicity and its relevant neurocircuits and providing the most cutting-edge information on neuronal mechanisms involved in the processing of affective aspects of pain and the role of unpleasantness evoked by internal and/or external cues in facilitating the chronification process of migraine headache. Thus, information presented in this review promotes the understanding of the pathophysiology of chronic migraine and contribution of unpleasantness (aversion) to migraine chronification. We hope that it will bring clinicians’ attention to how the maladaptive neuroplasticity of the emotion brain in the aversive environment produces a significant impact on the chronification of migraine headache, which will in turn lead to new therapeutic strategies for this type of pain.
Collapse
Affiliation(s)
- Tang-Hua Liu
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Zhen Wang
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| | - Fang Xie
- Department of Algology, The Third People's Hospital of Yibin, Yibin 644000, Sichuan Province, China
| | - Yan-Qing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qing Lin
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, United States
| |
Collapse
|
11
|
Yuan R, Zhang D, Yang J, Wu Z, Luo C, Han L, Yang F, Lin J, Yang M. Review of aromatherapy essential oils and their mechanism of action against migraines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113326. [PMID: 32877718 DOI: 10.1016/j.jep.2020.113326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Migraines have become a major threat to human health, as they significantly affect human health and quality of life due to a high prevalence rate, attack rate and pain intensity. Aromatherapy, with its comfortable and pleasant natural characteristics and rapid and efficient characteristics, is widely favored by patients in the folk. Chinese folk also have the application history and related records of aromatic plants in the treatment of migraine. AIM OF THE STUDY This study was conducted to review the pathogenesis of migraine, the application of plant essential oils in the treatment of migraine, and further explore the material basis and mechanism of action of plant essential oils against migraine. MATERIALS AND METHODS Search the electronic literature of essential oils with anti-migraine effect in Google Scholar, PubMed and China National Knowledge Infrastructure, and further search the research situation of the monomer components of essential oils in migraine, inflammation, pain and other aspects. RESULTS studies show that there are 10 types of plant essential oils that could relieve migraine symptoms, and that 16 monomers may play a role in migraine treatment by effectively inhibiting neurogenic inflammation, hyperalgesia and balancing vasorelaxation. CONCLUSION Aromatic plant essential oils can relieve migraine effectively, these findings can be used as an important part of the development of anti-migraine drugs.
Collapse
Affiliation(s)
- Ruifang Yuan
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Dingkun Zhang
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jinhui Yang
- Sichuan Baicao Jinggong Biotechnology Co., Ltd., Chengdu, 610000, PR China
| | - Zhenfeng Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China
| | - Chuanhong Luo
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Li Han
- Pharmacy School, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Fangli Yang
- Sinopharm Sichuan Orthopedic Tehnology & Equipment Co., Ltd., Chengdu, 610000, PR China
| | - Junzhi Lin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China; School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Ming Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, PR China.
| |
Collapse
|
12
|
Oh EH, Shin JH, Cho JW, Choi SY, Choi KD, Choi JH. TRPM7 as a Candidate Gene for Vestibular Migraine. Front Neurol 2020; 11:595042. [PMID: 33193064 PMCID: PMC7649787 DOI: 10.3389/fneur.2020.595042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives: Vestibular migraine (VM) is a common vestibular disorder, and familial aggregation of VM with autosomal-dominant inheritance has been described, which supports a genetic background. This study aimed to describe the clinical phenotype of a family with VM, and identify a candidate gene for VM. Methods: We recruited six individuals (four affected and two unaffected) from three consecutive generations of a Korean family with VM, and performed whole-exome sequencing to search for candidate genes. Results: All affected individuals presented with recurrent vertigo, headache, and nausea/vomiting that fulfilled the diagnostic criteria of VM. Two individuals also experienced transient hemiparesis or dysarthria during the episodes. The symptoms were triggered by physical or emotional stress. Interictal examinations showed uni- or bi-directional horizontal gaze-evoked nystagmus in three of the individuals. They had no causative mutations in genes causing familial hemiplegic migraine or episodic ataxia. Through whole-exome sequencing from three affected individuals, we identified a nonsense mutation c.3526C>T in TRPM7 that encodes a cation channel selective to Ca2+ and Mg2+. Conclusions: Alterations in intracellular Ca2+ and Mg2+ homeostasis by TRPM7 mutation may contribute to the development of the VM phenotype. Our result suggest that TRPM7 is a novel candidate gene for VM.
Collapse
Affiliation(s)
- Eun Hye Oh
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jae Wook Cho
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Seo-Young Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Kwang-Dong Choi
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| |
Collapse
|
13
|
Mast Cell Mediators as Pain Triggers in Migraine: Comparison of Histamine and Serotonin in the Activation of Primary Afferents in the Meninges in Rats. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s11055-020-00983-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Zhao L, Liu L, Xu X, Qu Z, Zhu Y, Li Z, Zhao J, Wang L, Jing X, Li B. Electroacupuncture Inhibits Hyperalgesia by Alleviating Inflammatory Factors in a Rat Model of Migraine. J Pain Res 2020; 13:75-86. [PMID: 32021397 PMCID: PMC6968809 DOI: 10.2147/jpr.s225431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/24/2019] [Indexed: 01/22/2023] Open
Abstract
Objective Acupuncture has a therapeutic effect similar to that of prophylactic drugs and can be considered a treatment option for migraineurs. However, the mechanism of acupuncture treatment's effect on migraine is uncertain. An approach based on anti-inflammatory effects is an important treatment strategy for migraine because non-steroidal anti-inflammatory drugs (NSAIDs) are usually used during migraine attacks. Meningeal inflammation is thought to be responsible for the activation of the trigeminovascular system. Our previous study found that electroacupuncture (EA) decreased neurogenic inflammation mediator expression in the trigeminal ganglion (TG) and alleviated hyperalgesia. The present study examined whether EA would inhibit hyperalgesia by alleviating neurogenic inflammatory factors. Methods A rat model of migraine was established using dural electrical stimulation (DES). Five groups were analyzed in this study. The Model group received DES three times to mimic migraine attacks, a Control group had sham DES, and three groups received electroacupuncture after DES: a Non-Acu group at a non-acupuncture point, a GB20 group at GB20, and a GB20/34 group at GB20 and GB34 acupuncture points. We evaluated mechanical hyperalgesia using an electronic von Frey esthesiometer in the awake state. After sacrifice, the dura mater was analyzed using immunofluorescence. Serum calcitonin gene-related peptide, cyclooxygenase-2, brain-derived neurotrophic factor, IL-1β, IL-6, and TNF levels were determined using enzyme-linked immunosorbent assays to evaluate the anti-inflammatory effect of acupuncture. Results After repeated DES, we observed facial and hind paw mechanical hyperalgesia, which was inhibited by electroacupuncture. Electrical stimulation increased the number of mast cells and macrophages and serum levels of inflammatory factors. GB20 and GB20/34 electroacupuncture significantly decreased the number of mast cells and macrophages and serum levels of inflammatory factors. Moreover, electroacupuncture at GB20/34 was superior to that at GB20 alone in inhibiting hyperalgesia and alleviating inflammatory factors. Conclusion Electroacupuncture inhibits DES-induced hyperalgesia by alleviating inflammatory factors. Inhibition of dural mast cells, macrophages, and serum inflammatory factors may be one of the mechanisms involved in acupuncture treatment's effect on migraine.
Collapse
Affiliation(s)
- Luopeng Zhao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Xiaobai Xu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhengyang Qu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Yupu Zhu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Zhijuan Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Jingxia Zhao
- Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing, People's Republic of China
| | - Linpeng Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, People's Republic of China
| |
Collapse
|
15
|
Moreno‐Ajona D, Chan C, Villar‐Martínez MD, Goadsby PJ. Targeting CGRP and 5‐HT
1F
Receptors for the Acute Therapy of Migraine: A Literature Review. Headache 2019; 59 Suppl 2:3-19. [DOI: 10.1111/head.13582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/21/2022]
Affiliation(s)
- David Moreno‐Ajona
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Calvin Chan
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - María Dolores Villar‐Martínez
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| | - Peter J. Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience King’s College London London UK
- NIHR‐Wellcome Trust King’s Clinical Research Facility/SLaM Biomedical Research Centre King’s College Hospital London UK
| |
Collapse
|
16
|
Piechal A, Domitrz I, Kurkowska-Jastrzębska I, Mirowska-Guzel D. Are antimigraine drugs that influence CGRP levels justified? Pharmacol Rep 2019; 71:624-635. [PMID: 31181379 DOI: 10.1016/j.pharep.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Migraine is one of the most common disorders found in everyday clinical practice. Although migraines are not directly life-threatening or permanently disabling, the severity of the pain and symptoms that characterize a migraine attack often prevent normal work and cause difficulties in everyday life. Migraines also affect the patient's family, who often experience stress and depression in response to the patient's condition. Available therapy, used in both acute and chronic treatments, might not provide sufficient improvement. Due to problems like therapy inefficacy, side effects, and intolerance, patients often stop treatments. Recent studies have indicated that drugs that act through calcitonin gene-related peptide (CGRP) can significantly improve migraine therapy. Here, we review results from currently available clinical trials on CGRP receptor antagonists and anti-CGRP monoclonal antibodies.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Izabela Domitrz
- Department of Neurology of the Second Faculty of Medicine, Medical University of Warsaw, Warszawa, Poland.
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Warszawa, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warszawa, Poland
| |
Collapse
|
17
|
Koyuncu Irmak D, Kilinc E, Tore F. Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine. Front Cell Neurosci 2019; 13:136. [PMID: 31024263 PMCID: PMC6460506 DOI: 10.3389/fncel.2019.00136] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder which has complex neurogenic pathophysiological mechanisms still requiring full elucidation. The sensory nerves and meningeal mast cell couplings in the migraine target tissue are very effective interfaces between the central nervous system and the immune system. These couplings fall into three categories: intimacy, cross-talk and a shared fate. Acting as the immediate call-center of the neuroimmune system, mast cells play fundamental roles in migraine pathophysiology. Considerable evidence shows that neuroinflammation in the meninges is the key element resulting in the sensitization of trigeminal nociceptors. The successive events such as neuropeptide release, vasodilation, plasma protein extravasation, and mast cell degranulation that form the basic characteristics of the inflammation are believed to occur in this persistent pain state. In this regard, mast cells and sensory neurons represent both the target and source of the neuropeptides that play autocrine, paracrine, and neuro-endocrine roles during this inflammatory process. This review intends to contribute to a better understanding of the meningeal mast cell and sensory neuron bi-directional interactions from molecular, cellular, functional points of view. Considering the fact that mast cells play a sine qua non role in expanding the opportunities for targeted new migraine therapies, it is of crucial importance to explore these multi-faceted interactions.
Collapse
Affiliation(s)
- Duygu Koyuncu Irmak
- Department of Histology and Embryology, School of Medicine, Biruni University, Istanbul, Turkey
| | - Erkan Kilinc
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, School of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
18
|
Boström A, Scheele D, Stoffel-Wagner B, Hönig F, Chaudhry SR, Muhammad S, Hurlemann R, Krauss JK, Lendvai IS, Chakravarthy KV, Kinfe TM. Saliva molecular inflammatory profiling in female migraine patients responsive to adjunctive cervical non-invasive vagus nerve stimulation: the MOXY Study. J Transl Med 2019; 17:53. [PMID: 30795781 PMCID: PMC6387501 DOI: 10.1186/s12967-019-1801-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Rising evidence indicate that oxytocin and IL-1β impact trigemino-nociceptive signaling. Current perspectives on migraine physiopathology emphasize a cytokine bias towards a pro-inflammatory status. The anti-nociceptive impact of oxytocin has been reported in preclinical and human trials. Cervical non-invasive vagus nerve stimulation (nVNS) emerges as an add-on treatment for the preventive and abortive use in migraine. Less is known about its potential to modulate saliva inflammatory signaling in migraine patients. The rationale was to perform inter-ictal saliva measures of oxytocin and IL-1ß along with headache assessment in migraine patients with 10 weeks adjunctive nVNS compared to healthy controls. Methods 12 migraineurs and 12 suitably matched healthy control were studied with inter-ictal saliva assay of pro- and anti-neuroinflammatory cytokines using enzyme-linked immuno assay techniques along with assessment of headache severity/frequency and associated functional capacity at baseline and after 10 weeks adjunctive cervical nVNS. Results nVNS significantly reduced headache severity (VAS), frequency (headache days and total number of attacks) and significantly improved sleep quality compared to baseline (p < 0.01). Inter-ictal saliva oxytocin and IL-1β were significantly elevated pre- as well as post-nVNS compared to healthy controls (p < 0.01) and similarly showed changes that may reflect the observed clinical effects. Conclusions Our results add to accumulating evidence for a therapeutic efficacy of adjunct cervical non-invasive vagus nerve stimulation in migraine patients. This study failed to provide an evidence-derived conclusion addressed to the predictive value and usefulness of saliva assays due to its uncontrolled study design. However, saliva screening of mediators associated with trigemino-nociceptive traffic represents a novel approach, thus deserve future targeted headache research. Trial registration This study was indexed at the German Register for Clinical Trials (DRKS No. 00011089) registered on 21.09.2016
Collapse
Affiliation(s)
- Azize Boström
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Dirk Scheele
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Frigga Hönig
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Shafqat R Chaudhry
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Rene Hurlemann
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Ilana S Lendvai
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany.,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany.,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany
| | - Krishnan V Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego, San Diego, CA, USA
| | - Thomas M Kinfe
- Department of Psychiatry, University Hospital Bonn, Bonn, Germany. .,Division of Medical Psychology, University Hospital Bonn, Bonn, Germany. .,Rheinische Friedrich-Wilhelms University Bonn, Sigmund-Freud Street 25, 53105, Bonn, Germany.
| |
Collapse
|
19
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
20
|
Verkest C, Piquet E, Diochot S, Dauvois M, Lanteri-Minet M, Lingueglia E, Baron A. Effects of systemic inhibitors of acid-sensing ion channels 1 (ASIC1) against acute and chronic mechanical allodynia in a rodent model of migraine. Br J Pharmacol 2018; 175:4154-4166. [PMID: 30079481 DOI: 10.1111/bph.14462] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/28/2018] [Accepted: 07/26/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Acid-sensing ion channels (ASICs) are neuronal proton sensors emerging as potential therapeutic targets in pain of the orofacial region. Amiloride, a non-specific ASIC blocker, has been shown to exert beneficial effects in animal models of migraine and in patients. We explored the involvement of the ASIC1-subtype in cutaneous allodynia, a hallmark of migraine affecting cephalic and extra-cephalic regions in about 70% of migrainers. EXPERIMENTAL APPROACH We investigated the effects of systemic injections of amiloride and mambalgin-1, a specific inhibitor of ASIC1a- and ASIC1b-containing channels, on cephalic and extra-cephalic mechanical sensitivity in a rodent model of acute and chronic migraine induced by i.p. injections of isosorbide dinitrate. KEY RESULTS I.v. injections of these inhibitors reversed cephalic and extra-cephalic acute cutaneous mechanical allodynia in rats, a single injection inducing a delay in the subsequent establishment of chronic allodynia. Both mambalgin-1 and amiloride also reversed established chronic allodynia. The anti-allodynic effects of mambalgin-1 were not altered in ASIC1a-knockout mice, showing the ASIC1a subtype is not involved in these effects which were comparable to those of the anti-migraine drug sumatriptan and of the preventive drug topiramate on acute and chronic allodynia respectively. A single daily injection of mambalgin-1 also had a significant preventive effect on allodynia chronification. CONCLUSIONS AND IMPLICATIONS These pharmacological data support the involvement of peripheral ASIC1-containing channels in migraine cutaneous allodynia as well as in its chronification. They highlight the therapeutic potential of ASIC1 inhibitors as both an acute and prophylactic treatment for migraine.
Collapse
Affiliation(s)
- Clément Verkest
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Emilie Piquet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France
| | - Sylvie Diochot
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Mélodie Dauvois
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Michel Lanteri-Minet
- FHU InovPain, Université Côte d'Azur, Nice, France.,CHU Nice, Hopital Cimiez, Département d'évaluation et de traitement de la douleur, Nice, France.,Inserm/UdA, U1107, Neuro-Dol, Trigeminal Pain and Migraine, Université d'Auvergne, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| | - Anne Baron
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,LabEx Ion Channel Science and Therapeutics, Valbonne, France.,FHU InovPain, Université Côte d'Azur, Nice, France
| |
Collapse
|
21
|
Liu H, Zhu X, Ling Y, He X, Pei L, Zhang Z, Yang F, Xu F. Anatomic Evidence for Information Exchange between Primary Afferent Sensory Neurons Innervating the Anterior Eye Chamber and the Dura Mater in Rat. ACTA ACUST UNITED AC 2018; 59:3424-3430. [PMID: 30025096 DOI: 10.1167/iovs.18-24308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Haixia Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xutao Zhu
- Center for Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ling
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobin He
- Center for Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Lei Pei
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Zhidan Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Xu
- Center for Brain Science, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
22
|
Cottier KE, Galloway EA, Calabrese EC, Tome ME, Liktor-Busa E, Kim J, Davis TP, Vanderah TW, Largent-Milnes TM. Loss of Blood-Brain Barrier Integrity in a KCl-Induced Model of Episodic Headache Enhances CNS Drug Delivery. eNeuro 2018; 5:ENEURO.0116-18.2018. [PMID: 30073201 PMCID: PMC6071204 DOI: 10.1523/eneuro.0116-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/25/2018] [Indexed: 01/03/2023] Open
Abstract
Cortical spreading depression (CSD) in the CNS is suggested as a common mechanism contributing to headache. Despite strong evidence for CNS involvement in headache disorders, drug development for headache disorders remains focused on peripheral targets. Difficulty in delivering drugs across the blood-brain barrier (BBB) may partially account for this disparity. It is known, however, that BBB permeability is increased during several CNS pathologies. In this study, we investigated BBB changes in response to KCl-induced CSD events and subsequent allodynia in rats. Cortical KCl injection in awake, freely moving rats produced facial allodynia with peak intensity between 1.5 and 3 h and CSD induction within 0.5-2 h postinjection. Brain perfusion of 14C-sucrose as a marker of BBB paracellular permeability revealed increased leak in the cortex, but not brainstem, beginning 0.5 h post-KCl injection and resolving within 6 h; no changes in tight junction (TJ) proteins occludin or claudin-5 expression were observed. Acute pretreatment with topiramate to inhibit CSD did not prevent the increased BBB paracellular permeability. CNS delivery of the abortive anti-migraine agent sumatriptan was increased in the cortex 1.5 h post-KCl injection. Surprisingly, sumatriptan uptake was also increased in the brainstem following CSD induction, suggesting regulation of active transport mechanisms at the BBB. Together, these results demonstrate the ability of CSD events to produce transient, time-dependent changes in BBB permeability when allodynia is present and to mediate access of clinically relevant therapeutics (i.e., sumatriptan) to the CNS.
Collapse
Affiliation(s)
- Karissa E. Cottier
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Emily A. Galloway
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Elisa C. Calabrese
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Margaret E. Tome
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - John Kim
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724
| | | |
Collapse
|
23
|
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med 2018; 24:542-559. [PMID: 29731353 PMCID: PMC6044730 DOI: 10.1016/j.molmed.2018.04.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Abstract
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Dodick DW. A Phase-by-Phase Review of Migraine Pathophysiology. Headache 2018; 58 Suppl 1:4-16. [DOI: 10.1111/head.13300] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
|
25
|
Sandweiss AJ, Cottier KE, McIntosh MI, Dussor G, Davis TP, Vanderah TW, Largent-Milnes TM. 17-β-Estradiol induces spreading depression and pain behavior in alert female rats. Oncotarget 2017; 8:114109-114122. [PMID: 29371973 PMCID: PMC5768390 DOI: 10.18632/oncotarget.23141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/26/2017] [Indexed: 01/17/2023] Open
Abstract
AIMS Test the putative contribution of 17-β-estradiol in the development of spreading depression (SD) events and head pain in awake, non-restrained rats. MAIN METHODS Female, Sprague-Dawley rats were intact or underwent ovariectomy followed one week later by surgery to place electrodes onto the dura to detect epidural electroencephalographic activity (dEEG). dEEG activity was recorded two days later for 12 hours after systemic administration of 17-β-estradiol (180 μg/kg, i.p.). A separate set of rats were observed for changes in exploratory, ambulatory, fine, and rearing behaviors; periorbital allodynia was also assessed. KEY FINDINGS A bolus of 17-β-estradiol significantly elevated serum estrogen levels, increased SD episodes over a 12-hour recording period and decreased rearing behaviors in ovariectomized rats. Pre-administration of ICI 182,780, an estrogen receptor antagonist, blocked 17-β-estradiol-evoked SD events and pain behaviors; similar results were observed when the antimigraine therapeutic sumatriptan was used. SIGNIFICANCE These data indicate that an estrogen receptor-mediated mechanism contributes to SD events in ovariectomized rats and pain behaviors in both ovariectomized -and intact- rats. This suggests that estrogen plays a different role in each phenomenon of migraine where intense fluctuations in concentration may influence SD susceptibility. This is the first study to relate estrogen peaks to SD development and pain behaviors in awake, freely moving female rats, establishing a framework for future preclinical migraine studies.
Collapse
Affiliation(s)
- Alexander J. Sandweiss
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Karissa E. Cottier
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Mary I. McIntosh
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Thomas P. Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| |
Collapse
|
26
|
Dural stimulation in rats causes brain-derived neurotrophic factor-dependent priming to subthreshold stimuli including a migraine trigger. Pain 2017; 157:2722-2730. [PMID: 27841839 DOI: 10.1097/j.pain.0000000000000692] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Migraine is one of the most common and most disabling disorders. Between attacks, migraine patients are otherwise normal but are sensitized to nonnoxious events known as triggers. The purpose of these studies was to investigate whether a headache-like event causes sensitization, or priming, to subsequent subthreshold events. Interleukin-6 (IL-6) was applied to the rat cranial dura mater which produced cutaneous facial and hind paw allodynia that lasted 24 hours. At 72 hours, IL-6-treated rats developed allodynia in response to dural stimulation with either a pH 6.8 or pH 7.0 solution and to a systemic nitric oxide (NO) donor, a well-known migraine trigger. Vehicle-treated rats did not respond to either pH stimulus or to the NO donor, demonstrating that IL-6 exposure primes rats to subthreshold stimuli. Inhibitors of brain-derived neurotrophic factor (BDNF) signaling given either systemically or intracisternally 24 hours after IL-6 eliminated responses to dural pH stimulation at 72 hours. Additionally, intracisternal administration of BDNF without previous dural stimulation produced allodynia and once resolved, animals were primed to dural pH 6.8/pH 7.0 and a systemic NO donor. Finally, hind paw IL-6 produced paw allodynia but not priming to paw injection of pH 7.0 at 72 hours demonstrating differences in priming depending on location. These data indicate that afferent input from the meninges produces BDNF-dependent priming of the dural nociceptive system. This primed state mimics the interictal period of migraine where attacks can be triggered by normally nonnoxious events and suggests that BDNF-dependent plasticity may contribute to migraine.
Collapse
|
27
|
Tzabazis A, Mechanic J, Miller J, Klukinov M, Pascual C, Manering N, Carson DS, Jacobs A, Qiao Y, Cuellar J, Frey WH, Jacobs D, Angst M, Yeomans DC. Oxytocin receptor: Expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia 2016; 36:943-50. [DOI: 10.1177/0333102415618615] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Aims Our studies investigated the location of oxytocin receptors in the peripheral trigeminal sensory system and determined their role in trigeminal pain. Methods Oxytocin receptor expression and co-localization with calcitonin gene-related peptide was investigated in rat trigeminal ganglion using immunohistochemistry. Enzyme-linked immunosorbent assay was used to determine the effects of facial electrocutaneous stimulation and adjuvant-induced inflammation of the temporomandibular joint on oxytocin receptor expression in the trigeminal ganglion. Finally, the effects of oxytocin on capsaicin-induced calcitonin gene-related peptide release from dural nociceptors were investigated using isolated rat dura mater. Results Oxytocin receptor immunoreactivity was present in rat trigeminal neurons. The vast majority of oxytocin receptor immunoreactive neurons co-expressed calcitonin gene-related peptide. Both electrocutaneous stimulation and adjuvant-induced inflammation led to a rapid upregulation of oxytocin receptor protein expression in trigeminal ganglion neurons. Oxytocin significantly and dose-dependently decreased capsaicin-induced calcitonin gene-related peptide release from dural nociceptors. Conclusion Oxytocin receptor expression in calcitonin gene-related peptide containing trigeminal ganglion neurons, and the blockade of calcitonin gene-related peptide release from trigeminal dural afferents suggests that activation of these receptors may provide therapeutic benefit in patients with migraine and other primary headache disorders.
Collapse
Affiliation(s)
- Alexander Tzabazis
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Michael Klukinov
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Neil Manering
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dean S Carson
- Trigemina, Inc., Moraga, CA, USA
- Department of Psychiatry, School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Yanli Qiao
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Jason Cuellar
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - William H Frey
- HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Daniel Jacobs
- Trigemina, Inc., Moraga, CA, USA
- Department of Plastic Surgery, Kaiser Permanente Medical Center, San Jose, CA, USA
| | - Martin Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Trigemina, Inc., Moraga, CA, USA
| |
Collapse
|
28
|
Abstract
Neurogenic inflammation, a well-defined pathophysiologial process is characterized by the release of potent vasoactive neuropeptides, predominantly calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A from activated peripheral nociceptive sensory nerve terminals (usually C and A delta-fibers). These peptides lead to a cascade of inflammatory tissue responses including arteriolar vasodilation, plasma protein extravasation, and degranulation of mast cells in their peripheral target tissue. Neurogenic inflammatory processes have long been implicated as a possible mechanism involved in the pathophysiology of various human diseases of the nervous system, respiratory system, gastrointestinal tract, urogenital tract, and skin. The recent development of several innovative experimental migraine models has provided evidence suggestive of the involvement of neuropeptides (SP, neurokinin A, and CGRP) in migraine headache. Antidromic stimulation of nociceptive fibers of the trigeminal nerve resulted in a neurogenic inflammatory response with marked increase in plasma protein extravasation from dural blood vessels by the release of various sensory neuropeptides. Several clinically effective abortive antimigraine medications, such as ergots and triptans, have been shown to attenuate the release of neuropeptide and neurogenic plasma protein extravasation. These findings provide support for the validity of using animal models to investigate mechanisms of neurogenic inflammation in migraine. These also further strengthen the notion of migraine being a neuroinflammatory disease. In the clinical context, there is a paucity of knowledge and awareness among physicians regarding the role of neurogenic inflammation in migraine. Improved understanding of the molecular biology, pharmacology, and pathophysiology of neurogenic inflammation may provide the practitioner the context-specific feedback to identify the novel and most effective therapeutic approach to treatment. With this objective, the present review summarizes the evidence supporting the involvement of neurogenic inflammation and neuropeptides in the pathophysiology and pharmacology of migraine headache as well as its potential significance in better tailoring therapeutic interventions in migraine or other neurological disorders. In addition, we have briefly highlighted the pathophysiological role of neurogenic inflammation in various other neurological disorders.
Collapse
Affiliation(s)
- Rakesh Malhotra
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
29
|
Dux M, Deák É, Tassi N, Sántha P, Jancsó G. Endovanilloids are potential activators of the trigeminovascular nocisensor complex. J Headache Pain 2016; 17:53. [PMID: 27189587 PMCID: PMC4870586 DOI: 10.1186/s10194-016-0644-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
Abstract
Background In the dura mater encephali a significant population of trigeminal afferents coexpress the nociceptive ion channel transient receptor potential vanilloid type 1 (TRPV1) receptor and calcitonin gene-related peptide (CGRP). Release of CGRP serves the central transmission of sensory information, initiates local tissue reactions and may also sensitize the nociceptive pathway. To reveal the possible activation of meningeal TRPV1 receptors by endogenously synthetized agonists, the effects of arachidonylethanolamide (anandamide) and N-arachidonoyl-dopamine (NADA) were studied on dural vascular reactions and meningeal CGRP release. Methods Changes in meningeal blood flow were measured with laser Doppler flowmetry in a rat open cranial window preparation following local dural applications of anandamide and NADA. The release of CGRP evoked by endovanilloids was measured with ELISA in an in vitro dura mater preparation. Results Topical application of NADA induced a significant dose-dependent increase in meningeal blood flow that was markedly inhibited by pretreatments with the TRPV1 antagonist capsazepine, the CGRP antagonist CGRP8–37, or by prior systemic capsaicin desensitization. Administration of anandamide resulted in minor increases in meningeal blood flow that was turned into vasoconstriction at the higher concentration. In the in vitro dura mater preparation NADA evoked a significant increase in CGRP release. Cannabinoid CB1 receptors of CGRP releasing nerve fibers seem to counteract the TRPV1 agonistic effect of anandamide in a dose-dependent fashion, a result which is confirmed by the facilitating effect of CB1 receptor inhibition on CGRP release and its reversing effect on the blood flow. Conclusions The present findings demonstrate that endovanilloids are potential activators of meningeal TRPV1 receptors and, consequently the trigeminovascular nocisensor complex that may play a significant role in the pathophysiology of headaches. The results also suggest that prejunctional CB1 receptors may modulate meningeal vascular responses.
Collapse
Affiliation(s)
- Mária Dux
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary.
| | - Éva Deák
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Noémi Tassi
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Péter Sántha
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Gábor Jancsó
- Department of Physiology, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| |
Collapse
|
30
|
Cankaya C, Tecellioglu M. Foveal Thickness Alterations in Patients with Migraine. Med Arch 2016; 70:123-6. [PMID: 27147787 PMCID: PMC4851508 DOI: 10.5455/medarh.2016.70.123-126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/30/2016] [Indexed: 11/03/2022] Open
Abstract
AIM To investigate the alterations in foveal retinal thickness (FT) values in patients with migraine and to reveal the correlations between FT and clinical characteristics of migraine disease. METHODS This study included sixty-eight eyes of 34 migraine patients [twenty-eight eyes of 14 patients with aura (group 1), and forty eyes of 20 patients without aura (group 2)] and forty eyes of 20 healthy volunteer who served as the control group (group 3). FT values were measured by optical coherence tomography (OCT) in each group. RESULTS Mean age of patients in group 1, 2, and 3 was 34.0± 6.82, 35.2±10.12, and 35.1± 6.85 years, respectively (p=0.84). Mean FT was 211.07±7.36, 220.0±12.01, and 221.85±12.27 in groups 1, 2, and 3, respectively. There was statistically significance among the group 1-2 and 1-3 (p=0.002 and p< 0.001). There was no statistically significance between group 2-3 (p=0.88). CONCLUSION This study suggests that in particular migraine with aura may lead to a reduction in FT values. This finding can be explained by the blood flow decrease theory in migraine; however larger studies seem mandatory.
Collapse
Affiliation(s)
- Cem Cankaya
- Gozde Kisla Hospital, Eye Clinic, Malatya, Turkey
| | - Mehmet Tecellioglu
- Department of Neurology, Faculty of Medicine, University of Inonu, Malatya, Turkey
| |
Collapse
|