1
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
2
|
Luo JW, Chen YH, Yu JF, Chen YX, Ji M, Guan HJ. Pain perception enhancement in consecutive second-eye phacoemulsification cataract surgeries under topical anesthesia. Int J Ophthalmol 2024; 17:1510-1518. [PMID: 39156768 PMCID: PMC11286442 DOI: 10.18240/ijo.2024.08.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/30/2024] [Indexed: 08/20/2024] Open
Abstract
Cataract is the main cause of visual impairment and blindness worldwide while the only effective cure for cataract is still surgery. Consecutive phacoemulsification under topical anesthesia has been the routine procedure for cataract surgery. However, patients often grumbled that they felt more painful during the second-eye surgery compared to the first-eye surgery. The intraoperative pain experience has negative influence on satisfaction and willingness for second-eye cataract surgery of patients with bilateral cataracts. Intraoperative ocular pain is a complicated process induced by the nociceptors activation in the peripheral nervous system. Immunological, neuropsychological, and pharmacological factors work together in the enhancement of intraoperative pain. Accumulating published literatures have focused on the pain enhancement during the second-eye phacoemulsification surgeries. In this review, we searched PubMed database for articles associated with pain perception differences between consecutive cataract surgeries published up to Feb. 1, 2024. We summarized the recent research progress in mechanisms and interventions for pain perception enhancement in consecutive second-eye phacoemulsification cataract surgeries. This review aimed to provide novel insights into strategies for improving patients' intraoperative experience in second-eye cataract surgeries.
Collapse
Affiliation(s)
- Jia-Wei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Hua Chen
- Nantong Center for Disease Control and Prevention, Nantong 226001, Jiangsu Province, China
| | - Jian-Feng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Xun Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Huai-Jin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
3
|
Shi D, Grey AC, Guo G. An isotopically-labelled temporal mass spectrometry imaging data analysis workflow to reveal glucose spatial metabolism patterns in bovine lens tissue. Sci Rep 2024; 14:18843. [PMID: 39138264 PMCID: PMC11322647 DOI: 10.1038/s41598-024-69507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Application of stable isotopically labelled (SIL) molecules in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) over a series of time points allows the temporal and spatial dynamics of biochemical reactions to be tracked in a biological system. However, these large kinetic MSI datasets and the inherent variability of biological replicates presents significant challenges to the rapid analysis of the data. In addition, manual annotation of downstream SIL metabolites involves human input to carefully analyse the data based on prior knowledge and personal expertise. To overcome these challenges to the analysis of spatiotemporal MALDI-MSI data and improve the efficiency of SIL metabolite identification, a bioinformatics pipeline has been developed and demonstrated by analysing normal bovine lens glucose metabolism as a model system. The pipeline consists of spatial alignment to mitigate the impact of sample variability and ensure spatial comparability of the temporal data, dimensionality reduction to rapidly map regional metabolic distinctions within the tissue, and metabolite annotation coupled with pathway enrichment modules to summarise and display the metabolic pathways induced by the treatment. This pipeline will be valuable for the spatial metabolomics community to analyse kinetic MALDI-MSI datasets, enabling rapid characterisation of spatio-temporal metabolic patterns from tissues of interest.
Collapse
Affiliation(s)
- Dingchang Shi
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand.
| | - George Guo
- Department of Physiology, School of Medical Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
4
|
Antonietti M, Kim CK, Djulbegovic MB, Gonzalez DJT, Greenfield JA, Uversky VN, Gibbons AG, Karp CL. Effects of Aging on Intrinsic Protein Disorder in Human Lenses and Zonules. Cell Biochem Biophys 2024:10.1007/s12013-024-01455-x. [PMID: 39117985 DOI: 10.1007/s12013-024-01455-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
This study aims to compare the levels of intrinsic protein disorder within the human lens and zonule proteomes and investigate the role of aging as a potential influencing factor on disorder levels. A cross-sectional proteomic analysis was employed, utilizing a dataset of 1466 proteins derived from the lens and zonule proteomes previously published by Wang et al. and De Maria et al. Bioinformatics tools, including a composition profiler and a rapid intrinsic disorder analysis online tool, were used to conduct a comparative analysis of protein disorder. Statistical tests such as ANOVA, Tukey's HSD, and chi-squared tests were applied to evaluate differences between groups. The study revealed distinct amino acid compositions for each proteome, showing a direct correlation between aging and increased protein disorder in the zonular proteomes, whereas the lens proteomes exhibited the opposite trend. Findings suggest that age-related changes in intrinsic protein disorder within the lens and zonule proteomes may be linked to structural transformations in these tissues. Understanding how protein disorder evolves with age could enhance knowledge of the molecular basis for age-related conditions such as cataracts and pseudoexfoliation, potentially leading to better therapeutic strategies.
Collapse
Affiliation(s)
| | - Colin K Kim
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA.
| |
Collapse
|
5
|
Davies LN, Biswas S, Bullimore M, Cruickshank F, Estevez JJ, Khanal S, Kollbaum P, Marcotte-Collard R, Montani G, Plainis S, Richdale K, Simard P, Wolffsohn JS. BCLA CLEAR presbyopia: Mechanism and optics. Cont Lens Anterior Eye 2024; 47:102185. [PMID: 38796331 DOI: 10.1016/j.clae.2024.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
With over a billion adults worldwide currently affected, presbyopia remains a ubiquitous, global problem. Despite over a century of study, the precise mechanism of ocular accommodation and presbyopia progression remains a topic of debate. Accordingly, this narrative review outlines the lenticular and extralenticular components of accommodation together with the impact of age on the accommodative apparatus, neural control of accommodation, models of accommodation, the impact of presbyopia on retinal image quality, and both historic and contemporary theories of presbyopia.
Collapse
Affiliation(s)
- Leon N Davies
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Sayantan Biswas
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| | | | - Fiona Cruickshank
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Jose J Estevez
- Caring Futures Institute, College of Nursing and Health Sciences, Optometry and Vision Science, Flinders University, Adelaide, Australia; Flinders Centre for Ophthalmology, Eye and Vision Research, Department of Ophthalmology, Flinders University, Adelaide, Australia
| | - Safal Khanal
- Department of Optometry and Vision Science, The University of Alabama at Birmingham, USA
| | | | | | | | - Sotiris Plainis
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK; Laboratory of Optics and Vision, School of Medicine, University of Crete, Greece
| | | | - Patrick Simard
- School of Optometry, Universite de Montreal, Montreal, Quebec, Canada
| | - James S Wolffsohn
- School of Optometry, College of Health and Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
6
|
Millán Cotto HA, Pathrikar TV, Hakim B, Baby HM, Zhang H, Zhao P, Ansaripour R, Amini R, Carrier RL, Bajpayee AG. Cationic-motif-modified exosomes for mRNA delivery to retinal photoreceptors. J Mater Chem B 2024; 12:7384-7400. [PMID: 38946491 PMCID: PMC11323772 DOI: 10.1039/d4tb00849a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Topical treatment of vitreoretinal diseases remains a challenge due to slow corneal uptake and systemic clearance. Exosomes are emerging nanocarriers for drug delivery due to biocompatibility and cellular targeting properties. To apply them for retinal targeting via the topical route, exosomes must traverse various ocular barriers including the cornea, lens, vitreous humor (VH), and the retina itself. Here we engineered high-purity milk-derived exosomes by anchoring arginine-rich cationic motifs via PEG2000 lipid insertion on their surface. Modification enabled exosomes to use weak-reversible electrostatic interactions with anionic glycosaminoglycan (GAG) and water content of the tissue to enhance their transport rate and retention. Addition of cationic motifs neutralized the anionic surface charge of exosomes (-24 to -2 mV) without impacting size or morphology. Cationic-motif-modified exosomes exhibited two-fold faster steady state diffusivity through bovine corneas compared to unmodified exosomes. Fluorescence recovery after photobleaching confirmed that cationic-motif-modified exosomes can diffuse through VH without steric hindrance. In healthy VH, cationic-motif-modified exosomes demonstrated stronger binding resulting in three-fold lower average diffusivity that enhanced by six-fold in 50% GAG-depleted VH recapitulating advanced liquefaction. Cationic-motif-modified exosomes penetrated through the full-thickness of porcine retinal explants resulting in ten-fold higher uptake in photoreceptors and three-fold greater transfection with encapsulated eGFP mRNA compared to unmodified exosomes. Cationic-motif-modified exosomes are safe to use as they did not adversely affect the mechanical swelling properties of the cornea or lens nor impact retinal cell viability. Cationic-motif-modified exosomes, therefore, offer themselves as a cell-free nanocarrier platform for gene delivery to retinal photoreceptors potentially via the topical route.
Collapse
Affiliation(s)
| | | | - Bill Hakim
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Peng Zhao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ronak Ansaripour
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| | - Rouzbeh Amini
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ambika G Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
7
|
Feng L, Pierscionek B, Weeber H, Canovas Vidal C, Rozema JJ. The Effect of the Zonular Fiber Angle of Insertion on Accommodation. Vision (Basel) 2024; 8:45. [PMID: 39189183 PMCID: PMC11348028 DOI: 10.3390/vision8030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Purpose: With age, there is an anterior shift of the ciliary body in the eye, which alters the angle of zonular insertion in older eyes compared with younger eyes. This study aims to simulate lens accommodation with different zonular angles to consider the influence of zonular position on lens accommodative capacity. Methods: Models were constructed based on lenses aged 11, 29, and 45 years using a 2D axisymmetric structure that included a capsule, cortex, nucleus, and zonular fibers. The different zonular fibers were simulated by changing the position of the point where the zonular fibers connect to the ciliary body. The effect of the different zonular fiber insertion angles on the model shape and optical power was analyzed. Results: The models show that smaller angles made by zonular fibers to the surface of the lens lead to larger optical power changes with simulated stretching. When the models were stretched, and when varying the zonule angles, the optical power of the 11-, 29-, and 45-year-old models changed up to 0.17 D, 0.24 D, and 0.30 D, respectively. The effect of zonular angles on the anterior radius of curvature of the anterior surface varied by 0.29 mm, 0.23 mm, and 0.25 mm for the 11-, 29-, and 45-year-old models, respectively. Conclusions: Larger zonular fiber insertion angles cause smaller deformation and less accommodative change, while parallel zonules induce the largest change in lens shape.
Collapse
Affiliation(s)
- Liying Feng
- Johnson & Johnson Surgical Vision, 9728 NX Groningen, The Netherlands; (H.W.); (C.C.V.)
- Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Barbara Pierscionek
- Faculty of Health Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK;
| | - Henk Weeber
- Johnson & Johnson Surgical Vision, 9728 NX Groningen, The Netherlands; (H.W.); (C.C.V.)
| | - Carmen Canovas Vidal
- Johnson & Johnson Surgical Vision, 9728 NX Groningen, The Netherlands; (H.W.); (C.C.V.)
| | - Jos J. Rozema
- Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, 2000 Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, 2650 Edegem, Belgium
| |
Collapse
|
8
|
Wang Q, Wang D, Qin T, Zhang X, Lin X, Chen J, Chen W, Zhao L, Huang W, Lin Z, Li J, Dongye M, Wu X, Wang X, Li X, Lin Y, Tan H, Liu Y, Lin H, Chen W. Early Diagnosis of Syndromic Congenital Cataracts in a Large Cohort of Congenital Cataracts. Am J Ophthalmol 2024; 263:206-213. [PMID: 38184101 DOI: 10.1016/j.ajo.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE To explore the factors related to the diagnosis yield of syndromic congenital cataracts and describe the phenotype-genotype correlation in congenital cataract patients. DESIGN Prospective cohort study. METHODS Setting: the participants from underwent clinical examinations between 2021 and 2022. Facial and anterior eye segment photographs, pre- and postoperative ocular parameters, and medical and family histories were recorded. Bioinformatics analysis was performed using whole-exome sequencing data. Statistical and correlation analyses were performed using the basic characteristics, deep phenotype, and genotype data. PARTICIPANTS 115 patients with unrelated congenital cataract. INTERVENTIONS performing clinical examinations, whole-exome sequencing, and bioinformatics analysis for all participants. MAIN OUTCOMES AND MEASURES factors related to the genetic diagnosis yield of syndromic congenital cataracts. RESULTS Bilaterally asymmetrical cataracts were identified to be associated with syndromic congenital cataracts. The overall genetic diagnostic yield in the cohort was 72.2%. In total, 34.8% of the probands were early diagnosed with various syndromes with the help of genetic information. A phenotype-genotype correlation was detected for some genes and deep phenotypes. CONCLUSIONS We highlight the importance of screening syndromic diseases in the patients with asymmetrical congenital cataracts. Application of whole-exome sequencing helps provide early diagnosis and treatment for the patients with syndromic congenital cataracts. This study also achieved a high genetic diagnostic yield, expanded the genotypic spectrum, and found phenotype-genotype correlations. A comprehensive analysis of cataract symmetricity, family history, and deep phenotypes makes the genotype prediction of some congenital cataract patients possible.
Collapse
Affiliation(s)
- Qiwei Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Dongni Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Tingfeng Qin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xulin Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaoshan Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jingjing Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Wan Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Lanqin Zhao
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Weiming Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zhuoling Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jing Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Meimei Dongye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaohang Wu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xun Wang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Xiaoyan Li
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Yongbin Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Haowen Tan
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Yizhi Liu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Haotian Lin
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China.
| | - Weirong Chen
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Centre for Ocular Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
9
|
Ababneh H, Balogh E, Csiki DM, Lente G, Fenyvesi F, Tóth A, Jeney V. High glucose promotes osteogenic differentiation of human lens epithelial cells through hypoxia-inducible factor (HIF) activation. J Cell Physiol 2024; 239:e31211. [PMID: 38304971 DOI: 10.1002/jcp.31211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.
Collapse
Affiliation(s)
- Haneen Ababneh
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Máté Csiki
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Gréta Lente
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Andrea Tóth
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktória Jeney
- Research Centre for Molecular Medicine, MTA-DE Lendület Vascular Pathophysiology Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Li Y, Tang L, Dang G, Ma M, Tang X. Scinderin Promotes Hydrogen Peroxide-induced Lens Epithelial Cell Injury in Age-related Cataract. Curr Mol Med 2024; 24:1426-1436. [PMID: 37936437 DOI: 10.2174/0115665240250050231030110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Scinderin (SCIN) is a calcium-dependent protein implicated in cell growth and apoptosis by regulating actin cleavage and capping. In this study, we investigated the role of SCIN in hydrogen peroxide-induced lens epithelial cell (LEC) injury related to age-related cataract (ARC). METHODS Anterior lens capsules from ARC patients were collected to examine SCIN expression levels. Immortalized human LEC cell line SRA01/04 and lens capsules freshly isolated from mice were induced by H2O2 to mimic the oxidative stress in ARC. The role of SCIN was investigated by gain-of-function (overexpression) and loss-offunction (knockdown) experiments. Flow cytometry (FCM) and Western-blot (WB) assays were performed to investigate the effect of SCIN on apoptosis. The oxidative stress (OS) was examined by detecting malondialdehyde (MDA) level, superoxide dismutase (SOD) and catalase (CAT) activity. The interaction between SCIN mRNA and miR-489-3p was predicted by StarBase and miRDB databases and validated by luciferase reporter activity assay. RESULTS SCIN was significantly elevated in cataract samples, and the expression levels were positively correlated with the nuclear sclerosis grades. SCIN overexpression promoted OS and apoptosis in H2O2-induced SRA01/04 cells, while SCIN silencing showed the opposite effect. We further showed that miR-489-3p was a negative regulator of SCIN. miR-489-3p overexpression suppressed apoptosis and OS in H2O2-induced SRA01/04 cells by targeting SCIN. CONCLUSION Our study identified SCIN as an upregulated gene in ARC, which is negatively regulated by miR-489-3p. Targeting miR-489-3p/SCIN axis could attenuate OS-induced apoptosis in LECs.
Collapse
Affiliation(s)
- Yan Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Li Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Guanxing Dang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Mengyuan Ma
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| | - Xingfang Tang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital Northwest University, Xi'an 710004 China
| |
Collapse
|
11
|
AlSomali AI, AlHajri HM, Aljumaiah R, Alnasser MN, Alabdullah Z. Awareness of the Risk of Chronic Use of Steroid Causing Cataract in Al Ahsa City, Saudi Arabia. Cureus 2024; 16:e52861. [PMID: 38406132 PMCID: PMC10887281 DOI: 10.7759/cureus.52861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The lens, essential for vision, can be impaired by cataracts, leading to partial or complete reversible vision loss. Common risk factors include aging, diabetes, and steroid use, with significant financial implications. Limited awareness in Saudi Arabia necessitates further research to reduce cataract prevalence and increase knowledge about steroid-induced cataracts. Methodology This was a cross-sectional study in Al Ahsa City, Saudi Arabia that aims to assess awareness of cataracts induced by long-term steroid use. Data was collected via an online survey and analyzed using Statistical Package for Social Sciences (SPSS) version 29 (IBM Corp., Armonk, NY, USA). Results Our study results show that 69.8% (n=291) of participants were female, and 30.2% (n=126) were male, with the majority (62.6%, n=261) having a university education. Notably, 91.1% (n=380) reported no steroid use, while 8.9% (n=37) reported long-term use, and 10.1% (n=42) used steroids topically. There are moderate awareness levels regarding cataract and steroid associations, with 68.1% (n=284) recognizing topical steroids as the common culprits. Logistic regression highlighted the positive correlation between knowledge of cataract risks due to steroid use and actual steroid use, corroborated by a notable 73.0% (n=27) steroid usage among high-awareness individuals. Conclusion Our study underscores moderate awareness regarding steroid-related cataract risks in Al Ahsa City. Educational status significantly influenced understanding, highlighting the importance of targeted health education initiatives.
Collapse
|
12
|
Kaeek M, Khoury LR. Toward Tunable Protein-Driven Hydrogel Lens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2306862. [PMID: 37991134 PMCID: PMC10754117 DOI: 10.1002/advs.202306862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Indexed: 11/23/2023]
Abstract
Despite the significant progress in protein-based materials, creating a tunable protein-activated hydrogel lens remains an elusive goal. This study leverages the synergistic relationship between protein structural dynamics and polymer hydrogel engineering to introduce a highly transparent protein-polymer actuator. By incorporating bovine serum albumin into polyethyleneglycol diacrylate hydrogels, the authors achieved enhanced light transmittance and conferred actuating capabilities to the hydrogel. Taking advantage of these features, a bilayer protein-driven hydrogel lens that dynamically modifies its focal length in response to pH changes, mimicking the adaptability of the human lens, is fabricated. The lens demonstrates durability and reproducibility, highlighting its potential for repetitive applications. This integration of protein-diverse biochemistry, folding nanomechanics, and polymer engineering opens up new avenues for harnessing the wide range of proteins to potentially propel various fields such as diagnostics, lab-on-chip, and deep-tissue bio-optics, advancing the understanding of incorporating biomaterials in the optical field.
Collapse
Affiliation(s)
- Maria Kaeek
- Department of Materials Science and EngineeringTechnion Israel Institute of TechnologyHaifa32000Israel
| | - Luai R. Khoury
- Department of Materials Science and EngineeringTechnion Israel Institute of TechnologyHaifa32000Israel
| |
Collapse
|
13
|
Zhu S, Xi Y, Xu J, Hu L, Luo C, Yao K, Chen X. The 18th amino acid glycine plays an essential role in maintaining the structural stabilities of γS-crystallin linking with congenital cataract. Int J Biol Macromol 2023; 251:126339. [PMID: 37586630 DOI: 10.1016/j.ijbiomac.2023.126339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
γS-crystallin is particularly rich in the embryonic nuclear region and is crucial to the maintenance of lens transparency and optical properties. Gene mutations in crystallin are the main factors leading to congenital hereditary cataracts, which are a major cause of visual impairment in children. Some mutations located in the 18th amino acid glycine of γS-crystallin were reported to be linking with congenital cataracts. However, the pathogenic mechanism has not been elucidated. Interestingly, we previously identified a novel variant of γS-crystallin (c.53G > A; p. G18D) with progressive cortical and sutural congenital cataracts in one Chinese family. In this study, we purified the γS-crystallin wildtype and mutant proteins to investigate the effects of the G18D mutation on the structural stability of γS-crystallin. The results showed that there were tertiary structural differences between the wild-type γS-crystallin and the G18D variant. The mutation significantly impaired the stability of γS-crystallin under environmental stress and promoted aggregation. Furthermore, molecular dynamics (MD) simulations showed that the mutation altered H-bonding and surface electrostatic potential. Significantly decreased stability along with an increased tendency to aggregate under environmental stress may be the major pathogenic factors for cataracts induced by the G18D mutation.
Collapse
Affiliation(s)
- Sha Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Yibo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingjie Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Lidan Hu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Chenqi Luo
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China.
| | - Xiangjun Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China.
| |
Collapse
|
14
|
Sánchez-Cazorla E, González-Atienza C, López-Vázquez A, Arruti N, Nieves-Moreno M, Noval S, Mena R, Rodríguez-Jiménez C, Rodríguez-Solana P, González-Iglesias E, Guerrero-Carretero M, D’Anna Mardero O, Coca-Robinot J, Acal JC, Blasco J, Castañeda C, Fraile Maya J, Del Pozo Á, Gómez-Pozo MV, Montaño VEF, Dios-Blázquez LD, Rodríguez-Antolín C, Gómez-Cano MDLÁ, Delgado-Mora L, Vallespín E. Whole-Exome Sequencing of 21 Families: Candidate Genes for Early-Onset High Myopia. Int J Mol Sci 2023; 24:15676. [PMID: 37958660 PMCID: PMC10649067 DOI: 10.3390/ijms242115676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
High myopia is the most severe and pathological form of myopia. It occurs when the spherical refractive error exceeds -6.00 spherical diopters (SDs) or the axial length (AL) of the eye is greater than 26 mm. This article focuses on early-onset high myopia, an increasingly common condition that affects children under 10 years of age and can lead to other serious ocular pathologies. Through the genetic analysis of 21 families with early-onset high myopia, this study seeks to contribute to a better understanding of the role of genetics in this disease and to propose candidate genes. Whole-exome sequencing studies with a panel of genes known to be involved in the pathology were performed in families with inconclusive results: 3% of the variants found were classified as pathogenic, 6% were likely pathogenic and the remaining 91% were variants of uncertain significance. Most of the families in this study were found to have alterations in several of the proposed genes. This suggests a polygenic inheritance of the pathology due to the cumulative effect of the alterations. Further studies are needed to validate and confirm the role of these alterations in the development of early-onset high myopia and its polygenic inheritance.
Collapse
Affiliation(s)
- Eloísa Sánchez-Cazorla
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Carmen González-Atienza
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Ana López-Vázquez
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Natalia Arruti
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - María Nieves-Moreno
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Susana Noval
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Rocío Mena
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Carmen Rodríguez-Jiménez
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Patricia Rodríguez-Solana
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Eva González-Iglesias
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
| | - Marta Guerrero-Carretero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Oriana D’Anna Mardero
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Javier Coca-Robinot
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Juan Carlos Acal
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Joana Blasco
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Carlos Castañeda
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Jesús Fraile Maya
- Department of Ophthalmology, IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (A.L.-V.); (N.A.); (M.N.-M.); (S.N.); (M.G.-C.); (O.D.M.); (J.C.-R.); (J.C.A.); (J.B.); (C.C.); (J.F.M.)
| | - Ángela Del Pozo
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María V. Gómez-Pozo
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Victoria E. F. Montaño
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| | - Lucía De Dios-Blázquez
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - Carlos Rodríguez-Antolín
- Clinical Bioinformatics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (L.D.D.-B.); (C.R.-A.)
| | - María de Los Ángeles Gómez-Cano
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Luna Delgado-Mora
- Clinical Genetics Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.d.L.Á.G.-C.); (L.D.-M.)
| | - Elena Vallespín
- Molecular Ophthalmology Section, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, Hospital Universitario La Paz, 28046 Madrid, Spain; (E.S.-C.); (C.G.-A.); (R.M.); (C.R.-J.); (P.R.-S.); (E.G.-I.); (M.V.G.-P.); (V.E.F.M.)
- European Reference Network on Eye Diseases (ERN-EYE), Hospital Universitario La Paz, 28046 Madrid, Spain
- Biomedical Research Center in the Rare Diseases Network (CIBERER), Carlos II Health Institute (ISCIII), 28029 Madrid, Spain;
| |
Collapse
|
15
|
Subczynski WK, Pasenkiewicz-Gierula M, Widomska J. Protecting the Eye Lens from Oxidative Stress through Oxygen Regulation. Antioxidants (Basel) 2023; 12:1783. [PMID: 37760086 PMCID: PMC10525422 DOI: 10.3390/antiox12091783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular oxygen is a primary oxidant that is involved in the formation of active oxygen species and in the oxidation of lipids and proteins. Thus, controlling oxygen partial pressure (concentration) in the human organism, tissues, and organs can be the first step in protecting them against oxidative stress. However, it is not an easy task because oxygen is necessary for ATP synthesis by mitochondria and in many biochemical reactions taking place in all cells in the human body. Moreover, the blood circulatory system delivers oxygen to all parts of the body. The eye lens seems to be the only organ that is protected from the oxidative stress through the regulation of oxygen partial pressure. The basic mechanism that developed during evolution to protect the eye lens against oxidative damage is based on the maintenance of a very low concentration of oxygen within the lens. This antioxidant mechanism is supported by the resistance of both the lipid components of the lens membrane and cytosolic proteins to oxidation. Any disturbance, continuous or acute, in the working of this mechanism increases the oxygen concentration, in effect causing cataract development. Here, we describe the biophysical basis of the mechanism and its correlation with lens transparency.
Collapse
Affiliation(s)
| | - Marta Pasenkiewicz-Gierula
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, 30-387 Krakow, Poland;
| | - Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
16
|
Abstract
Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
18
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
19
|
Tarique I, Lu T, Tariq M. Cellular activity of autophagy and multivesicular bodies in lens fiber cells during early lens development in rbm24a mutant of zebrafish: Ultrastructure analysis. Micron 2023; 169:103446. [PMID: 36965272 DOI: 10.1016/j.micron.2023.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023]
Abstract
Use of zebrafish as animal model for various diseases during early developmental stages has been exponentially increased with the aim to achieve the best representative results in this transparent fish. Recent studies documented that Rbm24a mutant causes cataract formation and resulted in blindness using the zebrafish model. Therefore, correct interpretation of studies that aimed for molecular approaches, a description of comparative and in-depth analysis of development of lens in wildtype and mutant is crucial to obtain the correct conclusion. In this study, we use a gold standard method the Transmission Electron Microscopy (TEM) to analysis the lens development in rbm24a mutant zebrafish. Firstly, we compare the cellular structures at 16-20 h post fertilization (hpf), the lens placode in ectoderm indicated delay lens development in rbm24a mutant than wildtype (siblings) zebrafish. At 33 hpf, loosely appeared lens fiber cells showed heterogenous electron density with numbers of mitochondria in lens of rbm24a mutant, revealed the influence of gene mutation in lens development. A detail ultrastructure of lens of rbm24a mutant also presented at 33 hpf. Comparatively in wildtype (siblings) at 33 hpf, lens exhibited homogenous electron density in tightly packed lens fiber cells with few mitochondria. Furthermore, to characterize the lens in rbm24a mutant we obtained data of cellular structures on 25 hpf and 1.5 days' post fertilization (dpf). At 25 hpf in mutant zebrafish, the detached solid sphere lens mass from ectoderm showed karyorrhexis, mitophagy and vesicles (also multivesicular bodies), these cellular structures supposed to hamper the development of future fiber cells. Moreover, at 1.5 dpf in mutant, nuclear excisosome, multilamellar bodies and irregular shaped mitochondria in heterogenous electron dense cytoplasm of lens fiber cells, collectively shown affected lens transparency. In summary the ultrastructure results of lens of rbm24a mutant zebrafish expand our knowledge and give reflection of different cellular activities like autophagy, apoptosis, vesicles (multivesicular bodies) and nuclear excisosomes which play their role in transparency achievement.
Collapse
Affiliation(s)
- Imran Tarique
- Department of Healthcare Biotechnology, Atta Ur Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan; Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Tong Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Mansoor Tariq
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, Sindh Agriculture University, Tandojam 70060, Sindh, Pakistan
| |
Collapse
|
20
|
Du Y, Tong Y, Quan Y, Wang G, Cheng H, Gu S, Jiang JX. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience 2023; 26:106114. [PMID: 36852280 PMCID: PMC9958365 DOI: 10.1016/j.isci.2023.106114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.
Collapse
Affiliation(s)
- Yu Du
- Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
21
|
Hussain A, Sheikh Z, Subramanian M. The Eye as a Diagnostic Tool for Alzheimer’s Disease. Life (Basel) 2023; 13:life13030726. [PMID: 36983883 PMCID: PMC10052959 DOI: 10.3390/life13030726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder impacting cognition, function, and behavior in the elderly population. While there are currently no disease-modifying agents capable of curing AD, early diagnosis and management in the preclinical stage can significantly improve patient morbidity and life expectancy. Currently, the diagnosis of Alzheimer’s disease is a clinical one, often supplemented by invasive and expensive biomarker testing. Over the last decade, significant advancements have been made in our understanding of AD and the role of ocular tissue as a potential biomarker. Ocular biomarkers hold the potential to provide noninvasive and easily accessible diagnostic and monitoring capabilities. This review summarizes current research for detecting biomarkers of Alzheimer’s disease in ocular tissue.
Collapse
|
22
|
Gata2a Mutation Causes Progressive Microphthalmia and Blindness in Nile Tilapia. Int J Mol Sci 2023; 24:ijms24043567. [PMID: 36834978 PMCID: PMC9958714 DOI: 10.3390/ijms24043567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The normal development of lens fiber cells plays a critical role in lens morphogenesis and maintaining transparency. Factors involved in the development of lens fiber cells are largely unknown in vertebrates. In this study, we reported that GATA2 is essential for lens morphogenesis in Nile tilapia (Oreochromis niloticus). In this study, Gata2a was detected in the primary and secondary lens fiber cells, with the highest expression in primary fiber cells. gata2a homozygous mutants of tilapia were obtained using CRISPR/Cas9. Different from fetal lethality caused by Gata2/gata2a mutation in mice and zebrafish, some gata2a homozygous mutants of tilapia are viable, which provides a good model for studying the role of gata2 in non-hematopoietic organs. Our data showed that gata2a mutation caused extensive degeneration and apoptosis of primary lens fiber cells. The mutants exhibited progressive microphthalmia and blindness in adulthood. Transcriptome analysis of the eyes showed that the expression levels of almost all genes encoding crystallin were significantly down-regulated, while the expression levels of genes involved in visual perception and metal ion binding were significantly up-regulated after gata2a mutation. Altogether, our findings indicate that gata2a is required for the survival of lens fiber cells and provide insights into transcriptional regulation underlying lens morphogenesis in teleost fish.
Collapse
|
23
|
Castro-Castaneda CR, Altamirano-Lamarque F, Ortega-Macías AG, Santa Cruz-Pavlovich FJ, Gonzalez-De la Rosa A, Armendariz-Borunda J, Santos A, Navarro-Partida J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022; 14:5014. [PMID: 36501043 PMCID: PMC9740859 DOI: 10.3390/nu14235014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress represents one of the main factors driving the pathophysiology of multiple ophthalmic conditions including presbyopia, cataracts, dry eye disease (DED), glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Currently, different studies have demonstrated the role of orally administered nutraceuticals in these diseases. For instance, they have demonstrated to improve lens accommodation in presbyopia, reduce protein aggregation in cataracts, ameliorate tear film stability, break up time, and tear production in dry eye, and participate in the avoidance of retinal neuronal damage and a decrease in intraocular pressure in glaucoma, contribute to the delayed progression of AMD, or in the prevention or treatment of neuronal death in diabetic retinopathy. In this review, we summarized the nutraceuticals which have presented a positive impact in ocular disorders, emphasizing the clinical assays. The characteristics of the different types of nutraceuticals are specified along with the nutraceutical concentration used to achieve a therapeutic outcome in ocular diseases.
Collapse
Affiliation(s)
| | | | - Alan Gabriel Ortega-Macías
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
| | | | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| |
Collapse
|
24
|
Luo C, Wang H, Chen X, Xu J, Yin H, Yao K. Recent Advances of Intraocular Lens Materials and Surface Modification in Cataract Surgery. Front Bioeng Biotechnol 2022; 10:913383. [PMID: 35757812 PMCID: PMC9213654 DOI: 10.3389/fbioe.2022.913383] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in cataract surgery have increased the demand for intraocular lens (IOL) materials. At present, the progress of IOL materials mainly contains further improving biocompatibility, providing better visual quality and adjustable ability, reducing surgical incision, as well as dealing with complications such as posterior capsular opacification (PCO) and ophthalmitis. The purpose of this review is to describe the research progress of relevant IOL materials classified according to different clinical purposes. The innovation of IOL materials is often based on the common IOL materials on the market, such as silicon and acrylate. Special properties and functions are obtained by adding extra polymers or surface modification. Most of these studies have not yet been commercialized, which requires a large number of clinical trials. But they provide valuable thoughts for the optimization of the IOL function.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Ruiss M, Findl O, Kronschläger M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res Rev 2022; 79:101664. [PMID: 35690384 DOI: 10.1016/j.arr.2022.101664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 11/01/2022]
Abstract
Cataract is the leading cause of blindness worldwide and surgery is the only option to treat the disease. Although the surgery is considered to be relatively safe, complications may occur in a subset of patients and access to ophthalmic care may be limited. Due to a growing and ageing population, an increase in cataract prevalence is expected and its management will become a socioeconomic challenge. Hence, there is a need for an alternative to cataract surgery. It is well known that oxidative stress is one of the main pathological processes leading to the generation of the disease. Antioxidant supplementation may, therefore, be a strategy to delay or to prevent the progression of cataract. Caffeine is a widely consumed high-potency antioxidant and may be of interest for the prevention of the disease. This review aims to give an overview of the anatomy and function of the lens, its antioxidant and reactive oxygen species (ROS) composition, and the role of oxidative stress in cataractogenesis. Also, the pharmacokinetics and -dynamics of caffeine will be described and the literature will be reviewed to give an overview of its anti-cataract potential and its possible role in the prevention of the disease.
Collapse
Affiliation(s)
- Manuel Ruiss
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Oliver Findl
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| | - Martin Kronschläger
- Vienna Institute for Research in Ocular Surgery (VIROS), a Karl Landsteiner Institute, Department of Ophthalmology, Hanusch Hospital, Vienna 1140 Austria.
| |
Collapse
|
26
|
An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. MEMBRANES 2022; 12:membranes12050522. [PMID: 35629848 PMCID: PMC9146655 DOI: 10.3390/membranes12050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
The lens of the eye loses elasticity with age, while α-crystallin association with the lens membrane increases with age. It is unclear whether there is any correlation between α-crystallin association with the lens membrane and loss in lens elasticity. This research investigated α-crystallin membrane association using atomic force microscopy (AFM) for the first time to study topographical images and mechanical properties (breakthrough force and membrane area compressibility modulus (KA), as measures of elasticity) of the membrane. α-Crystallin extracted from the bovine lens cortex was incubated with a supported lipid membrane (SLM) prepared on a flat mica surface. The AFM images showed the time-dependent interaction of α-crystallin with the SLM. Force spectroscopy revealed the presence of breakthrough events in the force curves obtained in the membrane regions where no α-crystallin was associated, which suggests that the membrane’s elasticity was maintained. The force curves in the α-crystallin submerged region and the close vicinity of the α-crystallin associated region in the membrane showed no breakthrough event within the defined peak force threshold, indicating loss of membrane elasticity. Our results showed that the association of α-crystallin with the membrane deteriorates membrane elasticity, providing new insights into understanding the molecular basis of lens hardening and presbyopia.
Collapse
|
27
|
Chowdhury A, Balogh E, Ababneh H, Tóth A, Jeney V. Activation of Nrf2/HO-1 Antioxidant Pathway by Heme Attenuates Calcification of Human Lens Epithelial Cells. Pharmaceuticals (Basel) 2022; 15:ph15050493. [PMID: 35631320 PMCID: PMC9145770 DOI: 10.3390/ph15050493] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cataract, an opacification in the crystalline lens, is a leading cause of blindness. Deposition of hydroxyapatite occurs in a cataractous lens that could be the consequence of osteogenic differentiation of lens epithelial cells (LECs). Nuclear factor erythroid 2-related factor 2 (Nrf2) controls the transcription of a wide range of cytoprotective genes. Nrf2 upregulation attenuates cataract formation. Here we aimed to investigate the effect of Nrf2 system upregulation in LECs calcification. We induced osteogenic differentiation of human LECs (HuLECs) with increased phosphate and calcium-containing osteogenic medium (OM). OM-induced calcium and osteocalcin deposition in HuLECs. We used heme to activate Nrf2, which strongly upregulated the expression of Nrf2 and heme oxygenase-1 (HO-1). Heme-mediated Nrf2 activation was dependent on the production of reactive oxygens species. Heme inhibited Ca deposition, and the OM-induced increase of osteogenic markers, RUNX2, alkaline phosphatase, and OCN. Anti-calcification effect of heme was lost when the transcriptional activity of Nrf2 or the enzyme activity of HO-1 was blocked with pharmacological inhibitors. Among products of HO-1 catalyzed heme degradation iron mimicked the anti-calcification effect of heme. We concluded that heme-induced upregulation of the Nrf2/HO-1 system inhibits HuLECs calcification through the liberation of heme iron.
Collapse
Affiliation(s)
- Arpan Chowdhury
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.C.); (E.B.); (H.A.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.C.); (E.B.); (H.A.); (A.T.)
| | - Haneen Ababneh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.C.); (E.B.); (H.A.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.C.); (E.B.); (H.A.); (A.T.)
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.C.); (E.B.); (H.A.); (A.T.)
- Correspondence:
| |
Collapse
|
28
|
Lu J, An J, Wang J, Cao X, Cao Y, Huang C, Jiao S, Yan D, Lin X, Zhou X. Znhit1 Regulates p21Cip1 to Control Mouse Lens Differentiation. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35472217 PMCID: PMC9055562 DOI: 10.1167/iovs.63.4.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/06/2022] [Indexed: 01/22/2023] Open
Abstract
Purpose The transparency of the ocular lens is essential for refracting and focusing light onto the retina, and transparency is controlled by many factors and signaling pathways. Here we showed a critical role of chromatin remodeler zinc finger HIT-type containing 1 (Znhit1) in maintaining lens transparency. Methods To explore the roles of Znhit1 in lens development, the cre-loxp system was used to generate lens-specific Znhit1 knockout mice (Znhit1Mlr10-Cre; Znhit1 cKO). Morphological changes in mice lenses were examined using hematoxylin and eosin staining. RNA sequencing (RNA-seq) and assay for transposase accessible chromatin using sequencing (ATAC-seq) were applied to screen transcriptome changes. Immunofluorescence staining were performed to assess proteins distribution and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used for determining apoptosis. The mRNAs expression was examined by quantitative RT-PCR and proteins expression by Western blot. Results Lens-specific conditional knockout mice had a severe cataract, microphthalmia phenotype, and seriously abnormal lens fiber cells differentiation. Deletion of Znhit1 in the lens resulted in decreased cell proliferation and increased cell apoptosis of the lens epithelia. ATAC-seq showed that Znhit1 deficiency increased chromatin accessibility of cyclin-dependent kinase inhibitors, including p57Kip2 and p21Cip1, and upregulated the expression of these genes in mRNA and protein levels. And we also showed that loss of Znhit1 lead to lens fibrosis by upregulating the expression of p21Cip1. Conclusions Our findings suggested that Znhit1 is required for the survival of lens epithelial cells. The loss of Znhit1 leads to the overexpression of p21Cip1, further resulting in lens fibrosis, and impacted the establishment of lens transparency.
Collapse
Affiliation(s)
- Juan Lu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jianhong An
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jiawei Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xiaowen Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yuqing Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Shiming Jiao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences, Wenzhou, China
| |
Collapse
|
29
|
Miyashita T, Senshu M, Ibi K, Yamanaka H, Nejishima H, Fukami T, Nakajima M. Evaluation of lens opacity due to inhibition of cholesterol biosynthesis using rat lens explant cultures. Toxicology 2022; 465:153064. [PMID: 34890705 DOI: 10.1016/j.tox.2021.153064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Drug-induced lens opacity has the potential to cause blindness and is of concern in drug development. Inhibition of cholesterol biosynthesis is one of the causes of lens opacity. Lens opacity is only observed after chronic administration in in vivo nonclinical studies in drug development. Thus, to save resources (e.g., time and cost) and to reduce burden on animals, it is required to develop in vitro evaluation systems that can predict and avoid the risk of lens opacity earlier and easier. In this study, we investigated whether rat lens explant cultures could be useful for the evaluation of drug-induced lens opacity via inhibition of cholesterol biosynthesis. Nineteen drugs, including statins, allylamine, thiocarbamate, azole, and morpholine, which inhibit cholesterol biosynthesis, as well as a negative control (acetaminophen, rosiglitazone and troglitazone), were used. Rat lens explants were treated with drugs for 13 days at concentrations close to IC50 values or higher against cholesterol biosynthesis, and lens opacity (severity and region) was evaluated. In most cases, region-specific lens opacity limited in the equator to posterior pole, as observed in vivo was observed at IC50 values or higher concentrations. The severity of opacity was likely to be related to the inhibitory potency toward cholesterol biosynthesis, concentration of drugs distributed in the lens, or time of exposure. Furthermore, GSH levels were also involved in the deterioration of lens opacity. In conclusion, we demonstrated that rat lens explant cultures can be useful to assess the potential drug-induced lens opacity associated with inhibition of cholesterol biosynthesis and to elucidate the mechanisms of lens opacity.
Collapse
Affiliation(s)
- Taishi Miyashita
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda, Shizuoka 426-8646, Japan; Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Masanori Senshu
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda, Shizuoka 426-8646, Japan
| | - Kanata Ibi
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda, Shizuoka 426-8646, Japan
| | - Hiroyuki Yamanaka
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda, Shizuoka 426-8646, Japan
| | - Hiroaki Nejishima
- Pharmacokinetics and Safety Department, Drug Research Center, Kaken Pharmaceutical Co., Ltd., 301, Gensuke, Fujieda, Shizuoka 426-8646, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
30
|
Wilson D, Hallett M, Anderson T. An Eye on Movement Disorders. Mov Disord Clin Pract 2021; 8:1168-1180. [PMID: 34765682 DOI: 10.1002/mdc3.13317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Eye disorders spanning a range of ocular tissue are common in patients with movement disorders. Highlighting these ocular manifestations will benefit patients and may even aid in diagnosis. In this educational review we outline the anatomy and function of the ocular tissues with a focus on the tissues most affected in movement disorders. We review the movement disorders associated with ocular pathology and where possible explore the underlying cellular basis thought to be driving the pathology and provide a brief overview of ophthalmic investigations available to the neurologist. This review does not cover intracranial primary visual pathways, higher visual function, or the ocular motor system.
Collapse
Affiliation(s)
- Duncan Wilson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH Bethesda Maryland USA
| | - Tim Anderson
- Department of Neurology Christchurch Hospital Christchurch New Zealand.,New Zealand Brain Research Institute Christchurch New Zealand.,Department of Medicine Otago University Dunedin New Zealand
| |
Collapse
|
31
|
Shree J, Singh A, Choudhary R, Pandey DP, Bodakhe SH. Topical Administration of ACE Inhibitor Interrupts the Progression of Cataract in Two Kidney One Clip Induced Hypertensive Cataract Model. Curr Eye Res 2021; 47:399-408. [PMID: 34740310 DOI: 10.1080/02713683.2021.2002911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Previously, we assessed that hypertension increases cataractogenesis. In the present study, we evaluated the effect of oral and topical administration of enalapril on two kidney one clip (2K1C)-induced hypertensive cataract model by evaluating the biochemical alteration of lenticular antioxidants, ionic content, ATPase activity, protein content and careful examination of the lenticular opacity. MATERIALS AND METHOD Animals were divided into normal and hypertensive animals. Hypertensive animals were divided into hypertensive control group (0.3% CMC), enalapril (oral) treatment group (20 mg/kg/day; p.o), and enalapril (topical) treatment group (0.1% w/v on the eye cornea) for a period of twelve weeks. During experimental study blood pressure, heart rate and morphology of the eyes were monitored biweekly. After twelve weeks, lenses were photographed and various catractogenic biochemical parameters were assessed. RESULTS Enalapril (oral) treatment conserved the blood pressure (systolic and diastolic), restored the level of antioxidants, restored the lipid peroxidation marker, nitrite content, ionic content, ATPase function, protein content, and thus delayed the cataract formation. While, enalapril (topical) treatment exhibited anti-cataract effect without affecting the systolic and diastolic blood pressure that could be by restoring the antioxidant level, maintaining the ionic balance, balancing the protein levels, and by inhibiting the upregulated ocular renin angiotensin system. The overall results suggest that enalapril (topical) treatment showed conspicuous effect than enalapril (oral) treatment in adjourning the cataract formation. CONCLUSION Based on the results, it may be concluded that upregulated ocular RAS by increasing oxidative stress and by misbalancing the lenticular ionic and protein content may lead to cataract formation in hypertensive condition.
Collapse
Affiliation(s)
- Jaya Shree
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Rungta Institute of Pharmaceutical Sciences and Research, Rungta Group of Colleges, Bhilai, India
| | - Amrita Singh
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Isf College of Pharmacy Moga, IK Gujral Punjab Technical University, Jalandhar, India
| | - Rajesh Choudhary
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India.,Department of Pharmacology, Shri Shankaracharya College of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Bhilai, India
| | | | - Surendra H Bodakhe
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India
| |
Collapse
|
32
|
Hidalgo-Alvarez V, Dhowre HS, Kingston OA, Sheridan CM, Levis HJ. Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering (Basel) 2021; 8:135. [PMID: 34677208 PMCID: PMC8533470 DOI: 10.3390/bioengineering8100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The anterior segment of the eye is a complex set of structures that collectively act to maintain the integrity of the globe and direct light towards the posteriorly located retina. The eye is exposed to numerous physical and environmental insults such as infection, UV radiation, physical or chemical injuries. Loss of transparency to the cornea or lens (cataract) and dysfunctional regulation of intra ocular pressure (glaucoma) are leading causes of worldwide blindness. Whilst traditional therapeutic approaches can improve vision, their effect often fails to control the multiple pathological events that lead to long-term vision loss. Regenerative medicine approaches in the eye have already had success with ocular stem cell therapy and ex vivo production of cornea and conjunctival tissue for transplant recovering patients' vision. However, advancements are required to increase the efficacy of these as well as develop other ocular cell therapies. One of the most important challenges that determines the success of regenerative approaches is the preservation of the stem cell properties during expansion culture in vitro. To achieve this, the environment must provide the physical, chemical and biological factors that ensure the maintenance of their undifferentiated state, as well as their proliferative capacity. This is likely to be accomplished by replicating the natural stem cell niche in vitro. Due to the complex nature of the cell microenvironment, the creation of such artificial niches requires the use of bioengineering techniques which can replicate the physico-chemical properties and the dynamic cell-extracellular matrix interactions that maintain the stem cell phenotype. This review discusses the progress made in the replication of stem cell niches from the anterior ocular segment by using bioengineering approaches and their therapeutic implications.
Collapse
Affiliation(s)
- Veronica Hidalgo-Alvarez
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Hala S. Dhowre
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Olivia A. Kingston
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Carl M. Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; (H.S.D.); (O.A.K.)
| |
Collapse
|
33
|
Hedde PN, Cinco R, Malacrida L, Kamaid A, Gratton E. Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications. Commun Biol 2021; 4:721. [PMID: 34117344 PMCID: PMC8195998 DOI: 10.1038/s42003-021-02266-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023] Open
Abstract
Hyperspectral imaging is highly sought after in many fields including mineralogy and geology, environment and agriculture, astronomy and, importantly, biomedical imaging and biological fluorescence. We developed ultrafast phasor-based hyperspectral snapshot microscopy based on sine/cosine interference filters for biomedical imaging not feasible with conventional hyperspectral detection methods. Current approaches rely on slow spatial or spectral scanning limiting their application in living biological tissues, while faster snapshot methods such as image mapping spectrometry and multispectral interferometry are limited in spatial and/or spectral resolution, are computationally demanding, and imaging devices are very expensive to manufacture. Leveraging light sheet microscopy, phasor-based hyperspectral snapshot microscopy improved imaging speed 10-100 fold which, combined with minimal light exposure and high detection efficiency, enabled hyperspectral metabolic imaging of live, three-dimensional mouse tissues not feasible with other methods. As a fit-free method that does not require any a priori information often unavailable in complex and evolving biological systems, the rule of linear combinations of the phasor could spectrally resolve subtle differences between cell types in the developing zebrafish retina and spectrally separate and track multiple organelles in 3D cultured cells over time. The sine/cosine snapshot method is adaptable to any microscope or imaging device thus making hyperspectral imaging and fit-free analysis based on linear combinations broadly available to researchers and the public.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, USA.
| | - Rachel Cinco
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA
| | - Leonel Malacrida
- Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- Advanced Bioimaging Unit, Institut Pasteur of Montevideo and Universidad de la República, Montevideo, Uruguay
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA, USA.
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, CA, USA.
| |
Collapse
|
34
|
Fernández-Alcalde C, Nieves-Moreno M, Noval S, Peralta JM, Montaño VEF, del Pozo Á, Santos-Simarro F, Vallespín E. Molecular and Genetic Mechanism of Non-Syndromic Congenital Cataracts. Mutation Screening in Spanish Families. Genes (Basel) 2021; 12:580. [PMID: 33923544 PMCID: PMC8072554 DOI: 10.3390/genes12040580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022] Open
Abstract
Our purpose was to identify mutations responsible for non-syndromic congenital cataracts through the implementation of next-generation sequencing (NGS) in our center. A sample of peripheral blood was obtained from probands and willing family members and genomic DNA was extracted from leukocytes. DNA was analyzed implementing a panel (OFTv2.1) including 39 known congenital cataracts disease genes. 62 probands from 51 families were recruited. Pathogenic or likely pathogenic variants were identified in 32 patients and 25 families; in 16 families (64%) these were de novo mutations. The mutation detection rate was 49%. Almost all reported mutations were autosomal dominant. Mutations in crystallin genes were found in 30% of the probands. Mutations in membrane proteins were detected in seven families (two in GJA3 and five in GJA8). Mutations in LIM2 and MIP were each found in three families. Other mutations detected affected EPHA2, PAX6, HSF4 and PITX3. Variants classified as of unknown significance were found in 5 families (9.8%), affecting CRYBB3, LIM2, EPHA2, ABCB6 and TDRD7. Mutations lead to different cataract phenotypes within the same family.
Collapse
Affiliation(s)
- Celia Fernández-Alcalde
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.N.-M.); (S.N.); (J.M.P.)
| | - María Nieves-Moreno
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.N.-M.); (S.N.); (J.M.P.)
| | - Susana Noval
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.N.-M.); (S.N.); (J.M.P.)
| | - Jesús M. Peralta
- Department of Ophthalmology, Hospital Universitario La Paz, 28046 Madrid, Spain; (M.N.-M.); (S.N.); (J.M.P.)
| | - Victoria E. F. Montaño
- Department of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (V.E.F.M.); (E.V.)
| | - Ángela del Pozo
- Department of Clinical Bioinformatics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Fernando Santos-Simarro
- Department of Clinical Genetics, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Elena Vallespín
- Department of Molecular Ophthalmology, Medical and Molecular Genetics Institute (INGEMM) IdiPaz, CIBERER, Hospital Universitario La Paz, 28046 Madrid, Spain; (V.E.F.M.); (E.V.)
| |
Collapse
|
35
|
Schimansky A, Yadav JK. Amyloid cross-sequence interaction between Aβ(1-40) and αA(66-80) in relation to the pathogenesis of cataract. Int J Biol Macromol 2021; 179:61-70. [PMID: 33626371 DOI: 10.1016/j.ijbiomac.2021.02.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) and cataract represent two common protein misfolding diseases closely associated with aging. Growing evidence suggests that these two diseases may be interrelated with each other through cross-sequence interactions between β-amyloid (Aβ) peptide and the short aggregating peptides derived from proteolytic breakdown of α-crystallin. αΑ(66-80) is one of several peptides produced by the proteolytic breakdown of α-crystallin in aged eye lens. Although it is evident that the Aβ(1-40) and αΑ(66-80) coexist in aged eye lenses and both the peptides are known to form macromolecular assemblies, their cross-sequence interaction and the seeding behavior are not known. In this study, the aggregation behavior of αΑ(66-80) has been examined in the presence of Aβ(1-40) on using thioflavin T (ThT) based aggregation kinetics. The presence of monomeric Aβ(1-40) augmented the aggregation kinetics of αΑ(66-80) and reduced the lag time of αΑ(66-80) aggregation. However, the addition of Aβ(1-40) or αΑ(66-80) fibrils (seeds) didn't result in any change in the rate of αΑ(66-80) aggregation. In this in vitro study, we could show that the presence Aβ(1-40) has substantial effect on the aggregation of αΑ(66-80), which suggests a possible interaction between AD and cataract pathologies.
Collapse
Affiliation(s)
- Anna Schimansky
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Jay Kant Yadav
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany; Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
36
|
Hiramatsu N, Nagai N, Kondo M, Imaizumi K, Sasaki H, Yamamoto N. Morphological comparison between three-dimensional structure of immortalized human lens epithelial cells and Soemmering's ring. Med Mol Morphol 2021; 54:216-226. [PMID: 33458799 DOI: 10.1007/s00795-021-00280-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
The incidence rate of post-cataract surgery posterior capsule opacification (PCO) and lens turbidity is about 20% in 5 years. Soemmering's ring, which is a type of PCO also called a regenerated lens with similar tissue structure to that of a human lens, is an important proxy for elucidating the mechanism of lens regeneration and maintenance of transparency. The authors created new human immortalized crystalline lens epithelial cells (iHLEC-NY1s) with excellent differentiation potential, and as a result of culturing the cells by static and rotation-floating methods, succeeded in producing a three-dimensional cell structure model (3D-iHLEC-NY1s) which is similar to Soemmering's ring in tissue structure and expression characteristics of αA-crystalline, βB2-crystalline, vimentin proteins. 3D-iHLEC-NY1s is expected to be a proxy in vitro experimental model of Soemmering's ring to enable evaluation of drug effects on suppression of cell aggregate formation and transparency. By further improving the culture conditions, we aim to control the cell sequence and elucidate the mechanism underlying the maintenance of lens transparency.
Collapse
Affiliation(s)
- Noriko Hiramatsu
- Center for Clinical Trial and Research Support, Fujita Health University Research Promotion and Support Headquarters, Toyoake, Aichi, 470-1192, Japan
- Graduate School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka, Osaka, 577-8502, Japan
| | - Masashi Kondo
- Center for Clinical Trial and Research Support, Fujita Health University Research Promotion and Support Headquarters, Toyoake, Aichi, 470-1192, Japan
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan
| | - Naoki Yamamoto
- Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, 920-0293, Japan.
| |
Collapse
|
37
|
Qin YJ, Chan SO, Lin HL, Zhang YQ, Chen YL, Niu YY, Xie WJ, Chu WK, Pang CP, Zhang HY. Elevated level of uric acid in aqueous humour is associated with posterior subcapsular cataract in human lens. Clin Exp Ophthalmol 2020; 48:1183-1191. [PMID: 32713071 DOI: 10.1111/ceo.13835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
IMPORTANCE Age-related cataract is the leading cause of blindness worldwide. The pathological mechanisms causing this disease remain elusive. BACKGROUND To examine the involvement of uric acid (UA) in the pathogenesis of posterior subcapsular cataract (PSC). DESIGN Retrospective study and experimental investigation. PARTICIPANTS A total of 180 patients with PSC or non-PSC were included. METHODS Samples obtained from the patients were used to analyse content of UA and for histochemical examinations. The effects of UA on human lens epithelial cells were also investigated. MAIN OUTCOME MEASURES Aqueous humour UA and urate deposits. RESULTS The results showed a significant increase of aqueous humour UA in patients with PSC. After adjustment for potential confounders, elevated aqueous humour UA (odds ratio [OR] = 1.45) showed a stronger association with PSC than serum UA (OR = 1.10). Gomori methenamine silver staining revealed in PSC an intense deposit of urates in the lens fibres in equatorial regions, and in subcapsular fibres in posterior regions of the lens. Such staining was not detected in the lens with non-PSC. Treatment with UA-induced senescence and apoptosis in human lens epithelial cells in a dose dependent manner. Our results suggest that the elevated level of UA in aqueous humour causes a deposition of urates in human lens epithelium, which could possibly lead to dysfunction of these cells that generates opacification in PSC. CONCLUSIONS AND RELEVANCE These findings indicate the local action of excessive UA in the pathogenesis of PSC. Control of serum UA level could delay the progression of PSC.
Collapse
Affiliation(s)
- Yong Jie Qin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hong Liang Lin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yu Qiao Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Yan Lei Chen
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Yong Yi Niu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Wen Juan Xie
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Wai Kit Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Hong Yang Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
- School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Liu Z, Wang R, Lin H, Liu Y. Lens regeneration in humans: using regenerative potential for tissue repairing. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1544. [PMID: 33313289 PMCID: PMC7729322 DOI: 10.21037/atm-2019-rcs-03] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The crystalline lens is an important optic element in human eyes. It is transparent and biconvex, refracting light and accommodating to form a clear retinal image. The lens originates from the embryonic ectoderm. The epithelial cells at the lens equator proliferate, elongate and differentiate into highly aligned lens fiber cells, which are the structural basis for maintaining the transparency of the lens. Cataract refers to the opacity of the lens. Currently, the treatment of cataract is to remove the opaque lens and implant an intraocular lens (IOL). This strategy is inappropriate for children younger than 2 years, because a developing eyeball is prone to have severe complications such as inflammatory proliferation and secondary glaucoma. On the other hand, the absence of the crystalline lens greatly affects visual function rehabilitation. The researchers found that mammalian lenses possess regenerative potential. We identified lens stem cells through linear tracking experiments and designed a minimally invasive lens-content removal surgery (MILS) to remove the opaque lens material while preserving the lens capsule, stem cells and microenvironment. In infants with congenital cataract, functional lens regeneration in situ can be observed after MILS, and the prognosis of visual function is better than that of traditional surgery. Because of insufficient regenerative ability in humans, the morphology and volume of the regenerated lens cannot reach the level of a normal lens. The activation, proliferation and differentiation of lens stem cells and the alignment of lens fibers are regulated by epigenetic factors, growth factors, transcription factors, immune system and other signals and their interactions. The construction of appropriate microenvironment can accelerate lens regeneration and improve its morphology. The therapeutic concept of MILS combined with microenvironment manipulation to activate endogenous stem cells for functional regeneration of organs in situ can be extended to other tissues and organs with strong self-renewal and repair ability.
Collapse
Affiliation(s)
- Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruixin Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Haotian Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
Ruan X, Liu Z, Luo L, Liu Y. The Structure of the Lens and Its Associations with the Visual Quality. BMJ Open Ophthalmol 2020; 5:e000459. [PMID: 33024825 PMCID: PMC7511618 DOI: 10.1136/bmjophth-2020-000459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
In humans, the lens is the organ with the ability to change morphology and refractive power, designated as accommodation, to focus light from various distances and obtain clear retinal image. The accommodative ability of the lens depends on its structure and biological parameters. The lens grows throughout the life, forming specific lens sutures and a unique gradient refractive index, and possesses regenerative ability under certain circumstances. Minimally invasive lens surgery that preserves endogenous lens epithelial stem/progenitor cells (LECs) can achieve functional lens regeneration in humans. The lens is the main source of intraocular aberration, especially intraocular higher-order aberrations (IHOAs) which is found to be binocularly symmetrical in phakic eyes. There is a compensation mechanism between corneal aberrations and lens aberrations. Therefore, the structure and the biological parameters of the lens, the binocular relationship of the lens and the correlation between the lens and cornea affect visual quality. This paper summarises the above findings and their current and potential applications in refractive surgeries, providing a comprehensive understanding of the lens as a strong determinant of visual quality in the optical system.
Collapse
Affiliation(s)
- Xiaoting Ruan
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Zhenzhen Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University Zhongshan Ophthalmic Center, Guangzhou, China
| |
Collapse
|
40
|
Andley UP, Naumann BN, Hamilton PD, Bozeman SL. Changes in relative histone abundance and heterochromatin in αA-crystallin and αB-crystallin knock-in mutant mouse lenses. BMC Res Notes 2020; 13:315. [PMID: 32616056 PMCID: PMC7331185 DOI: 10.1186/s13104-020-05154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Objective Understanding the mechanisms of cataract formation is important for age-related and hereditary cataracts caused by mutations in lens protein genes. Lens proteins of the crystallin gene families α-, β-, and γ-crystallin are the most abundant proteins in the lens. Single point mutations in crystallin genes cause autosomal dominant cataracts in multigenerational families. Our previous proteomic and RNAseq studies identified genes and proteins altered in the early stages of cataract formation in mouse models. Histones H2A, H2B, and H4 increase in abundance in αA- and αB-crystallin mutant mouse lenses and in cultured cells expressing the mutant form of αA-crystallin linked with hereditary cataracts. Results In this study of histones in mutant lenses, we extracted histones from adult mouse lenses from cryaa-R49C and cryab-R120G mutant knock-in mice. We characterized the histones using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF)-mass spectrometric analysis and gel electrophoresis and characterized the lens nucleus morphology using electron microscopy (EM). The relative abundance of histone H3 protein decreased in lenses from cryaa-R49C mutant mice and the relative abundance of histone H2 increased in these lenses. Electron microscopy of nuclei from cryaa-R49C-homozygous mutant mouse lenses revealed a pronounced alteration in the distribution of heterochromatin.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO, 63110, USA.
| | - Brittney N Naumann
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO, 63110, USA
| | - Paul D Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO, 63110, USA
| | - Stephanie L Bozeman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO, 63110, USA
| |
Collapse
|
41
|
Zhang J, Cui WW, Du C, Huang Y, Pi X, Guo W, Wang J, Huang W, Chen D, Li J, Li H, Zhang J, Ma Y, Mu H, Zhang S, Liu M, Cui X, Hu Y. Knockout of DNase1l1l abrogates lens denucleation process and causes cataract in zebrafish. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165724. [PMID: 32061775 DOI: 10.1016/j.bbadis.2020.165724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2β degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2β expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2β, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wen-Wen Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Chunxiao Du
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuwen Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiahui Pi
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Danling Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Shuman Zhang
- Huaihe Hospital of Henan University, Kaifeng, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China.
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Henan International Union Lab of Antibody Medicine, Henan University School of Medicine, Kaifeng, China; Kaifeng Key Lab of Myopia and Cataract, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.
| |
Collapse
|
42
|
3D Printed Personalized Corneal Models as a Tool for Improving Patient’s Knowledge of an Asymmetric Disease. Symmetry (Basel) 2020. [DOI: 10.3390/sym12010151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing is a vanguard technology that is currently being used in several fields in medicine. This study aims to evaluate the viability in clinical practice of a patient-specific 3D model that helps to improve the strategies of the doctor-patient assistance. Data obtained from a corneal topographer were used to make a virtual 3D model by using CAD software, to later print this model by FDM and get an exact replica of each patient’s cornea in consultation. Used CAD and printing software were open-source, and the printing material was biodegradable and its cost was low. Clinic users gave their feedback by means of a survey about their feelings when perceiving with their senses their own printed cornea. There was 82 surveyed, 73.8% (9.74; SD: 0.45) of them considered that the model had helped them a lot to understand their disease, expressing 100% of them their intention of taking home the printed model. The majority highlighted that this new concept improves both quality and clinical service in consultation. Custom-made individualized printed models allow a new patient-oriented perspective that may improve the communication strategy from the ophthalmologist to the patient, easing patient’s understanding of their asymmetric disease and its later treatment.
Collapse
|
43
|
Molecular genetics of congenital cataracts. Exp Eye Res 2019; 191:107872. [PMID: 31770519 DOI: 10.1016/j.exer.2019.107872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Congenital cataracts, the most common cause of visual impairment and blindness in children worldwide, have diverse etiologies. According to statistics analysis, about one quarter of congenital cataracts caused by genetic defects. Various mutations of more than one hundred genes have been identified in hereditary cataracts so far. In this review, we briefly summarize recent developments about the genetics, molecular mechanisms, and treatments of congenital cataracts. The studies of these pathogenic mutations and molecular genetics is making it possible for us to comprehend the underlying mechanisms of cataractogenesis and providing new insights into the preventive, diagnostic and therapeutic approaches of cataracts.
Collapse
|
44
|
Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol 2019; 257:1815-1822. [PMID: 30993457 DOI: 10.1007/s00417-019-04312-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The purpose of this paper is to provide an in-depth understanding of how to best utilize 3D printing in medicine, and more particularly in ophthalmology in order to enhance the clinicians' ability to provide out-of-the-box solutions for unusual challenges that require patient personalization. In this review, we discuss the main applications of 3D printing for diseases of the anterior and posterior segments of the eye and discuss their current status and implementation. We aim to raise awareness among ophthalmologists and report current and future developments. METHODS A computerized search from inception up to 2018 of the online electronic database PubMed was performed, using the following search strings: "3D," "printing," "ophthalmology," and "bioprinting." Additional data was extracted from relevant websites. The reference list in each relevant article was analyzed for additional relevant publications. RESULTS 3D printing first appeared three decades ago. Nevertheless, the implementation and utilization of this technology in healthcare became prominent only in the last 5 years. 3D printing applications in ophthalmology are vast, including organ fabrication, medical devices, production of customized prosthetics, patient-tailored implants, and production of anatomical models for surgical planning and educational purposes. CONCLUSIONS The potential applications of 3D printing in ophthalmology are extensive. 3D printing enables cost-effective design and production of instruments that aid in early detection of common ocular conditions, diagnostic and therapeutic devices built specifically for individual patients, 3D-printed contact lenses and intraocular implants, models that assist in surgery planning and improve patient and medical staff education, and more. Advances in bioprinting appears to be the future of 3D printing in healthcare in general, and in ophthalmology in particular, with the emerging possibility of printing viable tissues and ultimately the creation of a functioning cornea, and later retina. It is expected that the various applications of 3D printing in ophthalmology will become part of mainstream medicine.
Collapse
Affiliation(s)
- Adir C Sommer
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel
| | - Eytan Z Blumenthal
- Department of Ophthalmology, Rambam Health Care Campus, 9602, 31096, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|