1
|
Lana JV, Lana JF, Melo G, Azzini GOM, Santos GS, Mosaner T, Jorge DDMF, da Fonseca LF, Kruel A, Costa FR, Jeyaraman M, de Macedo AP, Santos N, Pires L, Tambeli CH. SDIMMMER: A Proposed Clinical Approach to Optimize Cellular Physiology in Regenerative Medicine. Life (Basel) 2024; 14:1287. [PMID: 39459586 PMCID: PMC11509807 DOI: 10.3390/life14101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
SDIMMMER is an acronym intended for use in both clinical practice and medical research. It facilitates a comprehensive evaluation of a patient's metabolic profile and serves as a mnemonic for the following key assessment areas: Sleep, Diet, Microbiome, Metabolism, Medications, Exams, and Rehabilitation. In the clinical setting, SDIMMMER's primary objective is to monitor and manage the patient's metabolic status, particularly targeting low-grade chronic systemic inflammation, a hallmark of metabolic syndrome (MS). This inflammatory condition is characterized by elevated levels of circulating inflammatory cytokines and increased macrophage infiltration in peripheral tissues. SDIMMMER aims to enhance the effectiveness of ortho biological treatments by elevating growth factor levels, thereby enhancing patient outcomes. Additionally, SDIMMMER emphasizes guiding patients toward positive lifestyle changes to improve overall quality of life and foster a healthier metabolism. SDIMMMER introduces a patient metabolic profile quantification tool comprising 7 domains, totaling 35 items. Additionally, an instructional guide is provided to facilitate the application process. Its versatility spans various clinical and research domains, showcasing its potential to positively influence multiple fields.
Collapse
Affiliation(s)
- João Vitor Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.); (G.M.)
| | - José Fábio Lana
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.); (G.M.)
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
- Clinical Research, Anna Vitória Lana Institute (IAVL), Indaiatuba 13334-170, SP, Brazil
- Medical School, Jaguariúna University Center (UniFAJ), Jaguariúna 13820-000, SP, Brazil
| | - Gregory Melo
- Medical School, Max Planck University Center (UniMAX), Indaiatuba 13343-060, SP, Brazil; (J.V.L.); (J.F.L.); (G.M.)
| | - Gabriel Ohana Marques Azzini
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Gabriel Silva Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Tomas Mosaner
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Daniel de Moraes Ferreira Jorge
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - André Kruel
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Fábio Ramos Costa
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
- Department of Orthopedics, FC Sports Traumatology, Salvador 40296-210, BA, Brazil
| | - Madhan Jeyaraman
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
- Department of Orthopedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Alex Pontes de Macedo
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Napoliane Santos
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Luyddy Pires
- Department of Orthopedics, Brazilian Institute of Regenerative Medicine (BIRM), Indaiatuba 13334-170, SP, Brazil; (G.O.M.A.); (T.M.); (D.d.M.F.J.); (L.F.d.F.); (A.K.); (A.P.d.M.); (N.S.); (L.P.)
- Regenerative Medicine, Orthoregen International Course, Indaiatuba 13334-170, SP, Brazil; (F.R.C.); (M.J.)
| | - Claudia Herrera Tambeli
- Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-852, SP, Brazil;
| |
Collapse
|
2
|
Eshaghi-Gorji R, Talebpour Amiri F, Mirzae M, Shafia S, Akhoundzadeh K. Effects of the combination of bone marrow stromal cells and exercise on corticosterone, BDNF, IGF-1, and anxiety-like behaviour in a rat model of post-traumatic stress disorder: Comparable effects of exercise. World J Biol Psychiatry 2024; 25:370-383. [PMID: 39049204 DOI: 10.1080/15622975.2024.2382693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
AIM Post-traumatic stress disorder (PTSD) requires more effective treatment options with fewer side effects. Stem cell therapy, as a novel approach, has been investigated in the treatment of various diseases, including brain disorders. This study investigated the effects of bone marrow stromal cells (BMSCs) and the combination of BMSCs with exercise on corticosterone, BDNF and IGF-1, and anxiety-like behaviours in a male rat model of PTSD. METHODS Male adult Wistar rats were subjected to PTSD induced by the single prolonged stress (SPS) model. 7 days after SPS, BMSCs were injected intravenously. The exercise started on day 11 and continued for 4 weeks. On day 40th, anxiety behaviour, corticosterone, BDNF, and IGF-1 were tested. p < 0.05 was considered as a significant level. RESULTS The study showed that a combination of BMSCs and exercise significantly reduced anxiety-related behaviours, and alterations in BDNF, IGF-1, and corticosterone levels. Also, BMSCs alone significantly reduced some of the PTSD-induced impairments. However, exercise alone showed greater efficiency in comparison with BMSCs alone. CONCLUSION According to the results, although combination therapy effectively improved PTSD-related complications, exercise had relatively comparable effects on PTSD. Exercise has the potential to enhance the efficacy of BMSC therapy. Further research is required to determine whether BMSC therapy is sufficiently efficacious and safe in clinical settings.
Collapse
Affiliation(s)
- Reza Eshaghi-Gorji
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mansoureh Mirzae
- PhD in Comparative Histology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sakineh Shafia
- Department of Physiology, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
3
|
Bakhashab S, O’Neill J, Barber R, Arden C, Weaver JU. Upregulation of Anti-Angiogenic miR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy. Biomedicines 2024; 12:171. [PMID: 38255276 PMCID: PMC10813602 DOI: 10.3390/biomedicines12010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Well-controlled type 1 diabetes mellitus (T1DM) is regarded as a model of subclinical cardiovascular disease (CVD), characterized by inflammation and adverse vascular health. However, the underlying mechanisms are not fully understood. We investigated insulin-like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) levels, their correlation to miR-106b-3p expression in a subclinical CVD model, and the cardioprotective effect of metformin. A total of 20 controls and 29 well-controlled T1DM subjects were studied. Plasma IGF-1, IGFBP-3 levels, and miR-106b-3p expression in colony-forming unit-Hills were analyzed and compared with vascular markers. miR-106b-3p was upregulated in T1DM (p < 0.05) and negatively correlated with pro-angiogenic markers CD34+/100-lymphocytes (p < 0.05) and IGF-1 (p < 0.05). IGF-1 was downregulated in T1DM (p < 0.01), which was associated with increased inflammatory markers TNF-α, CRP, and IL-10 and reduced CD34+/100-lymphocytes. IGFBP-3 had no significant results. Metformin had no effect on IGF-1 but significantly reduced miR-106b-3p (p < 0.0001). An Ingenuity Pathway analysis predicted miR-106b-3p to inhibit PDGFA, PIK3CG, GDNF, and ADAMTS13, which activated CVD. Metformin was predicted to be cardioprotective by inhibiting miR-106b-3p. In conclusion: Subclinical CVD is characterized by a cardio-adverse profile of low IGF-1 and upregulated miR-106b-3p. We demonstrated that the cardioprotective effect of metformin may be via downregulation of upregulated miR-106b-3p and its effect on downstream targets.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Rosie Barber
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (J.O.); (R.B.)
- Department of Diabetes, Queen Elizabeth Hospital, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
4
|
Peñín-Grandes S, Martín-Hernández J, Valenzuela PL, López-Ortiz S, Pinto-Fraga J, Solá LDR, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Exercise and the hallmarks of peripheral arterial disease. Atherosclerosis 2022; 350:41-50. [DOI: 10.1016/j.atherosclerosis.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
|
5
|
Yan W, Chen Y, Guo Y, Xia Y, Li C, Du Y, Lin C, Xu X, Qi T, Fan M, Zhang F, Hu G, Gao E, Liu R, Hai C, Tao L. Irisin Promotes Cardiac Homing of Intravenously Delivered MSCs and Protects against Ischemic Heart Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103697. [PMID: 35038246 PMCID: PMC8895138 DOI: 10.1002/advs.202103697] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Indexed: 05/15/2023]
Abstract
Few intravenously administered mesenchymal stromal cells (MSCs) engraft to the injured myocardium, thereby limiting their therapeutic efficacy for the treatment of ischemic heart injury. Here, it is found that irisin pretreatment increases the cardiac homing of adipose tissue-derived MSCs (ADSCs) administered by single and multiple intravenous injections to mice with MI/R by more than fivefold, which subsequently increases their antiapoptotic, proangiogenic, and antifibrotic effects in rats and mice that underwent MI/R. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and loss-of-function studies identified CSF2RB as a cytokine receptor that facilitates the chemotaxis of irisin-treated ADSCs in the presence of CSF2, a chemokine that is significantly upregulated in the ischemic heart. Cardiac-specific CSF2 knockdown blocked the cardiac homing and cardioprotection abilities of intravenously injected irisin-treated ADSCs in mice subjected to MI/R. Moreover, irisin pretreatment reduced the apoptosis of hydrogen peroxide-induced ADSCs and increased the paracrine proangiogenic effect of ADSCs. ERK1/2-SOD2, and ERK1/2-ANGPTL4 are responsible for the antiapoptotic and paracrine angiogenic effects of irisin-treated ADSCs, respectively. Integrin αV/β5 is identified as the irisin receptor in ADSCs. These results provide compelling evidence that irisin pretreatment can be an effective means to optimize intravenously delivered MSCs as therapy for ischemic heart injury.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Youhu Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongzhen Guo
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yunlong Xia
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Congye Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yunhui Du
- Beijing Anzhen HospitalCapital Medical UniversityBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing100029China
| | - Chen Lin
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Xiaoming Xu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Tingting Qi
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Miaomiao Fan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Fuyang Zhang
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Guangyu Hu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Erhe Gao
- Center for Translational MedicineTemple UniversityPhiladelphiaPA19104USA
| | - Rui Liu
- Department of ToxicologyShanxi Key Lab of Free Radical Biology and MedicineSchool of Public HealthThe Fourth Military Medical UniversityXi'an710032China
| | - Chunxu Hai
- Department of ToxicologyShanxi Key Lab of Free Radical Biology and MedicineSchool of Public HealthThe Fourth Military Medical UniversityXi'an710032China
| | - Ling Tao
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| |
Collapse
|
6
|
Saia-Cereda VM. Modulating Specific Pathways In Vitro to Understand the Synaptic Dysfunction of Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:121-127. [DOI: 10.1007/978-3-030-97182-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Stem cells and regenerative medicine in sport science. Emerg Top Life Sci 2021; 5:563-573. [PMID: 34448473 PMCID: PMC8589434 DOI: 10.1042/etls20210014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022]
Abstract
The estimated cost of acute injuries in college-level sport in the USA is ∼1.5 billion dollars per year, without taking into account the cost of follow up rehabilitation. In addition to this huge financial burden, without appropriate diagnosis and relevant interventions, sport injuries may be career-ending for some athletes. With a growing number of females participating in contact based and pivoting sports, middle aged individuals returning to sport and natural injuries of ageing all increasing, such costs and negative implications for quality of life will expand. For those injuries, which cannot be predicted and prevented, there is a real need, to optimise repair, recovery and function, post-injury in the sporting and clinical worlds. The 21st century has seen a rapid growth in the arena of regenerative medicine for sporting injuries, in a bid to progress recovery and to facilitate return to sport. Such interventions harness knowledge relating to stem cells as a potential for injury repair. While the field is rapidly growing, consideration beyond the stem cells, to the factors they secrete, should be considered in the development of effective, affordable treatments.
Collapse
|
8
|
Ravalli S, Federico C, Lauretta G, Saccone S, Pricoco E, Roggio F, Di Rosa M, Maugeri G, Musumeci G. Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents. Biomedicines 2021; 9:biomedicines9070807. [PMID: 34356871 PMCID: PMC8301487 DOI: 10.3390/biomedicines9070807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle atrophy, resulting from states of hypokinesis or immobilization, leads to morphological, metabolic, and functional changes within the muscle tissue, a large variety of which are supported by the stromal cells populating the interstitium. Telocytes represent a recently discovered population of stromal cells, which has been increasingly identified in several human organs and appears to participate in sustaining cross-talk, promoting regenerative mechanisms and supporting differentiation of local stem cell niche. The aim of this morphologic study was to investigate the presence of Telocytes in the tibialis anterior muscle of healthy rats undergoing an endurance training protocol for either 4 weeks or 16 weeks compared to sedentary rats. Histomorphometric analysis of muscle fibers diameter revealed muscle atrophy in sedentary rats. Telocytes were identified by double-positive immunofluorescence staining for CD34/CD117 and CD34/vimentin. The results showed that Telocytes were significantly reduced in sedentary rats at 16 weeks, while rats subjected to regular exercise maintained a stable Telocytes population after 16 weeks. Understanding of the relationship between Telocytes and exercise offers new chances in the field of regenerative medicine, suggesting possible triggers for Telocytes in sarcopenia and other musculoskeletal disorders, promoting adapted physical activity and rehabilitation programmes in clinical practice.
Collapse
Affiliation(s)
- Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Giovanni Lauretta
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Elisabetta Pricoco
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (S.R.); (G.L.); (E.P.); (F.R.); (M.D.R.); (G.M.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
9
|
Marino F, Scalise M, Cianflone E, Salerno L, Cappetta D, Salerno N, De Angelis A, Torella D, Urbanek K. Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants (Basel) 2021; 10:1002. [PMID: 34201562 PMCID: PMC8300666 DOI: 10.3390/antiox10071002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the "nitroso-redox imbalance". Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (N.S.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.M.); (M.S.); (L.S.)
| |
Collapse
|
10
|
Loghmani MT, Tobin C, Quigley C, Fennimore A. Soft Tissue Manipulation May Attenuate Inflammation, Modulate Pain, and Improve Gait in Conscious Rodents With Induced Low Back Pain. Mil Med 2021; 186:506-514. [PMID: 33499433 DOI: 10.1093/milmed/usaa259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Low back pain (LBP) is common in warfighters. Noninvasive interventions are necessary to expedite return-to-function. Soft tissue manipulation, for example, massage, is a method used to treat LBP. Instrument-assisted soft tissue manipulation (IASTM) uses a rigid device to mobilize the tissue. This study explored the effects of IASTM on pain, function, and biomarkers. METHODS Sprague-Dawley rats (n = 44) were randomized to groups (n = 6/grp): (A) cage control; (B) 3 days (3d) postinjury (inj), untreated; (C) 3d inj, < 30-minute post-IASTM treatment; (D) 3d inj, 2 hours (2h) post-IASTM; (E) 14 days (14d) inj, untreated; (F) 14d inj, < 30-minute post-IASTM; and (G) 14d inj, 2h post-IASTM. Researchers induced unilateral LBP in Sprague-Dawley rats using complete Freund's adjuvant injection. Conscious rodents received IASTM for 5 min/session once at 3 days or 3×/week × 2weeks (6× total) over 14 days. Biomarker plasma levels were determined in all groups, while behavioral outcomes were assessed in two groups, D and G, at three time points: before injury, pre-, and post-IASTM treatment. Circulating mesenchymal stem cell levels were assessed using flow cytometry and cytokine plasma levels assayed. RESULTS The back pressure pain threshold (PPT) lowered bilaterally at 3 days postinjury (P < .05), suggesting increased pain sensitivity. IASTM treatment lowered PPT more on the injured side (15.8%; P < 0.05). At 14 days, back PPT remained lower but similar side to side. At 3 days, paw PPT increased 34.6% in the contralateral rear limb following treatment (P < .01). Grip strength did not vary significantly. Gait coupling patterns improved significantly (P < .05). Circulating mesenchymal stem cell levels altered significantly postinjury but not with treatment. Neuropeptide Y plasma levels increased significantly at 3 days, 2h post-IASTM (53.2%) (P < .05). Interleukin-6 and tumor necrosis factor-alpha did not vary significantly. At 14 days, regulated on activation, normal T cell expressed and secreted decreased significantly <30-minute post-IASTM (96.1%, P < .002), while IL-10 trended upward at 2h (53.1%; P = .86). CONCLUSIONS LBP increased pain sensitivity and diminished function. IASTM treatment increased pain sensitization acutely in the back but significantly reduced pain sensitivity in the contralateral rear paw. Findings suggest IASTM may positively influence pain modulation and inflammation while improving gait patterns. Soft tissue manipulation may be beneficial as a conservative treatment option for LBP.
Collapse
Affiliation(s)
- M Terry Loghmani
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Carolyn Tobin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Colleen Quigley
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Alanna Fennimore
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Schmid M, Kröpfl JM, Spengler CM. Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 17:1091-1120. [PMID: 33389632 PMCID: PMC8316227 DOI: 10.1007/s12015-020-10105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Despite of the increasing number of investigations on the effects of acute exercise on circulating stem and progenitor cell (SC) numbers, and in particular on respective subgroups, i.e. endothelial (ESC), hematopoietic (HSC), and mesenchymal (MSC) stem and progenitor cells, a consensus regarding mechanisms and extent of these effects is still missing. The aim of this meta-analysis was to systematically evaluate the overall-effects of acute exercise on the different SC-subgroups and investigate possible subject- and intervention-dependent factors affecting the extent of SC-mobilization in healthy humans. Trials assessing SC numbers before and at least one timepoint after acute exercise, were identified in a systematic computerized search. Compared to baseline, numbers were significantly increased for early and non-specified SCs (enSCs) until up to 0.5 h after exercise (0–5 min: +0.64 [Standardized difference in means], p < 0.001; 6–20 min: +0.42, p < 0.001; 0.5 h: +0.29, p = 0.049), for ESCs until 12–48 h after exercise (0–5 min: +0.66, p < 0.001; 6–20 min: +0.43 p < 0.001; 0.5 h: +0.43, p = 0.002; 1 h: +0.58, p = 0.001; 2 h: +0.50, p = 0.002; 3–8 h: +0.70, p < 0.001; 12–48 h: +0.38, p = 0.003) and for HSCs at 0–5 min (+ 0.47, p < 0.001) and at 3 h after exercise (+ 0.68, p < 0.001). Sex, intensity and duration of the intervention had generally no influence. The extent and kinetics of the exercise-induced mobilization of SCs differ between SC-subpopulations. However, also definitions of SC-subpopulations are non-uniform. Therefore, finding a consensus with a clear definition of cell surface markers defining ESCs, HSCs and MSCs is a first prerequisite for understanding this important topic. ![]()
Collapse
Affiliation(s)
- M Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
12
|
The acute and long-term effects of a cardiac rehabilitation program on endothelial progenitor cells in chronic heart failure patients: Comparing two different exercise training protocols. IJC HEART & VASCULATURE 2020; 32:100702. [PMID: 33392386 PMCID: PMC7772790 DOI: 10.1016/j.ijcha.2020.100702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
Background Vascular endothelial dysfunction is an underlying pathophysiological feature of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are also impaired. The purpose of the study was to assess the effect of a cardiac rehabilitation (CR) program on the increase of EPCs at rest and on the acute response after maximal exercise in patients with CHF and investigate whether there were differences between two exercise training protocols and patients of NYHA II and III classes. Methods Forty-four patients with stable CHF enrolled in a 36-session CR program and were randomized in one training protocol; either high-intensity interval training (HIIT) or HIIT combined with muscle strength (COM). All patients underwent maximum cardiopulmonary exercise testing (CPET) before and after the CR program and venous blood was drawn before and after each CPET. Five endothelial cellular populations, expressed as cells/106 enucleated cells, were quantified by flow cytometry. Results An increase in all endothelial cellular populations at rest was observed after the CR program (p < 0.01). The acute response after maximum exercise increased in 4 out of 5 endothelial cellular populations after rehabilitation. Although there was increase in EPCs at rest and the acute response after rehabilitation in each exercise training group and each NYHA class, there were no differences between HIIT and COM groups or NYHA II and NYHA III classes (p > 0.05). Conclusions A 36-session CR program increases the acute response after maximum CPET and stimulates the long-term mobilization of EPCs at rest in patients with CHF. These benefits seem to be similar between HIIT and COM exercise training protocols and between patients of different functional classes.
Collapse
|
13
|
Vodovotz Y, Barnard N, Hu FB, Jakicic J, Lianov L, Loveland D, Buysse D, Szigethy E, Finkel T, Sowa G, Verschure P, Williams K, Sanchez E, Dysinger W, Maizes V, Junker C, Phillips E, Katz D, Drant S, Jackson RJ, Trasande L, Woolf S, Salive M, South-Paul J, States SL, Roth L, Fraser G, Stout R, Parkinson MD. Prioritized Research for the Prevention, Treatment, and Reversal of Chronic Disease: Recommendations From the Lifestyle Medicine Research Summit. Front Med (Lausanne) 2020; 7:585744. [PMID: 33415115 PMCID: PMC7783318 DOI: 10.3389/fmed.2020.585744] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Declining life expectancy and increasing all-cause mortality in the United States have been associated with unhealthy behaviors, socioecological factors, and preventable disease. A growing body of basic science, clinical research, and population health evidence points to the benefits of healthy behaviors, environments and policies to maintain health and prevent, treat, and reverse the root causes of common chronic diseases. Similarly, innovations in research methodologies, standards of evidence, emergence of unique study cohorts, and breakthroughs in data analytics and modeling create new possibilities for producing biomedical knowledge and clinical translation. To understand these advances and inform future directions research, The Lifestyle Medicine Research Summit was convened at the University of Pittsburgh on December 4-5, 2019. The Summit's goal was to review current status and define research priorities in the six core areas of lifestyle medicine: plant-predominant nutrition, physical activity, sleep, stress, addictive behaviors, and positive psychology/social connection. Forty invited subject matter experts (1) reviewed existing knowledge and gaps relating lifestyle behaviors to common chronic diseases, such as cardiovascular disease, diabetes, many cancers, inflammatory- and immune-related disorders and other conditions; and (2) discussed the potential for applying cutting-edge molecular, cellular, epigenetic and emerging science knowledge and computational methodologies, research designs, and study cohorts to accelerate clinical applications across all six domains of lifestyle medicine. Notably, federal health agencies, such as the Department of Defense and Veterans Administration have begun to adopt "whole-person health and performance" models that address these lifestyle and environmental root causes of chronic disease and associated morbidity, mortality, and cost. Recommendations strongly support leveraging emerging research methodologies, systems biology, and computational modeling in order to accelerate effective clinical and population solutions to improve health and reduce societal costs. New and alternative hierarchies of evidence are also be needed in order to assess the quality of evidence and develop evidence-based guidelines on lifestyle medicine. Children and underserved populations were identified as prioritized groups to study. The COVID-19 pandemic, which disproportionately impacts people with chronic diseases that are amenable to effective lifestyle medicine interventions, makes the Summit's findings and recommendations for future research particularly timely and relevant.
Collapse
Affiliation(s)
- Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neal Barnard
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Jakicic
- School of Education, University of Pittsburgh, Pittsburgh, PA, United States
| | - Liana Lianov
- American College of Lifestyle Medicine, Chesterfield, MO, United States
| | | | - Daniel Buysse
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eva Szigethy
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Toren Finkel
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gwendolyn Sowa
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Paul Verschure
- Institute for Bioengineering of Catalunya, Barcelona Institute of Science and Technology, Catalan Institute of Advanced Studies, Barcelona, Spain
| | - Kim Williams
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | | | - Victoria Maizes
- Department of Internal Medicine, University of Arizona, Tucson, AZ, United States
| | - Caesar Junker
- United States Air Force, Washington, DC, United States
| | - Edward Phillips
- Department of Physical Medicine and Rehabilitation, Veterans Administration Boston Healthcare System, Boston, MA, United States
| | - David Katz
- True Health Initiative, Derby, CT, United States
| | - Stacey Drant
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Richard J. Jackson
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Leonardo Trasande
- Department of Pediatrics and Environmental Medicine, New York University, New York, NY, United States
| | - Steven Woolf
- Department of Family Medicine and Population Health, Virginia Commonwealth University, Richmond, VA, United States
| | - Marcel Salive
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, Bethesda, MD, United States
| | - Jeannette South-Paul
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah L. States
- Phipps Conservatory and Botanical Gardens, Pittsburgh, PA, United States
| | - Loren Roth
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Fraser
- Department of Medicine, Preventive Medicine and Public Health, Loma Linda University, Loma Linda, CA, United States
| | - Ron Stout
- Ardmore Institute of Health, Ardmore, OK, United States
| | - Michael D. Parkinson
- University of Pittsburgh Medical Center Health Plan/WorkPartners, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Smith JK. Exercise as an Adjuvant to Cartilage Regeneration Therapy. Int J Mol Sci 2020; 21:ijms21249471. [PMID: 33322825 PMCID: PMC7763351 DOI: 10.3390/ijms21249471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, P.O. Box 70300, Johnson City, TN 37614, USA
| |
Collapse
|
15
|
Schmid M, Gruber HJ, Kröpfl JM, Spengler CM. Acute Exercise-Induced Oxidative Stress Does Not Affect Immediate or Delayed Precursor Cell Mobilization in Healthy Young Males. Front Physiol 2020; 11:577540. [PMID: 33192581 PMCID: PMC7606978 DOI: 10.3389/fphys.2020.577540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Exercise is known to acutely and transiently mobilize precursor cells to the peripheral blood. To date, the underlying mechanisms have not yet been fully elucidated and we hypothesized that exercise-induced oxidative stress could be a mobilizing agent, either directly or via circulating apoptotic cells as mediators. The aim of the study was to assess the effect of acute exercise-induced oxidative stress on numbers of circulating angiogenic precursor cells (CACs), circulating non-angiogenic precursor cells (nCACs), mesenchymal precursor cells (MPCs), mature endothelial cells (ECs), and mononuclear cells (MNCs), as well as their apoptotic subsets. Healthy, young males (n = 18, age: 24.2 ± 3.5 years) completed two identical, standardized incremental cycling tests. The first, un-supplemented control test was followed by a 7-day-long supplementation of vitamin C (1,000 mg/day) and E (400 I.U./day), immediately preceding the second test. Blood samples were collected before, directly after, 30, 90, 180, and 270 min after exercise, and aforementioned circulating cell numbers were determined by flow cytometry and a hematology analyzer. Additionally, total oxidative capacity (TOC) and total antioxidative capacity (TAC) were measured in serum at all timepoints. Antioxidative supplementation abolished the exercise-induced increase in the oxidative stress index (TOC/TAC), and reduced baseline concentrations of TOC and TOC/TAC. However, it did not have any effect on CACs, nCACs, and MPC numbers or the increase in apoptotic MNCs following exercise. Our results indicate that exercise-induced oxidative stress is neither a main driver of lymphocyte and monocyte apoptosis, nor one of the mechanisms involved in the immediate or delayed mobilization of precursor cells.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Sen S. Adult Stem Cells: Beyond Regenerative Tool, More as a Bio-Marker in Obesity and Diabetes. Diabetes Metab J 2019; 43:744-751. [PMID: 31902144 PMCID: PMC6943270 DOI: 10.4093/dmj.2019.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/17/2019] [Indexed: 12/23/2022] Open
Abstract
Obesity, diabetes, and cardiovascular diseases are increasing rapidly worldwide and it is therefore important to know the effect of exercise and medications for diabetes and obesity on adult stem cells. Adult stem cells play a major role in remodeling and tissue regeneration. In this review we will focus mainly on two adult stem/progenitor cells such as endothelial progenitor cells and mesenchymal stromal cells in relation to aerobic exercise and diabetes medications, both of which can alter the course of regeneration and tissue remodelling. These two adult precursor and stem cells are easily obtained from peripheral blood or adipose tissue depots, as the case may be and are precursors to endothelium and mesenchymal tissue (fat, bone, muscle, and cartilage). They both are key players in maintenance of cardiovascular and metabolic homeostasis and can act also as useful biomarkers.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Division of Endocrinology, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
17
|
Gultyaeva VV, Zinchenko MI, Uryumtsev DY, Krivoschekov SG, Aftanas LI. [Exercise for depression treatment. Physiological mechanisms]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:112-119. [PMID: 31464298 DOI: 10.17116/jnevro2019119071112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This literature review considers meta-analyzes, systematic reviews and original research over the last decade addressing a comprehensive analysis of the antidepressant effect of targeted physical exercise and physical activity in general. Exercise is a promising non-pharmacological treatment for depression, showing effects that are comparable or may even exceed other first-line treatments of depression. The article introduces modern ideas about the mechanisms of depression and mechanisms of exercise effects on depression manifestations. The structures of the central nervous system, changing with the effective exercise-based treatment of depression, are indicated. Physical activity stimulates the secretion of growth factors, maintenance of angio-, synapto-, and neurogenesis. The regulation of antioxidant protection of neuronal mitochondria, a decrease in pro-inflammatory reactions and stress reactivity are also observed in response to regular exercise. Physical activity has a multimodal effect that stimulates biochemical pathways and restores neuronal structures disturbed in depression.
Collapse
Affiliation(s)
- V V Gultyaeva
- Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - M I Zinchenko
- Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - D Y Uryumtsev
- Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - S G Krivoschekov
- Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - L I Aftanas
- Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| |
Collapse
|
18
|
Circulating adult stem and progenitor cell numbers-can results be trusted? Stem Cell Res Ther 2019; 10:305. [PMID: 31623690 PMCID: PMC6798345 DOI: 10.1186/s13287-019-1403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Within the last years, the interest in physical exercise as non-invasive stimulus influencing circulating hematopoietic stem and progenitor cell (CPC) concentrations has constantly grown. Cell estimates are often derived by determining the subgroup of CPC as percent lymphocytes (LYM) or mononuclear cells (MNC) via flow cytometry and back calculation over whole blood (WB) cell counts. However, results might depend on the used cell isolation technique and/or gating strategy. We aimed to investigate MNC loss and apoptosis during the flow cytometry sample preparation process preceded by either density gradient centrifugation (DGC) or red blood cell lysis (RBCL) and the potential difference between results derived from back calculation at different stages of cell isolation and from WB. METHODS Human blood was subjected to DGC and RBCL. Samples were stained for flow cytometry analysis of CPC (CD34+/CD45dim) and apoptosis analysis (Annexin V) of MNC and CPC subsets. MNC and LYM gating strategies were compared. RESULTS Both DGC as well as RBCL yielded comparable CPC concentrations independent of the gating strategy when back calculated over WB values. However, cell loss and apoptosis differed between techniques, where after DGC LYM, and monocyte (MONO) concentrations significantly decreased (p < 0.01 and p < 0.05, respectively), while after RBCL LYM concentrations significantly decreased (p < 0.05) and MONO concentrations increased (p < 0.001). LYM apoptosis was comparable between techniques, but MONO apoptosis was higher after DGC than RBCL (p < 0.001). CONCLUSIONS Investigated MNC counts (LYM/MONO ratio) after cell isolation and staining did not always mimic WB conditions. Thus, final CPC results should be corrected accordingly, especially when reporting live CPC concentrations after DGC; otherwise, the CPC regenerative potential in circulation could be biased. This is of high importance in the context of non-invasively induced CPC mobilization such as by acute physical exercise, since these cell changes are small and conclusions drawn from published results might affect further applications of physical exercise as non-invasive therapy.
Collapse
|
19
|
The Late Effects of Radiation Therapy on Skeletal Muscle Morphology and Progenitor Cell Content are Influenced by Diet-Induced Obesity and Exercise Training in Male Mice. Sci Rep 2019; 9:6691. [PMID: 31040340 PMCID: PMC6491594 DOI: 10.1038/s41598-019-43204-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Radiation exposure during muscle development induces long-term decrements to skeletal muscle health, which contribute to reduced quality of life in childhood cancer survivors. Whether the effects of radiation on skeletal muscle are influenced by relevant physiological factors, such as obesity and exercise training remains unknown. Using skeletal muscle from our previously published work examining the effects of obesity and exercise training on radiation-exposed bone marrow, we evaluated the influence of these physiological host factors on irradiated skeletal muscle morphology and cellular dynamics. Mice were divided into control and high fat diet groups with or without exercise training. All mice were then exposed to radiation and continued in their intervention group for an additional 4 weeks. Diet-induced obesity resulted in increased muscle fibrosis, while obesity and exercise training both increased muscle adiposity. Exercise training enhanced myofibre cross-sectional area and the number of satellite cells committed to the myogenic lineage. High fat groups demonstrated an increase in p-NFĸB expression, a trend for a decline in IL-6, and increase in TGFB1. These findings suggest exercise training improves muscle morphology and satellite cell dynamics compared to diet-induced obesity in irradiated muscle, and have implications for exercise interventions in cancer survivors.
Collapse
|
20
|
Berrío Sánchez J, Cucarian Hurtado J, Barcos Nunes R, de Oliveira AA. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson's disease: therapeutic assets beyond the motor domain. Rev Neurosci 2019; 30:165-178. [PMID: 29959887 DOI: 10.1515/revneuro-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a very common neurodegenerative condition in which both motor and nonmotor deficits evolve throughout the course of the disease. Normally characterized as a movement disorder, PD has been broadly studied from a motor perspective. However, mild to moderate cognitive deficits began to appear in the early phases of the disease, even before motor disturbances actually manifest, and continue to progress relentlessly. These nonmotor manifestations are also a source of detriment to the patients' already strained functionality and quality of life, and pose a therapeutic challenge seeing that replacing therapies have had conflicting results. Considering that the currently approved therapies can hardly be considered curative, efforts to find therapeutic approaches with an actual disease-modifying quality and capable of addressing not only motor but also cognitive dysfunctions are clearly needed. Among possible alternatives with such attribute, mesenchymal stem cell transplantation and exercise are worth highlighting given their common neuroprotective, neuroplastic, and immunomodulatory properties. In this paper, we will summarize the existent literature on the topic, focusing on the mechanisms of action through which these two approaches might beget therapeutic benefits for PD beyond the commonly assessed motor dysfunctions, alluding, at the same time, toward a potential synergic association of both therapies as an optimized approach for PD.
Collapse
Affiliation(s)
- Jenny Berrío Sánchez
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Jaison Cucarian Hurtado
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department, Instituto Federal de Educação, Ciência e Tecnologia. SUL-RIO-GRANDENSE, Rua Men de Sá, 800, Bom Sucesso, Gravataí, CEP 94.135-300, Brazil
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
21
|
Niemiro GM, Allen JM, Mailing LJ, Khan NA, Holscher HD, Woods JA, De Lisio M. Effects of endurance exercise training on inflammatory circulating progenitor cell content in lean and obese adults. J Physiol 2018; 596:2811-2822. [PMID: 29923191 DOI: 10.1113/jp276023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
KEY POINTS Chronic inflammation underlies many of the health decrements associated with obesity. Circulating progenitor cells can sense and respond to inflammatory stimuli, increasing the local inflammatory response within tissues. Here we show that 6 weeks of endurance exercise training significantly decreases inflammatory circulating progenitor cells in obese adults. These findings provide novel cellular mechanisms for the beneficial effects of exercise in obese adults. ABSTRACT Circulating progenitor cells (CPCs) and subpopulations are normally found in the bone marrow, but can migrate to peripheral tissues to participate in local inflammation and/or remodelling. The purpose of this study was to compare the CPC response, particularly the inflammatory-primed haematopoietic stem and progenitor (HSPC) subpopulation, to a 6 week endurance exercise training (EET) intervention between lean and obese adults. Seventeen healthy weight (age: 23.9 ± 5.4 years, body mass index (BMI): 22.0 ± 2.6 kg m-2 ) and 10 obese (age: 29.0 ± 8.0 years, BMI: 33.1 ± 6.0 kg m-2 ) previously sedentary adults participated in an EET. Blood was collected before and after EET for quantification of CPCs and subpopulations via flow cytometry, colony forming unit assays and plasma concentrations of C-X-C motif chemokine 12 (CXCL12), granulocyte-colony stimulating factor (G-CSF), and chemokine (C-C motif) ligand 2 (CCL2). Exercise training reduced the number of circulating HSPCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs). EET increased the colony forming potential of granulocytes and macrophages irrespective of BMI. EET reduced the number of HSPCs expressing the chemokine receptor CCR2 and the pro-inflammatory marker TLR4. EET-induced changes in adipose tissue-derived MSCs and bone marrow-derived MSCs were negatively related to changes in absolute fitness. Our results indicate that EET, regardless of BMI status, decreases CPCs and subpopulations, particularly those primed for contribution to tissue inflammation.
Collapse
Affiliation(s)
- Grace M Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Lucy J Mailing
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Naiman A Khan
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Sciences and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jeffrey A Woods
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,School of Human Kinetics, Brain and Mind Institute, Centre on Neuromuscular Disease, Regenerative Medicine Program, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Ratajczak MZ, Ciechanowicz AK, Kucharska-Mazur J, Samochowiec J. Stem cells and their potential clinical applications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:3-9. [PMID: 28435007 PMCID: PMC5623088 DOI: 10.1016/j.pnpbp.2017.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
The robustness of stem cells is one of the major factors that directly impacts life quality and life span. Evidence has accumulated that changes in the stem cell compartment affect human mental health and serve as an indicator of psychiatric problems. It is well known that stem cells continuously replace differentiated cells and tissues that are used up during life, although this replacement occurs at a different pace in the various organs. However, the participation of local neural stem cells in regeneration of the central nervous system is controversial. It is known that low numbers of stem cells circulate continuously in peripheral blood (PB) and lymph and undergo a circadian rhythm in their PB level, with the peak occurring early in the morning and the nadir at night, and recent evidence suggests that the number and pattern of circulating stem cells in PB changes in psychotic disorders. On the other hand, progress in the creation of induced pluripotent stem cells (iPSCs) from patient somatic cells provides valuable tools with which to study changes in gene expression in psychotic patients. We will discuss the various potential sources of stem cells that are currently employed in regenerative medicine and the mechanisms that explain some of their beneficial effects as well as the emerging problems with stem cell therapies. However, the main question remains: Will it be possible in the future to modulate the stem cell compartment to reverse psychiatric problems?
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, 500 South Floyd Street, James Graham Brown Cancer Center, University of Louisville, Louisville 40202, KY, USA; Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland.
| | | | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
23
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
24
|
Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, Burd NA, De Lisio M. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985) 2017; 122:675-682. [DOI: 10.1152/japplphysiol.00936.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors. Seven men [age = 25.3 ± 2.4 yr, body mass index = 23.5 ± 1.0 kg/m2, peak O2uptake (V̇o2peak) = 60.9 ± 2.74 ml·kg−1·min−1] ran on a treadmill for 60 min at 70% V̇o2peak. Blood sampling occurred before (Pre), during [20 min (20e), 40 min (40e), 60 min (60e)], and after exercise [15 min (15p), 60 min (60p), 120 min (120p)] for quantification of CPCs (CD34+), HSPCs (CD34+/CD45low), HSCs (CD34+/CD45low/CD38−), CD34+MSCs (CD45−/CD34+/CD31−/CD105+), CD34−MSCs (CD45−/CD34−/CD31−/CD105+), and EPCs (CD45−/CD34+/CD31+) via flow cytometry. CPC concentration increased compared with Pre at 20e and 40e (2.7- and 2.4-fold, respectively, P < 0.05). HSPCs and HSCs increased at 20e compared with 60p (2.7- and 2.8-fold, respectively, P < 0.05), whereas EPCs and both MSC populations did not change. CXC chemokine ligand (CXCL) 12 (1.5-fold; P < 0.05) and stem cell factor (1.3-fold; P < 0.05) were increased at 40e and remained elevated postexercise. The peak increase in CPCs was positively correlated to concentration of endothelial cells during exercise with no relationship to CXCL12 and SCF. Our data show the kinetics of progenitor cell mobilization during exercise that could provide insight into cellular mediators of exercise-induced adaptations, and have implication for the use of exercise as an adjuvant therapy for CPC collection in hematopoietic stem cell transplant.NEW & NOTEWORTHY Using a comprehensive evaluation of circulating progenitor cells (CPCs), we show that CPC mobilization during exercise is related to tissue damage, and not plasma concentrations of CXC chemokine ligand 12 and stem cell factor. These data have implications for the use of exercise interventions as adjuvant therapy for CPC mobilization in the context of hematopoietic stem cell transplant and also support the role of mobilized progenitor cells as cellular mediators of systemic adaptations to exercise.
Collapse
Affiliation(s)
- Grace M. Niemiro
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Justin Parel
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joseph Beals
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Scott A. Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Daniel R. Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Nicholas A. Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Michael De Lisio
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, Illinois
- School of Human Kinetics, Brain and Mind Institute, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Yao P. Stem cell based therapies for liver diseases: Current status and perspectives. Shijie Huaren Xiaohua Zazhi 2017; 25:17-22. [DOI: 10.11569/wcjd.v25.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinical applications of stem cells have attracted wide attention for years. Stem cells could be used to treat many diseases, such as nervous diseases, diabetes mellitus, kidney disease, liver diseases, and cancer. There have been many reports about the applications of stem cells in liver diseases, although there are still many problems. Stem cell based therapies will emerge as a promising option for the treatment of liver diseases.
Collapse
|
26
|
Shree N, Bhonde RR. Can yoga therapy stimulate stem cell trafficking from bone marrow? J Ayurveda Integr Med 2016; 7:181-184. [PMID: 27649634 PMCID: PMC5052382 DOI: 10.1016/j.jaim.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/08/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
It has been established that mesenchymal stromal cells (MSCs) from bone marrow enter the peripheral circulation intermittently for possible tissue regeneration, repair and to take care of daily wear and tear. This is evident from the detection of MSCs from peripheral blood. The factors governing this migration remain elusive. These MSCs carry out the work of policing and are supposed to repair the injured tissues. Thus, these cells help in maintaining the tissue and organ homeostasis. Yoga and pranayama originated in India and is now being practiced all over the world for positive health. So far, the chemical stimulation of bone marrow has been widely used employing injection of colony stimulating factor. However, the role of physical factors such as mechanical stimulation and stretching has not been substantiated. It is claimed that practicing yoga delays senescence, improves the physiological functions of heart and lung and yoga postures make the body elastic. It remains to be seen whether the yoga therapy promotes trafficking of the stem cells from bone marrow for possible repair and regeneration of worn out and degenerating tissues. We cover in this short review, mainly the role of physical factors especially the yoga therapy on stem cells trafficking from bone marrow.
Collapse
Affiliation(s)
- Nitya Shree
- School of Regenerative Medicine, GKVK Post, Bellary Road, Bangalore, 560065, India
| | - Ramesh R Bhonde
- School of Regenerative Medicine, GKVK Post, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
27
|
Exercise as an Adjuvant Therapy for Hematopoietic Stem Cell Mobilization. Stem Cells Int 2016; 2016:7131359. [PMID: 27123008 PMCID: PMC4830735 DOI: 10.1155/2016/7131359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cell transplant (HSCT) using mobilized peripheral blood hematopoietic stem cells (HSPCs) is the only curative strategy for many patients suffering from hematological malignancies. HSPC collection protocols rely on pharmacological agents to mobilize HSPCs to peripheral blood. Limitations including variable donor responses and long dosing protocols merit further investigations into adjuvant therapies to enhance the efficiency of HSPCs collection. Exercise, a safe and feasible intervention in patients undergoing HSCT, has been previously shown to robustly stimulate HSPC mobilization from the bone marrow. Exercise-induced HSPC mobilization is transient limiting its current clinical potential. Thus, a deeper investigation of the mechanisms responsible for exercise-induced HSPC mobilization and the factors responsible for removal of HSPCs from circulation following exercise is warranted. The present review will describe current research on exercise and HSPC mobilization, outline the potential mechanisms responsible for exercise-induced HSPC mobilization, and highlight potential sites for HSPC homing following exercise. We also outline current barriers to the implementation of exercise as an adjuvant therapy for HSPC mobilization and suggest potential strategies to overcome these barriers.
Collapse
|