1
|
Peters A, Banine F, Yasuhara K, Hoffman A, Basappa, Metri PK, Gunning L, Huffman A, VanCampen J, Shock CC, Back SA, Sherman LS. Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation. J Biol Chem 2024:107916. [PMID: 39454959 DOI: 10.1016/j.jbc.2024.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated. Using two distinct screens for novel hyaluronidase inhibitors, we identified two synthetic thiocarbamates and one plant-derived flavonoid, sulfuretin, that effectively blocked CEMIP activity in live cells, including a tumorigenic cell line and primary cultures of oligodendrocyte progenitor cells (OPCs). None of these agents influenced cell proliferation, but they had differential dose-dependent and cell type specific effects on cell survival. Furthermore, we found that each of these agents could promote oligodendrocyte maturation by OPCs in the presence of high molecular weight (>2 Mda) hyaluronan, the accumulation of which is linked to the inhibition of OPC maturation and remyelination failure in demyelinating diseases. These findings indicate that CEMIP can be inhibited through distinct chemical interactions, and that CEMIP inhibitors have potential efficacy for treating demyelinating diseases or other conditions where CEMIP is elevated.
Collapse
Affiliation(s)
- Alec Peters
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Kanon Yasuhara
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Angela Hoffman
- Department of Chemistry, University of Portland, Portland OR 97203, USA
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Prashant K Metri
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, India
| | - Lily Gunning
- Department of Chemistry, University of Portland, Portland OR 97203, USA
| | - Ava Huffman
- Department of Chemistry, University of Portland, Portland OR 97203, USA
| | - Jake VanCampen
- Department of Chemistry, University of Portland, Portland OR 97203, USA
| | - Clinton C Shock
- College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331
| | - Stephen A Back
- Department of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Bhuiyan P, Sun Z, Khan MA, Hossain MA, Rahman MH, Qian Y. System biology approaches to identify hub genes linked with ECM organization and inflammatory signaling pathways in schizophrenia pathogenesis. Heliyon 2024; 10:e25191. [PMID: 38322840 PMCID: PMC10844262 DOI: 10.1016/j.heliyon.2024.e25191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Schizophrenia (SZ) is a chronic and devastating mental illness that affects around 20 million individuals worldwide. Cognitive deficits and structural and functional changes of the brain, abnormalities of brain ECM components, chronic neuroinflammation, and devastating clinical manifestation during SZ are likely etiological factors shown by affected individuals. However, the pathophysiological events associated with multiple regulatory pathways involved in the brain of this complex disorder are still unclear. This study aimed to develop a pipeline based on bioinformatics and systems biology approaches for identifying potential therapeutic targets involving possible biological mechanisms from SZ patients and healthy volunteers. About 420 overlapping differentially expressed genes (DEGs) from three RNA-seq datasets were identified. Gene ontology (GO), and pathways analysis showed several biological mechanisms enriched by the commonly shared DEGs, including extracellular matrix organization (ECM) organization, collagen fibril organization, integrin signaling pathway, inflammation mediated by chemokines and cytokines signaling pathway, and GABA-B receptor II and IL4 mediated signaling. Besides, 15 hub genes (FN1, COL1A1, COL3A1, COL1A2, COL5A1, COL2A1, COL6A2, COL6A3, MMP2, THBS1, DCN, LUM, HLA-A, HLA-C, and FBN1) were discovered by comprehensive analysis, which was mainly involved in the ECM organization and inflammatory signaling pathway. Furthermore, the miRNA target of the hub genes was analyzed with the random-forest-based approach software miRTarBase. In addition, the transcriptional factors and protein kinases regulating overlapping DEGs in SZ, namely, SUZ12, EZH2, TRIM28, TP53, EGR1, CSNK2A1, GSK3B, CDK1, and MAPK14, were also identified. The results point to a new understanding that the hub genes (fibronectin 1, collagen, matrix metalloproteinase-2, and lumican) in the ECM organization and inflammatory signaling pathways may be involved in the SZ occurrence and pathogenesis.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, 1209, Bangladesh
- Bio-Bio-1 Bioinformatics Research Foundation, Dhaka, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka 1213, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Islamic University, Kushtia-7003, Bangladesh
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Cerasuolo M, Papa M, Colangelo AM, Rizzo MR. Alzheimer’s Disease from the Amyloidogenic Theory to the Puzzling Crossroads between Vascular, Metabolic and Energetic Maladaptive Plasticity. Biomedicines 2023; 11:biomedicines11030861. [PMID: 36979840 PMCID: PMC10045635 DOI: 10.3390/biomedicines11030861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive and degenerative disease producing the most common type of dementia worldwide. The main pathogenetic hypothesis in recent decades has been the well-known amyloidogenic hypothesis based on the involvement of two proteins in AD pathogenesis: amyloid β (Aβ) and tau. Amyloid deposition reported in all AD patients is nowadays considered an independent risk factor for cognitive decline. Vascular damage and blood–brain barrier (BBB) failure in AD is considered a pivotal mechanism for brain injury, with increased deposition of both immunoglobulins and fibrin. Furthermore, BBB dysfunction could be an early sign of cognitive decline and the early stages of clinical AD. Vascular damage generates hypoperfusion and relative hypoxia in areas with high energy demand. Long-term hypoxia and the accumulation within the brain parenchyma of neurotoxic molecules could be seeds of a self-sustaining pathological progression. Cellular dysfunction comprises all the elements of the neurovascular unit (NVU) and neuronal loss, which could be the result of energy failure and mitochondrial impairment. Brain glucose metabolism is compromised, showing a specific region distribution. This energy deficit worsens throughout aging. Mild cognitive impairment has been reported to be associated with a glucose deficit in the entorhinal cortex and in the parietal lobes. The current aim is to understand the complex interactions between amyloid β (Aβ) and tau and elements of the BBB and NVU in the brain. This new approach aimed at the study of metabolic mechanisms and energy insufficiency due to mitochondrial impairment would allow us to define therapies aimed at predicting and slowing down the progression of AD.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Correspondence:
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milan, Italy
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
5
|
Cirillo G, Pepe R, Siciliano M, Ippolito D, Ricciardi D, de Stefano M, Buonanno D, Atripaldi D, Abbadessa S, Perfetto B, Sharbafshaaer M, Sepe G, Bonavita S, Iavarone A, Todisco V, Papa M, Tedeschi G, Esposito S, Trojsi F. Long-Term Neuromodulatory Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Plasmatic Matrix Metalloproteinases (MMPs) Levels and Visuospatial Abilities in Mild Cognitive Impairment (MCI). Int J Mol Sci 2023; 24:ijms24043231. [PMID: 36834642 PMCID: PMC9961904 DOI: 10.3390/ijms24043231] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation technique that is used against cognitive impairment in mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the neurobiological mechanisms underlying the rTMS therapeutic effects are still only partially investigated. Maladaptive plasticity, glial activation, and neuroinflammation, including metalloproteases (MMPs) activation, might represent new potential targets of the neurodegenerative process and progression from MCI to AD. In this study, we aimed to evaluate the effects of bilateral rTMS over the dorsolateral prefrontal cortex (DLPFC) on plasmatic levels of MMP1, -2, -9, and -10; MMPs-related tissue inhibitors TIMP1 and TIMP2; and cognitive performances in MCI patients. Patients received high-frequency (10 Hz) rTMS (MCI-TMS, n = 9) or sham stimulation (MCI-C, n = 9) daily for four weeks, and they were monitored for six months after TMS. The plasmatic levels of MMPs and TIMPs and the cognitive and behavioral scores, based on the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), Beck Depression Inventory II, Beck Anxiety Inventory, and Apathy Evaluation Scale, were assessed at baseline (T0) and after 1 month (T1) and 6 months (T2) since rTMS. In the MCI-TMS group, at T2, plasmatic levels of MMP1, -9, and -10 were reduced and paralleled by increased plasmatic levels of TIMP1 and TIMP2 and improvement of visuospatial performances. In conclusion, our findings suggest that targeting DLPFC by rTMS might result in the long-term modulation of the MMPs/TIMPs system in MCI patients and the neurobiological mechanisms associated with MCI progression to dementia.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence:
| | - Roberta Pepe
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mattia Siciliano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Domenico Ippolito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Dario Ricciardi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Manuela de Stefano
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Daniela Buonanno
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Danilo Atripaldi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Salvatore Abbadessa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Minoo Sharbafshaaer
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giovanna Sepe
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Simona Bonavita
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessandro Iavarone
- Neurologic Unit, Centro Traumatologico Ortopedico (CTO) Hospital, Azienda Ospedaliera di Rilievo Nazionale (AORN) “Ospedali Dei Colli”, 80138 Naples, Italy
| | - Vincenzo Todisco
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Michele Papa
- Neuronal Networks Morphology & Systems Biology Lab, Division of Human Anatomy, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gioacchino Tedeschi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabrina Esposito
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Trojsi
- First Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
Broekaart DWM, Zimmer TS, Cohen ST, Tessers R, Anink JJ, de Vries HE, Gorter JA, Prades R, Aronica E, van Vliet EA. The Gelatinase Inhibitor ACT-03 Reduces Gliosis in the Rapid Kindling Rat Model of Epilepsy, and Attenuates Inflammation and Loss of Barrier Integrity In Vitro. Biomedicines 2022; 10:biomedicines10092117. [PMID: 36140216 PMCID: PMC9495904 DOI: 10.3390/biomedicines10092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases responsible for the cleavage of intra- and extracellular proteins. Several brain MMPs have been implicated in neurological disorders including epilepsy. We recently showed that the novel gelatinase inhibitor ACT-03 has disease-modifying effects in models of epilepsy. Here, we studied its effects on neuroinflammation and blood–brain barrier (BBB) integrity. Using the rapid kindling rat model of epilepsy, we examined whether ACT-03 affected astro- and microgliosis in the brain using immunohistochemistry. Cellular and molecular alterations were further studied in vitro using human fetal astrocyte and brain endothelial cell (hCMEC/D3) cultures, with a focus on neuroinflammatory markers as well as on barrier permeability using an endothelial and astrocyte co-culture model. We observed less astro- and microgliosis in the brains of kindled animals treated with ACT-03 compared to control vehicle-treated animals. In vitro, ACT-03 treatment attenuated stimulation-induced mRNA expression of several pro-inflammatory factors in human fetal astrocytes and brain endothelial cells, as well as a loss of barrier integrity in endothelial and astrocyte co-cultures. Since ACT-03 has disease-modifying effects in epilepsy models, possibly via limiting gliosis, inflammation, and barrier integrity loss, it is of interest to further evaluate its effects in a clinical trial.
Collapse
Affiliation(s)
- Diede W. M. Broekaart
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Till S. Zimmer
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sophie T. Cohen
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rianne Tessers
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jasper J. Anink
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Jan A. Gorter
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Roger Prades
- Accure Therapeutics S.L., 08028 Barcelona, Spain
| | - Eleonora Aronica
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), 2103 SW Heemstede, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| | - Erwin A. van Vliet
- Amsterdam UMC, Location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Correspondence: (E.A.); (E.A.v.V.)
| |
Collapse
|
7
|
Hao D, Lopez JM, Chen J, Iavorovschi AM, Lelivelt NM, Wang A. Engineering Extracellular Microenvironment for Tissue Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050202. [PMID: 35621480 PMCID: PMC9137730 DOI: 10.3390/bioengineering9050202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
The extracellular microenvironment is a highly dynamic network of biophysical and biochemical elements, which surrounds cells and transmits molecular signals. Extracellular microenvironment controls are of crucial importance for the ability to direct cell behavior and tissue regeneration. In this review, we focus on the different components of the extracellular microenvironment, such as extracellular matrix (ECM), extracellular vesicles (EVs) and growth factors (GFs), and introduce engineering approaches for these components, which can be used to achieve a higher degree of control over cellular activities and behaviors for tissue regeneration. Furthermore, we review the technologies established to engineer native-mimicking artificial components of the extracellular microenvironment for improved regenerative applications. This review presents a thorough analysis of the current research in extracellular microenvironment engineering and monitoring, which will facilitate the development of innovative tissue engineering strategies by utilizing different components of the extracellular microenvironment for regenerative medicine in the future.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Juan-Maria Lopez
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Jianing Chen
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Alexandra Maria Iavorovschi
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Nora Marlene Lelivelt
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (D.H.); (J.-M.L.); (J.C.); (A.M.I.); (N.M.L.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
8
|
De Luca C, Virtuoso A, Papa M, Certo F, Barbagallo GMV, Altieri R. Regional Development of Glioblastoma: The Anatomical Conundrum of Cancer Biology and Its Surgical Implication. Cells 2022; 11:cells11081349. [PMID: 35456027 PMCID: PMC9025763 DOI: 10.3390/cells11081349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) are among the most common malignant central nervous system (CNS) cancers, they are relatively rare. This evidence suggests that the CNS microenvironment is naturally equipped to control proliferative cells, although, rarely, failure of this system can lead to cancer development. Moreover, the adult CNS is innately non-permissive to glioma cell invasion. Thus, glioma etiology remains largely unknown. In this review, we analyze the anatomical and biological basis of gliomagenesis considering neural stem cells, the spatiotemporal diversity of astrocytes, microglia, neurons and glutamate transporters, extracellular matrix and the peritumoral environment. The precise understanding of subpopulations constituting GBM, particularly astrocytes, is not limited to glioma stem cells (GSC) and could help in the understanding of tumor pathophysiology. The anatomical fingerprint is essential for non-invasive assessment of patients’ prognosis and correct surgical/radiotherapy planning.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Assunta Virtuoso
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
| | - Michele Papa
- Laboratory of Neuronal Network Morphology and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.D.L.); (A.V.)
- SYSBIO Centre of Systems Biology ISBE-IT, 20126 Milano, Italy
- Correspondence: (M.P.); (R.A.)
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
| | - Roberto Altieri
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (F.C.); (G.M.V.B.)
- Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, 95123 Catania, Italy
- Correspondence: (M.P.); (R.A.)
| |
Collapse
|
9
|
Virtuoso A, Colangelo AM, Maggio N, Fennig U, Weinberg N, Papa M, De Luca C. The Spatiotemporal Coupling: Regional Energy Failure and Aberrant Proteins in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:11304. [PMID: 34768733 PMCID: PMC8583302 DOI: 10.3390/ijms222111304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
The spatial and temporal coordination of each element is a pivotal characteristic of systems, and the central nervous system (CNS) is not an exception. Glial elements and the vascular interface have been considered more recently, together with the extracellular matrix and the immune system. However, the knowledge of the single-element configuration is not sufficient to predict physiological or pathological long-lasting changes. Ionic currents, complex molecular cascades, genomic rearrangement, and the regional energy demand can be different even in neighboring cells of the same phenotype, and their differential expression could explain the region-specific progression of the most studied neurodegenerative diseases. We here reviewed the main nodes and edges of the system, which could be studied to develop a comprehensive knowledge of CNS plasticity from the neurovascular unit to the synaptic cleft. The future goal is to redefine the modeling of synaptic plasticity and achieve a better understanding of neurological diseases, pointing out cellular, subcellular, and molecular components that couple in specific neuroanatomical and functional regions.
Collapse
Affiliation(s)
- Assunta Virtuoso
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| | - Anna Maria Colangelo
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Nicola Maggio
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Uri Fennig
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Nitai Weinberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; (N.M.); (U.F.); (N.W.)
- Department of Neurology, The Chaim Sheba Medical Center at Tel HaShomer, Ramat Gan 52662, Israel
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Ciro De Luca
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy; (A.V.); (C.D.L.)
| |
Collapse
|
10
|
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021; 11:biom11091361. [PMID: 34572572 PMCID: PMC8468264 DOI: 10.3390/biom11091361] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Collapse
|
11
|
Modulatory properties of extracellular matrix glycosaminoglycans and proteoglycans on neural stem cells behavior: Highlights on regenerative potential and bioactivity. Int J Biol Macromol 2021; 171:366-381. [PMID: 33422514 DOI: 10.1016/j.ijbiomac.2021.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/25/2022]
Abstract
Despite the poor regenerative capacity of the adult central nervous system (CNS) in mammals, two distinct regions, subventricular zone (SVZ) and the subgranular zone (SGZ), continue to generate new functional neurons throughout life which integrate into the pre-existing neuronal circuitry. This process is not fixed but highly modulated, revealing many intrinsic and extrinsic mechanisms by which this performance can be optimized for a given environment. The capacity for self-renewal, proliferation, migration, and multi-lineage potency of neural stem cells (NSCs) underlines the necessity of controlling stem cell fate. In this context, the native and local microenvironment plays a critical role, and the application of this highly organized architecture in the CNS has been considered as a fundamental concept in the generation of new effective therapeutic strategies in tissue engineering approaches. The brain extracellular matrix (ECM) is composed of biomacromolecules, including glycosaminoglycans, proteoglycans, and glycoproteins that provide various biological actions through biophysical and biochemical signaling pathways. Herein, we review predominantly the structure and function of the mentioned ECM composition and their regulatory impact on multiple and diversity of biological functions, including neural regeneration, survival, migration, differentiation, and final destiny of NSCs.
Collapse
|
12
|
The Spinal Extracellular Matrix Modulates a Multi-level Protein Net and Epigenetic Inducers Following Peripheral Nerve Injury. Neuroscience 2020; 451:216-225. [DOI: 10.1016/j.neuroscience.2020.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
|
13
|
Roadmap for Stroke: Challenging the Role of the Neuronal Extracellular Matrix. Int J Mol Sci 2020; 21:ijms21207554. [PMID: 33066304 PMCID: PMC7589675 DOI: 10.3390/ijms21207554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes.
Collapse
|
14
|
Grigorieva EV. Radiation Effects on Brain Extracellular Matrix. Front Oncol 2020; 10:576701. [PMID: 33134175 PMCID: PMC7566046 DOI: 10.3389/fonc.2020.576701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is an important therapeutic approach to treating malignant tumors of different localization, including brain cancer. Glioblastoma multiforme (GBM) represents the most aggressive brain tumor, which develops relapsed disease during the 1st year after the surgical removal of the primary node, in spite of active adjuvant radiochemotherapy. More and more evidence suggests that the treatment's success might be determined by the balance of expected antitumor effects of the treatment and its non-targeted side effects on the surrounding brain tissue. Radiation-induced damage of the GBM microenvironment might create tumor-susceptible niche facilitating proliferation and invasion of the residual glioma cells and the disease relapse. Understanding of molecular mechanisms of radiation-induced changes in brain ECM might help to reconsider and improve conventional anti-glioblastoma radiotherapy, taking into account the balance between its antitumor and ECM-destructing activities. Although little is currently known about the radiation-induced changes in brain ECM, this review summarizes current knowledge about irradiation effects onto the main components of brain ECM such as proteoglycans, glycosaminoglycans, glycoproteins, and the enzymes responsible for their modification and degradation.
Collapse
Affiliation(s)
- Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
15
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 2020; 98:2406-2434. [PMID: 32875628 DOI: 10.1002/jnr.24718] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Neurology Unit, Pisa University Hospital, Pisa, Italy
| | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S. I.N.M. Neuromed, Pozzilli, Italy
| |
Collapse
|
16
|
Wells AM, García-Cabezas MÁ, Barbas H. Topological atlas of the hypothalamus in adult rhesus monkey. Brain Struct Funct 2020; 225:1777-1803. [PMID: 32556476 PMCID: PMC7321918 DOI: 10.1007/s00429-020-02093-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
Abstract
The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.
Collapse
Affiliation(s)
- Anne Marie Wells
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02215, USA
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA
| | | | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Zhang DP, Yin S, Zhang HL, Li D, Song B, Liang JX. Association between Intracranial Arterial Dolichoectasia and Cerebral Small Vessel Disease and Its Underlying Mechanisms. J Stroke 2020; 22:173-184. [PMID: 32635683 PMCID: PMC7341005 DOI: 10.5853/jos.2019.02985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 05/06/2020] [Indexed: 12/29/2022] Open
Abstract
Intracranial arterial dolichoectasia (IADE), also known as dilatative arteriopathy of the brain vessels, refers to an increase in the length and diameter of at least one intracranial artery, and accounts for approximately 12% of all patients with stroke. However, the association of IADE with stroke is usually unclear. Cerebral small vessel disease (CSVD) is characterized by pathological changes in the small vessels. Clinically, patients with CSVD can be asymptomatic or present with stroke or cognitive decline. In the past 20 years, a series of studies have strongly promoted an understanding of the association between IADE and CSVD from clinical and pathological perspectives. It has been proposed that IADE and CSVD may be attributed to abnormal vascular remodeling driven by an abnormal matrix metalloproteinase/tissue inhibitor of metalloproteinase pathway. Also, IAD-Erelated hemodynamic changes may result in initiation or progression of CSVD. Additionally, genetic factors are implicated in the pathogenesis of IADE and CSVD. Patients with Fabry’s disease and late-onset Pompe’s disease are prone to developing concomitant IADE and CSVD, and patients with collagen IV alpha 1 or 2 gene (COL4A1/COL4A2) and forkhead box C1 (FOXC1) variants present with IADE and CSVD. Race, strain, familial status, and vascular risk factors may be involved in the pathogenesis of IADE and CSVD. As well, experiments in mice have pointed to genetic strain as a predisposing factor for IADE and CSVD. However, there have been few direct genetic studies aimed towards determining the association between IADE and CSVD. In the future, more clinical and basic research studies are needed to elucidate the causal relationship between IADE and CSVD and the related molecular and genetic mechanisms.
Collapse
Affiliation(s)
- Dao Pei Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suo Yin
- Department of Image, The People's Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huai Liang Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dan Li
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jia Xu Liang
- Department of Image, The People's Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Malik A, Ashraf MAB, Khan MW, Zahid A, Shafique H, Waquar S, Gan SH, Ashraf M. Implication of Physiological and Biochemical Variables of Prognostic Importance in Lead Exposed Subjects. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:329-336. [PMID: 31620805 DOI: 10.1007/s00244-019-00673-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
The use of leaded gasoline adversely affects cardiovascular, nervous, and immune systems. Study projects to rule out different variables of prognostic importance in lead-exposed subjects. A total of 317 traffic wardens with 5 years of outdoor experience and Hb levels < 10 µg/dl, and 100 traffic wardens with indoor duties were substituted in two groups. Levels of vitamins, cytokines, lead, iron, minerals, oxidative stress, and lipid peroxidation were estimated with help of their standard ELISA and spectrophotometric methods respectively. The present study show increased levels of lead in subjects (29.8 ± 3.8 vs. 1.5 ± 0.2 µg/dl) that may be involved in increasing oxidative stress, i.e., levels of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and isoprostanes were increased in subjects (4.6 ± 0.5, 4.3 ± 0.6 and 37.2 ± 5.1). Moreover, levels of antioxidants, i.e., superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), were decreased. It also exhibits reduced levels of different enzymes in anemic traffic wardens. Current study concludes that wardens exposed to environmental lead are more susceptible to develop cardiovascular and neurological disorders. It shows that toxicity of lead maybe responsible for redox imbalance and production of proinflammatory cytokines. Thus, early detection of these biomarkers may help to reduce lead toxicity and it also may help to control the dilemma of uncontrolled environmental pollution by implicating strict actions against substandard gasoline.
Collapse
Affiliation(s)
- Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | | | | | - Ayesha Zahid
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Hassan Shafique
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Siew Hua Gan
- School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan.
| |
Collapse
|
19
|
Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int J Mol Sci 2020; 21:ijms21041539. [PMID: 32102370 PMCID: PMC7073232 DOI: 10.3390/ijms21041539] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
The synaptic cleft has been vastly investigated in the last decades, leading to a novel and fascinating model of the functional and structural modifications linked to synaptic transmission and brain processing. The classic neurocentric model encompassing the neuronal pre- and post-synaptic terminals partly explains the fine-tuned plastic modifications under both pathological and physiological circumstances. Recent experimental evidence has incontrovertibly added oligodendrocytes, astrocytes, and microglia as pivotal elements for synapse formation and remodeling (tripartite synapse) in both the developing and adult brain. Moreover, synaptic plasticity and its pathological counterpart (maladaptive plasticity) have shown a deep connection with other molecular elements of the extracellular matrix (ECM), once considered as a mere extracellular structural scaffold altogether with the cellular glue (i.e., glia). The ECM adds another level of complexity to the modern model of the synapse, particularly, for the long-term plasticity and circuit maintenance. This model, called tetrapartite synapse, can be further implemented by including the neurovascular unit (NVU) and the immune system. Although they were considered so far as tightly separated from the central nervous system (CNS) plasticity, at least in physiological conditions, recent evidence endorsed these elements as structural and paramount actors in synaptic plasticity. This scenario is, as far as speculations and evidence have shown, a consistent model for both adaptive and maladaptive plasticity. However, a comprehensive understanding of brain processes and circuitry complexity is still lacking. Here we propose that a better interpretation of the CNS complexity can be granted by a systems biology approach through the construction of predictive molecular models that enable to enlighten the regulatory logic of the complex molecular networks underlying brain function in health and disease, thus opening the way to more effective treatments.
Collapse
|
20
|
Hu Y, Dong X, Zhang T, Ma H, Yang W, Wang Y, Liu P, Chen Y. Kai‑Xin‑San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression. Mol Med Rep 2019; 21:508-516. [PMID: 31746394 DOI: 10.3892/mmr.2019.10807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Depression is often triggered by prolonged exposure to psychosocial stressors and associated with coronary heart disease (CHD). Matrix metalloproteinases (MMPs) are involved in the pathogenesis of various emotional and cardiovascular disorders. The purpose of this study was to investigate whether Kai‑Xin‑San (KXS), which may terminate the signaling of MMPs, exerts antidepressant‑like and cardioprotective effects in a myocardial infarction (MI) plus depression rat model. Rats were randomly assigned to five groups: A normal control (control group), a celisc‑injection of isopropyl adrenaline group (ISO group), depression (depression group), an ISO + depression (depression + ISO group), and an ISO + depression group treated with intragastric administration of 1,785 mg/kg KXS (KXS group). Behavioral changes, echocardiography, biochemical index, matrix metalloproteinase (MMP) and apoptosis‑related proteins were assessed. Compared with the depression + ISO group, KXS significantly improved stress‑induced alterations of behavioral parameters and protected the heart by enlarging the left ventricular (LV) fractional shortening (FS) and LV ejection fraction (EF). Moreover, KXS significantly attenuated ISO + depression‑induced MMP‑2 and MMP‑9 expression at the mRNA and protein level and decreased TIMP in the heart compared to the complex model group. Myocardial apoptosis was significantly attenuated by KXS by regulating the Bcl‑2/Bax axis. These results indicated that MI comorbid with depression may damage the MMP balance in the central and peripheral system, and KXS may have a direct anti‑depressive and cardio‑protective effect by regulating the level of MMPs and associated myocardial apoptosis. It is promising to further explore the clinical potential of KXS for the therapy or prevention of MI plus depression comorbidity disease.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xianzhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Tianyi Zhang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongming Ma
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenshan Yang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yichen Wang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ping Liu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yibang Chen
- Department of Pharmacology and System Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
21
|
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci 2019; 76:3083-3095. [PMID: 31165203 PMCID: PMC11105576 DOI: 10.1007/s00018-019-03171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Sameeksha Chopra
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
22
|
Pinet K, McLaughlin KA. Mechanisms of physiological tissue remodeling in animals: Manipulating tissue, organ, and organism morphology. Dev Biol 2019; 451:134-145. [DOI: 10.1016/j.ydbio.2019.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
23
|
Yuan X, Wu Q, Wang P, Jing Y, Yao H, Tang Y, Li Z, Zhang H, Xiu R. Exosomes Derived From Pericytes Improve Microcirculation and Protect Blood-Spinal Cord Barrier After Spinal Cord Injury in Mice. Front Neurosci 2019; 13:319. [PMID: 31040762 PMCID: PMC6476953 DOI: 10.3389/fnins.2019.00319] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe and permanent paralysis and places a heavy burden on individuals, families, and society. Until now, the therapy of SCI is still a big challenge for the researchers. Transplantation of mesenchymal stem cells (MSCs) is a hot spot for the treatment of SCI, but many problems and risks have not been resolved. Some studies have reported that the therapeutic effect of MSCs on SCI is related to the paracrine secretion of cells. The exosomes secreted by MSCs have therapeutic potential for many diseases. There are abundant pericytes which possess the characteristics of stem cells in the neurovascular unit. Due to the close relationship between pericytes and endothelial cells, the exosomes of pericytes can be taken up by endothelial cells more easily. There are fewer studies about the therapeutic potential of the exosomes derived from pericytes on SCI now. In this study, exosomes of pericytes were transplanted into the mice with SCI to study the restoration of motor function and explore the underlying mechanism. We found that the exosomes derived from pericytes could reduce pathological changes, improve the motor function, the blood flow and oxygen deficiency after SCI. In addition, the exosomes could improve the endothelial ability to regulate blood flow, protect the blood-spinal cord barrier, reduce edema, decrease the expression of HIF-1α, Bax, Aquaporin-4, and MMP2, increase the expression of Claudin-5, bcl-2 and inhibit apoptosis. The experiments in vitro proved that exosomes derived from pericytes could protect the barrier of spinal cord microvascular endothelial cells under hypoxia condition, which was related to PTEN/AKT pathway. In summary, our study showed that exosomes of pericytes had therapeutic prospects for SCI.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingbin Wu
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peng Wang
- Orthopedics Department, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yingli Jing
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Haijiang Yao
- Treatment Center of TCM, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Yinshan Tang
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zhang
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Key Laboratory of Microcirculation, Ministry of Health, Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Bottasso E. Toward the Existence of a Sympathetic Neuroplasticity Adaptive Mechanism Influencing the Immune Response. A Hypothetical View-Part I. Front Endocrinol (Lausanne) 2019; 10:632. [PMID: 31616373 PMCID: PMC6763740 DOI: 10.3389/fendo.2019.00632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022] Open
Abstract
The nervous system exerts a profound influence on the function of the immune system (IS), mainly through the sympathetic arm of the autonomic nervous system. In fact, the sympathetic nervous system richly innervates secondary lymphoid organs (SLOs) such as the spleen and lymph nodes. For decades, different research groups working in the field have consistently reported changes in the sympathetic innervation of the SLOs during the activation of the IS, which are characterized by a decreased noradrenergic activity and retraction of these fibers. Most of these groups interpreted these changes as a pathological phenomenon, referred to as "damage" or "injury" of the noradrenergic fibers. Some of them postulated that this "injury" was probably due to toxic effects of released endogenous mediators. Others, working on animal models of chronic stimulation of the IS, linked it to the very chronic nature of processes. Unlike these views, this first part of the present work reviews evidence which supports the hypothesis of a specific adaptive mechanism of neural plasticity from sympathetic fibers innervating SLOs, encompassing structural and functional changes of noradrenergic nerves. This plasticity mechanism would involve segmental retraction and degeneration of these fibers during the activation of the IS with subsequent regeneration once the steady state is recovered. The candidate molecules likely to mediate this phenomenon are also here introduced. The second part will extend this view as to the potential changes in sympathetic innervation likely to occur in inflamed non-lymphoid peripheral tissues and its possible immunological implications.
Collapse
|
25
|
De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-Immune Hemostasis: Homeostasis and Diseases in the Central Nervous System. Front Cell Neurosci 2018; 12:459. [PMID: 30534057 PMCID: PMC6275309 DOI: 10.3389/fncel.2018.00459] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023] Open
Abstract
Coagulation and the immune system interact in several physiological and pathological conditions, including tissue repair, host defense, and homeostatic maintenance. This network plays a key role in diseases of the central nervous system (CNS) by involving several cells (CNS resident cells, platelets, endothelium, and leukocytes) and molecular pathways (protease activity, complement factors, platelet granule content). Endothelial damage prompts platelet activation and the coagulation cascade as the first physiological step to support the rescue of damaged tissues, a flawed rescuing system ultimately producing neuroinflammation. Leukocytes, platelets, and endothelial cells are sensitive to the damage and indeed can release or respond to chemokines and cytokines (platelet factor 4, CXCL4, TNF, interleukins), and growth factors (including platelet-derived growth factor, vascular endothelial growth factor, and brain-derived neurotrophic factor) with platelet activation, change in capillary permeability, migration or differentiation of leukocytes. Thrombin, plasmin, activated complement factors and matrix metalloproteinase-1 (MMP-1), furthermore, activate intracellular transduction through complement or protease-activated receptors. Impairment of the neuro-immune hemostasis network induces acute or chronic CNS pathologies related to the neurovascular unit, either directly or by the systemic activation of its main steps. Neurons, glial cells (astrocytes and microglia) and the extracellular matrix play a crucial function in a “tetrapartite” synaptic model. Taking into account the neurovascular unit, in this review we thoroughly analyzed the influence of neuro-immune hemostasis on these five elements acting as a functional unit (“pentapartite” synapse) in the adaptive and maladaptive plasticity and discuss the relevance of these events in inflammatory, cerebrovascular, Alzheimer, neoplastic and psychiatric diseases. Finally, based on the solid reviewed data, we hypothesize a model of neuro-immune hemostatic network based on protein–protein interactions. In addition, we propose that, to better understand and favor the maintenance of adaptive plasticity, it would be useful to construct predictive molecular models, able to enlighten the regulating logic of the complex molecular network, which belongs to different cellular domains. A modeling approach would help to define how nodes of the network interact with basic cellular functions, such as mitochondrial metabolism, autophagy or apoptosis. It is expected that dynamic systems biology models might help to elucidate the fine structure of molecular events generated by blood coagulation and neuro-immune responses in several CNS diseases, thereby opening the way to more effective treatments.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - Anna Maria Colangelo
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Lilia Alberghina
- Laboratory of Neuroscience "R. Levi-Montalcini", Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| | - Michele Papa
- Laboratory of Morphology of Neuronal Network, Department of Public Medicine, University of Campania-Luigi Vanvitelli, Naples, Italy.,SYSBIO Centre of Systems Biology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
26
|
MMP-1 overexpression selectively alters inhibition in D1 spiny projection neurons in the mouse nucleus accumbens core. Sci Rep 2018; 8:16230. [PMID: 30385861 PMCID: PMC6212422 DOI: 10.1038/s41598-018-34551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Protease activated receptor-1 (PAR-1) and its ligand, matrix metalloproteinase-1 (MMP-1), are altered in several neurodegenerative diseases. PAR-1/MMP-1 signaling impacts neuronal activity in various brain regions, but their role in regulating synaptic physiology in the ventral striatum, which is implicated in motor function, is unknown. The ventral striatum contains two populations of GABAergic spiny projection neurons, D1 and D2 SPNs, which differ with respect to both synaptic inputs and projection targets. To evaluate the role of MMP-1/PAR-1 signaling in the regulation of ventral striatal synaptic function, we performed whole-cell recordings (WCR) from D1 and D2 SPNs in control mice, mice that overexpress MMP-1 (MMP-1OE), and MMP-1OE mice lacking PAR-1 (MMP-1OE/PAR-1KO). WCRs from MMP1-OE mice revealed an increase in spontaneous inhibitory post-synaptic current (sIPSC), miniature IPSC, and miniature excitatory PSC frequency in D1 SPNs but not D2 SPNs. This alteration may be partially PAR-1 dependent, as it was not present in MMP-1OE/PAR-1KO mice. Morphological reconstruction of D1 SPNs revealed increased dendritic complexity in the MMP-1OE, but not MMP-1OE/PAR-1KO mice. Moreover, MMP-1OE mice exhibited blunted locomotor responses to amphetamine, a phenotype also observed in MMP-1OE/PAR-1KO mice. Our data suggest PAR-1 dependent and independent MMP-1 signaling may lead to alterations in striatal neuronal function.
Collapse
|
27
|
De Luca C, Virtuoso A, Maggio N, Papa M. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases. Int J Mol Sci 2017; 18:E2128. [PMID: 29023416 PMCID: PMC5666810 DOI: 10.3390/ijms18102128] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 12/30/2022] Open
Abstract
Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.
Collapse
Affiliation(s)
- Ciro De Luca
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Assunta Virtuoso
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel Hashomer, 52621 Ramat Gan, Israel.
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801 Tel Aviv, Israel.
| | - Michele Papa
- Laboratory of Neuronal Networks, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
- SYSBIO, Centre of Systems Biology, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|