1
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Lindberg ED, Kaya S, Jamali AA, Alliston T, O'Connell GD. Effect of Passaging on Bovine Chondrocyte Gene Expression and Engineered Cartilage Production. Tissue Eng Part A 2024; 30:512-524. [PMID: 38323585 DOI: 10.1089/ten.tea.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Tissue engineering strategies show great potential for repairing osteochondral defects in osteoarthritic joints; however, these approaches often rely on passaging cells multiple times to obtain enough cells to produce functional tissue. Unfortunately, monolayer expansion culture causes chondrocyte dedifferentiation, which is accompanied by a phenotypical and morphological shift in chondrocyte properties that leads to a reduction in the quality of de novo cartilage produced. Thus, the objective of this study was to evaluate transcriptional variations during in vitro expansion culture and determine how differences in cell phenotype from monolayer expansion alter development of functional engineered cartilage. We used an unbiased approach to explore genome-wide transcriptional differences in chondrocyte phenotype at passage 1 (P1), P3, and P5, and then seeded cells into hydrogel scaffolds at P3 and P5 to assess cells' abilities to produce cartilaginous extracellular matrix in three dimensional (3D). We identified distinct phenotypic differences, specifically for genes related to extracellular organization and cartilage development. Both P3 and P5 chondrocytes were able to produce chondrogenic tissue in 3D, with P3 cells producing matrix with greater compressive properties and P5 cells secreting matrix with higher glycosaminoglycan/DNA and collagen/DNA ratios. Furthermore, we identified 24 genes that were differentially expressed with passaging and enriched in human osteoarthritis (OA) genome-wide association studies, thereby prioritizing them as functionally relevant targets to improve protocols that recapitulate functional healthy cartilage with cells from adult donors. Specifically, we identified novel genes, such as TMEM190 and RAB11FIP4, which were enriched with human hip OA and may play a role in chondrocyte dedifferentiation. This work lays the foundation for several pathways and genes that could be modulated to enhance the efficacy for chondrocyte culture for tissue regeneration, which could have transformative impacts for cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- Emily D Lindberg
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California, USA
| | - Serra Kaya
- Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Amir A Jamali
- Joint Preservation Institute, Walnut Creek, California, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California-Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Hao X, Wu X. SP1‑mediated ADAMTS5 transcription promotes IL‑1β‑induced chondrocyte injury via Wnt/β‑catenin pathway in osteoarthritis. Mol Med Rep 2024; 30:149. [PMID: 38940327 PMCID: PMC11228694 DOI: 10.3892/mmr.2024.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease that involves chondrocyte injury. ADAMTS5 has been confirmed to mediate chondrocyte injury and thus regulate OA progression, but its underlying molecular mechanisms remain unclear. In the present study, interleukin‑1β (IL‑1β)‑induced chondrocytes were used to mimic OA in vitro. Cell proliferation and apoptosis were assessed by MTT assay, EdU assay and flow cytometry, and protein levels of ADAMTS5, specificity protein 1 (SP1), matrix‑related markers and Wnt/β‑catenin pathway‑related markers were examined using western blotting. In addition, ELISA was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting SOD activity and MDA levels. The mRNA expression levels of ADAMTS5 and SP1 were determined by reverse transcription‑quantitative PCR, and the interaction between SP1 and ADAMTS5 was analyzed using a dual‑luciferase reporter assay and chromatin immunoprecipitation assay. IL‑1β suppressed proliferation, but promoted apoptosis, extracellular matrix degradation, inflammation and oxidative stress in chondrocytes. ADAMTS5 was upregulated in IL‑1β‑induced chondrocytes, and its knockdown alleviated IL‑1β‑induced chondrocyte injury. SP1 could bind to the ADAMTS5 promoter region to promote its transcription, and SP1 knockdown relieved IL‑1β‑induced chondrocyte injury by reducing ADAMTS5 expression. The SP1/ADAMTS5 axis activated the Wnt/β‑catenin pathway, and the Wnt/β‑catenin pathway agonist, SKL2001, reversed the protective effect of ADAMTS5 knockdown on chondrocyte injury induced by IL‑1β. To the best of our knowledge, the present study was the first to reveal the interaction between SP1 and ADAMTS5 in OA progression and indicated that the SP1/ADAMTS5 axis mediates OA progression by regulating the Wnt/β‑catenin pathway.
Collapse
Affiliation(s)
- Xiaoting Hao
- Department of Teaching Administration, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
- Graduate School and Open Learning College, Cavite State University, Indang, Cavite 4122 Philippines
| | - Xiaxia Wu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
4
|
Schriever T, Swärd E, Wilcke M. Lunocapitate versus four-corner fusion in scapholunate or scaphoid nonunion advanced collapse: a randomized controlled trial. J Hand Surg Eur Vol 2024; 49:601-607. [PMID: 37903310 DOI: 10.1177/17531934231209872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
This pragmatic randomized controlled trial compared lunocapitate fusion (LCF) and four-corner fusion (4CF) for scapholunate advanced collapse (SLAC) and scaphoid nonunion advanced collapse (SNAC) in 64 patients. The primary outcome was change in grip strength from preoperative to 1 year postoperatively. The secondary outcomes were Disability of the Hand, Arm, and Shoulder score, Patient Rated Wrist Evaluation score, EuroQol-5D-3L, range of motion, key pinch strength and complications 12 months postoperatively. Grip strength improved only to a small extent and there was no difference between the groups. No differences were found in the secondary outcomes. In conclusion, LCF is not inferior to 4CF regarding strength, range of motion or patient-reported outcome measures.Level of evidence: I.
Collapse
Affiliation(s)
- Thorsten Schriever
- Karolinska Institute, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
- Department of Hand Surgery Södersjukhuset, Stockholm, Sweden
| | - Elin Swärd
- Karolinska Institute, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
- Department of Hand Surgery Södersjukhuset, Stockholm, Sweden
| | - Maria Wilcke
- Karolinska Institute, Department of Clinical Science and Education, Södersjukhuset, Stockholm, Sweden
- Department of Hand Surgery Södersjukhuset, Stockholm, Sweden
| |
Collapse
|
5
|
Li X, Zhao W, Zhou D, Li P, Zhao C, Zhou Q, Wang Y. Construction of Integral Decellularized Cartilage Using a Novel Hydrostatic Pressure Bioreactor. Tissue Eng Part C Methods 2024; 30:113-129. [PMID: 38183634 DOI: 10.1089/ten.tec.2023.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
The decellularized extracellular matrix (ECM) of cartilage is a widely used natural bioscaffold for constructing tissue-engineered cartilage due to its good biocompatibility and regeneration properties. However, current decellularization methods for accessing decellularized cartilaginous tissues require multiple steps and a relatively long duration to produce decellularized cartilage. In addition, most decellularization strategies lead to damage of the microstructure and loss of functional components of the cartilaginous matrix. In this study, a novel decellularization strategy based on a hydrostatic pressure (HP) bioreactor was introduced, which aimed to improve the efficiency of producing integral decellularized cartilage pieces by combining physical and chemical decellularization methods in a perfusing manner. Two types of cartilaginous tissues, auricular cartilage (AC) and nucleus pulposus (NP) fibrocartilage, were selected for comparison of the effects of ordinary, positive, and negative HP-based decellularization according to the cell clearance ratio, microstructural changes, ECM components, and mechanical properties. The results indicated that applying positive HP improved the efficiency of producing decellularized AC, but no significant differences in decellularization efficiency were found between the ordinary and negative HP-treated groups. However, compared with the ordinary HP treatment, the application of the positive or negative HP did not affect the efficiency of decellularized NP productions. Moreover, neither positive nor negative HP influenced the preservation of the microstructure and components of the AC matrix. However, applying negative HP disarranged the fibril distribution of the NP matrix and reduced glycosaminoglycans and collagen type II contents, two essential ECM components. In addition, the positive HP was beneficial for maintaining the mechanical properties of decellularized cartilage. The recellularization experiments also verified the good biocompatibility of the decellularized cartilage produced by the present bioreactor-based decellularization method under positive HP. Overall, applying positive HP-based decellularization resulted in a superior effect on the production of close-to-natural scaffolds for cartilage tissue engineering. Impact statement In this study, we successfully constructed a novel hydrostatic pressure (HP) bioreactor and used this equipment to produce decellularized cartilage by combining physical and chemical decellularization methods in a perfusing manner. We found that positive HP-based decellularization could improve the production efficiency of integral decellularized cartilage pieces and promote the maintenance of matrix components and mechanical properties. This new decellularization strategy exhibited a superior effect in the production of close-to-natural scaffolds and positively impacts cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weikang Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gastroenterology, Jiulongpo People's Hospital of Chongqing, Chongqing, China
| | - Pei Li
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Zhao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyang Wang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Giordo R, Tulasigeri Totiger S, Caggiari G, Cossu A, Manunta AF, Posadino AM, Pintus G. Protective Effect of Knee Postoperative Fluid on Oxidative-Induced Damage in Human Knee Articular Chondrocytes. Antioxidants (Basel) 2024; 13:188. [PMID: 38397786 PMCID: PMC10886415 DOI: 10.3390/antiox13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The oxidative-stress-elicited deterioration of chondrocyte function is the initial stage of changes leading to the disruption of cartilage homeostasis. These changes entail a series of catabolic damages mediated by proinflammatory cytokines, MMPs, and aggrecanases, which increase ROS generation. Such uncontrolled ROS production, inadequately balanced by the cellular antioxidant capacity, eventually contributes to the development and progression of chondropathies. Several pieces of evidence show that different growth factors, single or combined, as well as anti-inflammatory cytokines and chemokines, can stimulate chondrogenesis and improve cartilage repair and regeneration. In this view, hypothesizing a potential growth-factor-associated action, we investigate the possible protective effect of post-operation knee fluid from patients undergoing prosthesis replacement surgery against ROS-induced damage on normal human knee articular chondrocytes (HKACs). To this end, HKACs were pre-treated with post-operation knee fluid and then exposed to H2O2 to mimic oxidative stress. Intracellular ROS levels were measured by using the molecular probe H2DCFDA; cytosolic and mitochondrial oxidative status were assessed by using HKACs infected with lentiviral particles harboring the redox-sensing green fluorescent protein (roGFP); and cell proliferation was determined by measuring the rate of DNA synthesis with BrdU incorporation. Moreover, superoxide dismutase (SOD), catalase, and glutathione levels from the cell lysates of treated cells were also measured. Postoperative peripheral blood sera from the same patients were used as controls. Our study shows that post-operation knee fluid can counteract H2O2-elicited oxidative stress by decreasing the intracellular ROS levels, preserving the cytosolic and mitochondrial redox status, maintaining the proliferation of oxidatively stressed HKACs, and upregulating chondrocyte antioxidant defense. Overall, our results support and propose an important effect of post-operation knee fluid substances in maintaining HKAC function by mediating cell antioxidative system upregulation and protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Smitha Tulasigeri Totiger
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfilippo Caggiari
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Andrea Fabio Manunta
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Martin F, Neubert A, Lutter AH, Scholka J, Hentschel E, Richter H, Anderer U. MTS, WST-8, and ATP viability assays in 2D and 3D cultures: Comparison of methodologically different assays in primary human chondrocytes. Clin Hemorheol Microcirc 2024; 88:S3-S19. [PMID: 39331094 PMCID: PMC11613004 DOI: 10.3233/ch-248101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Tissue engineering enables the production of three-dimensional microtissues which mimic naturally occurring conditions in special tissues. These 3D culture systems are particularly suitable for application in regenerative medicine or experimental pharmacology and toxicology. Therefore, it is important to analyse the cells in their 3D microenvironment with regard to viability and differentiation. Tetrazolium assays (WST-8 and MTS) are still the methods of choice for estimating the number of living, metabolically active cells, with WST-8 being cell-impermeable compared to MTS. In contrast to these methods, the ATP assay is an endpoint method based on the luciferase-induced reaction of ATP with luciferin after cell lysis. OBJECTIVE We compared three methodologically different proliferation/toxicity assays (MTS, WST-8, ATP) in monolayer (2D) and 3D culture systems to improve the technically challenging determination of the number of viable cells. METHODS Chondrocytes were isolated from human articular cartilage. Three different test systems (MTS, WST-8, ATP) were applied to monolayer cells (2D, varying cell numbers) and spheroids (3D, different sizes) in 96-well plates. The intracellular ATP concentration was determined by luciferase-induced reaction of ATP with luciferin using a luminometer. Formazan formation was measured spectrophotometrically after different incubation periods. Evaluation was performed by phase contrast microscopy (toxicity), correlation of cell count and ATP concentration or absorption signal (Gompertz function) and propidium iodide (PI) staining to proof the cell lysis of all cells in spheroids. RESULTS In 2D culture, all three assays showed a good correlation between the number of seeded cells and the ATP concentration or absorption data, whereas the MTS-assay showed the lowest specificity. In 3D culture, the spheroid sizes were directly related to the number of cells seeded. The absorption data of the WST-8 and MTS assay correlated only for certain spheroid size ranges, whereas the MTS-assay showed again the lowest specificity. Only the measured intracellular ATP content showed a linear correlation with all spheroid sizes ranging from 100-1000 μm. The WST-8 assay revealed the second-best sensitivity which allows the measurement of spheroids larger than 240 μm. Phase contrast observation of monolayer cells showed toxic effects of MTS after 6 h incubation and no signs of toxicity of WST-8. Staining with propidium iodide showed complete lysis of all cells in a spheroid in the ATP assay. CONCLUSION Among tetrazolium-based assays, WST-8 is preferable to MTS because of its non-toxicity and better sensitivity. When determining the number of viable cells in the 2D system, caution is advised when using the ATP assay because of its two-phase slope of the correlation graph concerning cell number and intracellular ATP. In 3D systems of human chondrocytes, the ATP-assay is superior to the other two test systems, as the correlation graph between cell number and intracellular ATP is biphasic. Since differentiation processes or other metabolic events can influence the results of proliferation and toxicity assays (determination of viable cells), this should be taken into account when using these test systems.
Collapse
Affiliation(s)
- Frank Martin
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Annemarie Neubert
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne-Helen Lutter
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Jenny Scholka
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Heiko Richter
- Sana Klinikum Niederlausitz, Clinic for Orthopaedics and Trauma Surgery, Senftenberg, Germany
| | - Ursula Anderer
- Department of Cell Biology and Tissue Engineering, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
8
|
Bačenková D, Trebuňová M, Demeterová J, Živčák J. Human Chondrocytes, Metabolism of Articular Cartilage, and Strategies for Application to Tissue Engineering. Int J Mol Sci 2023; 24:17096. [PMID: 38069417 PMCID: PMC10707713 DOI: 10.3390/ijms242317096] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Hyaline cartilage, which is characterized by the absence of vascularization and innervation, has minimal self-repair potential in case of damage and defect formation in the chondral layer. Chondrocytes are specialized cells that ensure the synthesis of extracellular matrix components, namely type II collagen and aggregen. On their surface, they express integrins CD44, α1β1, α3β1, α5β1, α10β1, αVβ1, αVβ3, and αVβ5, which are also collagen-binding components of the extracellular matrix. This article aims to contribute to solving the problem of the possible repair of chondral defects through unique methods of tissue engineering, as well as the process of pathological events in articular cartilage. In vitro cell culture models used for hyaline cartilage repair could bring about advanced possibilities. Currently, there are several variants of the combination of natural and synthetic polymers and chondrocytes. In a three-dimensional environment, chondrocytes retain their production capacity. In the case of mesenchymal stromal cells, their favorable ability is to differentiate into a chondrogenic lineage in a three-dimensional culture.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; (M.T.); (J.D.); (J.Ž.)
| | | | | | | |
Collapse
|
9
|
Kwapisz A, Herman K, Momaya A, Piwnik M, Szemraj J, Elphingstone J, Synder M, Grzegorzewski A. Is the Synovium the First Responder to Posttraumatic Knee Joint Stress? The Molecular Pathogenesis of Traumatic Cartilage Degeneration. Cartilage 2023; 14:473-481. [PMID: 36799236 PMCID: PMC10807737 DOI: 10.1177/19476035231155630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE The aim of this study was to evaluate if a similar catabolic and inflammatory gene pattern exists between the synovium, hyaline cartilage, and blood of patients with the knee joint tissues and if one precedes the other. DESIGN A total of fifty-eight patients (34 females and 24 males) with a mean age of 44.7 years (range, 18-75) underwent elective knee arthroscopy due to previously diagnosed pathology. Full blood samples were collected preoperatively from synovium and cartilage samples intraoperatively. Real time PCR with spectrophotometric analysis was performed. Following genes taking part in ECM (extracellular matrix) remodeling were selected for analysis: MMP-1, MMP-2, MMP-8, MMP-9, MMP-13, MMP-14, ADAMTS-4 (Agg1) and ADAMTS-5 (Agg2) proteases, TIMP-1, and TIMP-2 - their inhibitors - and IL-1 and TNF-α cytokines. RESULTS Analysis revealed a strong and significant correlation between gene expression in synovial and systemic blood cells (p <0.05 for all studied genes) with ADAMTS-4, ADAMTS-5, IL-1, TNF-α and TIMP-2 expression most positively correlated with an R>0.8 for each. An analysis between chondrocytes and systemic blood gene expression shown no significant correlation for all genes. Bivariate correlation of International Cartilage Repair Society grading and genes expression revealed significant associations with synovial MMP-1, MMP-2, MMP-8, MMP-9, IL-1, TNF-α and TIMP-2. CONCLUSION We suggest that the synovial tissue is the first responder for knee joint stress factors in correlation with the response of blood cells. The chondrocyte's genetic response must be further investigated to elucidate the genetic program of synovial joints, as an organ, during OA development and progression.
Collapse
Affiliation(s)
- Adam Kwapisz
- Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Herman
- Department of Orthopedics and Traumatology, Brothers Hospitallers Hospital Katowice, Poland
| | - Amit Momaya
- Department of Orthopedic Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcin Piwnik
- Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Joseph Elphingstone
- Department of Orthopedic Surgery, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marek Synder
- Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Poland
| | - Andrzej Grzegorzewski
- Clinic of Orthopedics and Pediatric Orthopedics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Cryopreservable three-dimensional spheroid culture for ready-to-use systems. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
12
|
Wu K, Yong KW, Ead M, Sommerfeldt M, Skene-Arnold TD, Westover L, Duke K, Laouar L, Elliott JA, Jomha NM. Vitrified Particulated Articular Cartilage for Joint Resurfacing: A Swine Model. Am J Sports Med 2022; 50:3671-3680. [PMID: 36259633 PMCID: PMC9630855 DOI: 10.1177/03635465221123045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The use of particulated articular cartilage for repairing cartilage defects has been well established, but its use is currently limited by the availability and short shelf life of donor cartilage. Vitrification is an ice-free cryopreservation technology at ultralow temperatures for tissue banking. An optimized vitrification protocol has been developed for particulated articular cartilage; however, the equivalency of the long-term clinical efficacy of vitrified particulated articular cartilage compared with fresh articular cartilage has not yet been determined. HYPOTHESIS The repair effect of vitrified particulated cartilage from pigs would be equivalent to or better than that of fresh particulated cartilage stored at 4°C for 21 days. STUDY DESIGN Controlled laboratory study. METHODS A total of 19 pigs were randomly divided into 3 experimental groups: fresh particulated cartilage group (n = 8), vitrified particulated cartilage group (n = 8), and negative control group (no particulated cartilage in the defect; n = 3). An additional pig was used as the initial cartilage donor for the first set of surgical procedures. Pigs were euthanized after 6 months to obtain femoral condyles, and the contralateral condyle was used as the positive (no defect) control. Samples were evaluated for gross morphology using the Outerbridge and Osteoarthritis Research Society International (OARSI) scoring systems, histology (safranin O, collagen type I/II, DAPI), and chondrocyte viability using live-dead membrane integrity staining. RESULTS There were no infections after surgery, and all 19 pigs were followed for the duration of the study. The OARSI grades for the fresh and vitrified particulated cartilage groups were 2.44 ± 1.35 and 2.00 ± 0.80, respectively, while the negative control group was graded significantly higher at 4.83 ± 0.29. Analysis of histological and fluorescent staining demonstrated that the fresh and vitrified particulated cartilage groups had equivalent regeneration within cartilage defects, with similar cell viability and densities and expression of proteoglycans and collagen type I/II. CONCLUSION The implantation of fresh or vitrified particulated cartilage resulted in the equivalent repair of focal cartilage defects when evaluated at 6 months after surgery. CLINICAL RELEVANCE The vitrification of particulated cartilage is a viable option for long-term storage for cartilage tissue banking and could greatly increase the availability of donor tissue for transplantation.
Collapse
Affiliation(s)
- Kezhou Wu
- Sports Medicine Center, First
Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Surgery, University of
Alberta, Edmonton, Alberta, Canada
| | - Kar Wey Yong
- Department of Surgery, University of
Alberta, Edmonton, Alberta, Canada
| | - Maha Ead
- Department of Mechanical Engineering,
University of Alberta, Edmonton, Alberta, Canada
| | - Mark Sommerfeldt
- Department of Surgery, University of
Alberta, Edmonton, Alberta, Canada
| | | | - Lindsey Westover
- Department of Mechanical Engineering,
University of Alberta, Edmonton, Alberta, Canada
| | - Kajsa Duke
- Department of Mechanical Engineering,
University of Alberta, Edmonton, Alberta, Canada
| | - Leila Laouar
- Department of Surgery, University of
Alberta, Edmonton, Alberta, Canada
| | - Janet A.W. Elliott
- Department of Chemical and Materials
Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and
Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Nadr M. Jomha
- Department of Surgery, University of
Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Biodegradable Poly(D-L-lactide-co-glycolide) (PLGA)-Infiltrated Bioactive Glass (CAR12N) Scaffolds Maintain Mesenchymal Stem Cell Chondrogenesis for Cartilage Tissue Engineering. Cells 2022; 11:cells11091577. [PMID: 35563883 PMCID: PMC9100331 DOI: 10.3390/cells11091577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regeneration of articular cartilage remains challenging. The aim of this study was to increase the stability of pure bioactive glass (BG) scaffolds by means of solvent phase polymer infiltration and to maintain cell adherence on the glass struts. Therefore, BG scaffolds either pure or enhanced with three different amounts of poly(D-L-lactide-co-glycolide) (PLGA) were characterized in detail. Scaffolds were seeded with primary porcine articular chondrocytes (pACs) and human mesenchymal stem cells (hMSCs) in a dynamic long-term culture (35 days). Light microscopy evaluations showed that PLGA was detectable in every region of the scaffold. Porosity was greater than 70%. The biomechanical stability was increased by polymer infiltration. PLGA infiltration did not result in a decrease in viability of both cell types, but increased DNA and sulfated glycosaminoglycan (sGAG) contents of hMSCs-colonized scaffolds. Successful chondrogenesis of hMSC-colonized scaffolds was demonstrated by immunocytochemical staining of collagen type II, cartilage proteoglycans and the transcription factor SOX9. PLGA-infiltrated scaffolds showed a higher relative expression of cartilage related genes not only of pAC-, but also of hMSC-colonized scaffolds in comparison to the pure BG. Based on the novel data, our recommendation is BG scaffolds with single infiltrated PLGA for cartilage tissue engineering.
Collapse
|
14
|
Amsar RM, Wijaya CH, Ana ID, Hidajah AC, Notobroto HB, Kencana Wungu TD, Barlian A. Extracellular vesicles: a promising cell-free therapy for cartilage repair. Future Sci OA 2022; 8:FSO774. [PMID: 35070356 PMCID: PMC8765097 DOI: 10.2144/fsoa-2021-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 11/23/2022] Open
Abstract
Few effective therapies for cartilage repair have been found as cartilage has a low regenerative capacity. Extracellular vesicles (EVs), including exosomes, are produced by cells and contain bioactive components such as nucleic acids, proteins, lipids and other metabolites that have potential for treating cartilage injuries. Challenges like the difficulty in standardizing targeted therapy have prevented EVs from being used frequently as a treatment option. In this review we present current studies, mechanisms and delivery strategies of EVs. Additionally, we describe the challenges and future directions of EVs as therapeutic agents for cartilage repair. Repairing cartilage damage is challenging due to the tissue’s low regenerative capacity. Extracellular vesicles (EVs) contain bioactive components that may be able to treat cartilage injuries. However, EV-based therapy is not widely used. This review summarizes the current state of knowledge regarding the use of EVs for cartilage repair, including the mechanisms, delivery strategies, challenges and future directions.
Collapse
Affiliation(s)
- Rizka Musdalifah Amsar
- School of Life Science & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
| | - Christofora Hanny Wijaya
- Department of Food Science & Technology, Bogor Agricultural University, West Java, 16680, Indonesia
| | - Ika Dewi Ana
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Gadjah Mada University, Yogyakarta, 55281, Indonesia
| | - Atik Choirul Hidajah
- Department of Epidemiology Faculty of Public Health, Airlangga University, East Java, 60115, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatics & Population Faculty of Public Health, Airlangga University, East Java, 60115, Indonesia
| | - Triati Dewi Kencana Wungu
- Nuclear Physics & Biophysics Research Group, Department of Physics, Faculty of Mathematics & Natural Sciences, Institut Teknologi Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung, West Java, 40132, Indonesia
| | - Anggraini Barlian
- School of Life Science & Technology, Institut Teknologi Bandung, Bandung, West Java, 40132, Indonesia
- Research Center for Nanoscience & Nanotechnology, Institut Teknologi Bandung, West Java, 40132, Indonesia
| |
Collapse
|
15
|
Ghosh S, Scott AK, Seelbinder B, Barthold JE, Martin BMS, Kaonis S, Schneider SE, Henderson JT, Neu CP. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys J 2022; 121:131-141. [PMID: 34800469 PMCID: PMC8758405 DOI: 10.1016/j.bpj.2021.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023] Open
Abstract
The biophysical features of a cell can provide global insights into diverse molecular changes, especially in processes like the dedifferentiation of chondrocytes. Key biophysical markers of chondrocyte dedifferentiation include flattened cellular morphology and increased stress-fiber formation. During cartilage regeneration procedures, dedifferentiation of chondrocytes during in vitro expansion presents a critical limitation to the successful repair of cartilage tissue. Our study investigates how biophysical changes of chondrocytes during dedifferentiation influence the nuclear mechanics and gene expression of structural proteins located at the nuclear envelope. Through an experimental model of cell stretching and a detailed spatial intranuclear strain quantification, we identified that strain is amplified and the distribution of strain within the chromatin is altered under tensile loading in the dedifferentiated state. Further, using a confocal microscopy image-based finite element model and simulation of cell stretching, we found that the cell shape is the primary determinant of the strain amplification inside the chondrocyte nucleus in the dedifferentiated state. Additionally, we found that nuclear envelope proteins have lower gene expression in the dedifferentiated state. This study highlights the role of cell shape in nuclear mechanics and lays the groundwork to design biophysical strategies for the maintenance and enhancement of the chondrocyte phenotype during cell expansion with a goal of successful cartilage tissue engineering.
Collapse
Affiliation(s)
- Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO; School of Biomedical Engineering, Colorado State University, Fort Collins, CO; Translational Medicine Institute, Colorado State University, Fort Collins, CO.
| | - Adrienne K Scott
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Benjamin Seelbinder
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Jeanne E Barthold
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Brittany M St Martin
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | - Samantha Kaonis
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO; Translational Medicine Institute, Colorado State University, Fort Collins, CO
| | - Stephanie E Schneider
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO
| | | | - Corey P Neu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO; Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
16
|
Önnheim K, Huang S, Holmertz AS, Andersson S, Lönnblom E, Jonsson C, Holmdahl R, Gjertsson I. Rheumatoid arthritis chondrocytes produce increased levels of pro-inflammatory proteins. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100235. [DOI: 10.1016/j.ocarto.2022.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022] Open
|
17
|
Melibosky FR, Jorquera RA, Saxton FZ, Orellana P, Junqueras D, Azócar C. Four-Corner Fusion with Locking Dorsal Circular Plate versus Headless Compression Screws: A Clinico-Radiological Comparative Study. REVISTA IBEROAMERICANA DE CIRUGÍA DE LA MANO 2021. [DOI: 10.1055/s-0041-1739239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Introduction Four-corner fusion is a technique for the treatment of carpal advanced collapse. It consists of scaphoid excision and arthrodesis of the lunate, triquetrum, hamate, and capitate bones. This can be accomplished with different kinds of osteosynthesis. In the first reports of the use of a circular plate, poor outcomes are described, with high rates of non-union, which decreased in later studies, which highlight certain aspects of the surgical technique.
Objective To report our experience with four-corner fusion with the use of a dorsal locking plate (Xpode, Trimed Inc., Santa Clarita, CA, US), and compare it with another traditional fixation method (3.0-mm headless compression screws [HCSs], Synthes, Slothurn, Switzerland), with an emphasis on union, an assessment of the fincitonal outcomes, and the presence of complications.
Material and Methods A comparative study of two prospective series of patients operated on through two fixation techniques for four-corner fusion using autologous bone graft from the iliac crest.The first group of patients, evaluated between 2010 and 2012, underwent osteosynthesis with 2 HCSs, with a minimum follow up of 18 months. The second group, evaluated between 2011 and 2014, underwent osteosynthesis with a dorsal locking plate, with a minimium foloow up of 12 months. The patients were operated on by four different surgeons in four centers.The patients were evaluated with radiographs to establish the presence of union and the time it took to occur. In case of doubt, union was confirmed through a computed tomography (CT) scan at 8 weeks postoperatrively. We also assessed the range of motion, the presence of complications, and function through the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire and a grip strength score.
Results We achieved a union rate of 100% in both groups at similar times. In the dorsal locking plate group, we obtained better full range of motion, particularly in wrist extension, which was statistically significant (p = 0.0016), as well as lower DASH scores, which was also statistically significant (p = 0.0066). Complications were only present in two patients in the HCS group.
Conclusion Both techniques are valid and reproducible for the treatment of wrists with scapholunate advanced collapse (SNAC) and scaphoid non-union advanced collapse (SLAC). Based on the outcomes, with the Xpode plate, the patients presented better ranges of motion and DASH scores; therefore it may be an excellent fixation option in the open four-corner fusion surgical technique. The entry point and configuration of the HCS are fundamental variables to analyze.The union rate of 100% obtained in the present study contrasts with the high rates of non-union reported in the literature published in the early 2000s.
Collapse
Affiliation(s)
- Francisco R. Melibosky
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Clínica Indisa – Facultad de Medicina de la Universidad de Valparaíso, Santiago, Chile
| | - Rene A. Jorquera
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Clínica Indisa – Facultad de Medicina de la Universidad de Valparaíso, Santiago, Chile
| | - Felipe Z. Saxton
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Facultad de Medicina Clínica Alemana de Santiago – Universidad del Desarrollo, Santiago, Chile
| | - Pablo Orellana
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Clínica Indisa – Facultad de Medicina de la Universidad de Valparaíso, Santiago, Chile
| | - Diego Junqueras
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Facultad de Medicina Clínica Alemana de Santiago – Universidad del Desarrollo, Santiago, Chile
- Hand Surgery Unit, Department of Traumatology and Orthopedics, Hospital de la Florida, Santiago, Chile
| | - Camila Azócar
- Hand Surgery and Microsurgery Unit, Department of Traumatology and Orthopedics, Clínica Indisa – Facultad de Medicina de la Universidad de Valparaíso, Santiago, Chile
| |
Collapse
|
18
|
Hu X, Zhang W, Li X, Zhong D, Li Y, Li J, Jin R. Strategies to Modulate the Redifferentiation of Chondrocytes. Front Bioeng Biotechnol 2021; 9:764193. [PMID: 34881234 PMCID: PMC8645990 DOI: 10.3389/fbioe.2021.764193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
Because of the low self-healing capacity of articular cartilage, cartilage injuries and degenerations triggered by various diseases are almost irreversible. Previous studies have suggested that human chondrocytes cultured in vitro tend to dedifferentiate during the cell-amplification phase and lose the physiological properties and functions of the cartilage itself, which is currently a critical limitation in the cultivation of cartilage for tissue engineering. Recently, numerous studies have focused on the modulation of chondrocyte redifferentiation. Researchers discovered the effect of various conditions (extracellular environment, cell sources, growth factors and redifferentiation inducers, and gene silencing and overexpression) on the redifferentiation of chondrocytes during the in vitro expansion of cells, and obtained cartilage tissue cultured in vitro that exhibited physiological characteristics and functions that were similar to those of human cartilage tissue. Encouragingly, several studies reported positive results regarding the modulation of the redifferentiation of chondrocytes in specific conditions. Here, the various factors and conditions that modulate the redifferentiation of chondrocytes, as well as their limitations and potential applications and challenges are reviewed. We expect to inspire research in the field of cartilage repair toward the future treatment of arthropathy.
Collapse
Affiliation(s)
- Xiaoshen Hu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weiyang Zhang
- Shool of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiang Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Li
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Xue K, Jiang Y, Zhang X, Wu J, Qi L, Liu K. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells. Adipocyte 2021; 10:322-337. [PMID: 34224296 PMCID: PMC8259721 DOI: 10.1080/21623945.2021.1945210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cartilage tissue engineering is a promising option for repairing cartilage defects, although harvesting a large number of seeding cells remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles (EVs) may play a major role in cell-cell and tissue-tissue communication. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived EVs on CSPCs proliferation and differentiation. The characteristics of ADSCs-derived EVs were identified, and proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. SEM, histological staining, biochemical and biomechanical analysis was performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40-1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induce CSPCs to produce significantly more cartilage matrix and proteoglycan. In conclusion, hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Jun Wu
- Department of Orthopedics, The First People’s Hospital of Changzhou, Jiangsu Changzhou, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| |
Collapse
|
20
|
Johnston E, Kou Y, Junge J, Chen L, Kochan A, Johnston M, Rabago D. Hypertonic Dextrose Stimulates Chondrogenic Cells to Deposit Collagen and Proliferate. Cartilage 2021; 13:213S-224S. [PMID: 34109827 PMCID: PMC8804764 DOI: 10.1177/19476035211014572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Hypertonic dextrose (HD) injections (prolotherapy) for osteoarthritis are reported to reduce pain. Cartilage regeneration is hypothesized as a mechanism. This in vitro study identifies an HD concentration that stimulates chondrogenic cells to increase metabolic activity and assesses whether this concentration affects collagen deposition and proliferation. DESIGN ATDC5 chondrogenic cells were cultured in normoglycemic DMEM/F12 medium, treated with concentrations of HD (4-400 mM), and assessed with PrestoBlue. Advanced light microscopy was used to conduct live imaging of collagen deposition through second harmonic generation microscopy (SHG) and proliferation via 2-photon excitation microscopy. Proliferation was additionally assessed with hemocytometer counts. RESULTS A linear regression model found that, relative to the 4 mM baseline control, cells treated with 200 mM had a higher mean absorbance (P = 0.023) and cells treated with 250 mM were trending toward a higher mean absorbance (P = 0.076). Polynomial regression interpolated 240 mM as producing the highest average absorbance. Hemocytometer counts validated 250 mM as stimulating proliferation compared with the 4 mM control (P < 0.01). A concentration of 250 mM HD led to an increase in collagen deposition compared with that observed in control (P < 0.05). This HD concentration also led to increases in proliferation of ATDC5 cells relative to that of control (P < 0.001). CONCLUSIONS A 250 mM HD solution appears to be associated with increased metabolic activity of chondrocytes, increased collagen deposition, and increased chondrocyte proliferation. These results support clinical prolotherapy research suggesting that intra-articular HD joint injections reduce knee pain. Further study of HD and cellular processes is warranted.
Collapse
Affiliation(s)
| | - Yi Kou
- Molecular and Computational Biology,
Department of Biological Sciences, University of Southern California, Los Angeles,
CA, USA
| | - Jason Junge
- Imaging Services, Advanced Light
Microscopy Core, Translational Imaging Center, University of Southern California,
Los Angeles, CA, USA
| | - Lin Chen
- Department of Chemistry and Biological
Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | - David Rabago
- Department of Family and Community
Medicine, Penn State College of Medicine, Hershey, PA, USA,David Rabago, Department of Family and
Community Medicine, Penn State College of Medicine, 500 University Drive, P.O.
Box 850, Hershey, PA 17033, USA.
| |
Collapse
|
21
|
Kachroo U, Zachariah SM, Thambaiah A, Tabasum A, Livingston A, Rebekah G, Srivastava A, Vinod E. Comparison of Human Platelet Lysate versus Fetal Bovine Serum for Expansion of Human Articular Cartilage-Derived Chondroprogenitors. Cartilage 2021; 13:107S-116S. [PMID: 32406256 PMCID: PMC8804717 DOI: 10.1177/1947603520918635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Articular chondroprogenitors, a suitable contender for cell-based therapy in cartilage repair, routinely employ fetal bovine serum (FBS) for expansion and differentiation. The possibility of transplant rejections or zoonoses transmissions raise a need for xeno-free alternatives. Use of human platelet lysate (hPL), a nutrient supplement abundant in growth factors, has not been reported for human chondroprogenitor expansion thus far. Our aim was to compare the biological profile of chondroprogenitors grown in hPL versus FBS. METHODS Chondroprogenitors were isolated from 3 osteoarthritic knee joints. Following differential fibronectin adhesion assay, passage 0 cells grown in (a) 10% FBS and (b) 10% hPL were considered for assessment of growth kinetics, surface marker expression, gene expression, and trilineage differentiation. Latent transforming growth factor-β1 (TGFβ1) levels were also measured for each culture medium used. RESULTS Cellular proliferation was significantly higher in cells grown with hPL (P < 0.01). Surface marker expression was comparable except in CD-146 where hPL group had significantly higher values (P = 0.03). Comparison of mRNA expression revealed notably low values of collagen I, collagen X, aggrecan, and collagen II (P < 0.05). Trilineage differentiation was seen in both groups with higher alizarin red uptake noted in hPL. There were also significantly higher levels of latent TGFβ1 in the medium containing hPL as compared to FBS. CONCLUSIONS This is the first in vitro xeno-free study to affirm that hPL can serve as an optimal growth supplement for expansion of articular chondroprogenitors, although an in-depth assessment of resident growth factors and evaluation of different dilutions of hPL is required to assess suitability for use in translational research.
Collapse
Affiliation(s)
- Upasana Kachroo
- Department of Physiology, Christian
Medical College, Vellore, Tamil Nadu, India
| | | | - Augustine Thambaiah
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - Aleya Tabasum
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - Abel Livingston
- Department of Orthopaedics, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Grace Rebekah
- Department of Biostatistics, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India,Department of Haematology, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Elizabeth Vinod
- Department of Physiology, Christian
Medical College, Vellore, Tamil Nadu, India,Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India,Elizabeth Vinod, Department of Physiology,
Christian Medical College, Vellore, Tamil Nadu 632002, India.
| |
Collapse
|
22
|
Gögele C, Wiltzsch S, Lenhart A, Civilleri A, Weiger TM, Schäfer-Eckart K, Minnich B, Forchheimer L, Hornfeck M, Schulze-Tanzil G. Highly porous novel chondro-instructive bioactive glass scaffolds tailored for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112421. [PMID: 34702508 DOI: 10.1016/j.msec.2021.112421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Cartilage injuries remain challenging since the regenerative capacity of cartilage is extremely low. The aim was to design a novel type of bioactive glass (BG) scaffold with suitable topology that allows the formation of cartilage-specific extracellular matrix (ECM) after colonization with chondrogenic cells for cartilage repair. Highly porous scaffolds with interconnecting pores consisting of 100 % BG were manufactured using a melting, milling, sintering and leaching technique. Scaffolds were colonized with porcine articular chondrocytes (pAC) and undifferentiated human mesenchymal stromal cells (hMSC) for up to 35 days. Scaffolds displayed high cytocompatibility with no major pH shift. Scanning electron microscopy revealed the intimate pAC-scaffold interaction with typical cell morphology. After 14 days MSCs formed cell clusters but still expressed cartilage markers. Both cell types showed aggrecan, SOX9 gene and protein expression, cartilage proteoglycan and sulfated glycosaminoglycan synthesis for the whole culture time. Despite type II collagen gene expression could not anymore be detected at day 35, protein synthesis was visualized for both cell types during the whole culturing period, increasing in pAC and declining after day 14 in hMSC cultures. The novel BG scaffold was stable, cytocompatible and cartilage-specific protein synthesis indicated maintenance of pAC's differentiated phenotype and chondro-instructive effects on hMSCs.
Collapse
Affiliation(s)
- Clemens Gögele
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Sven Wiltzsch
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Armin Lenhart
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Aurelio Civilleri
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany; Department of Civil, Environmental, Aerospace, Materials Engineering, Universita' di Palermo, Palermo, Italy.
| | - Thomas Martin Weiger
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Kerstin Schäfer-Eckart
- Bone marrow Transplantation Unit, Medizinische Klinik 5, Klinikum Nürnberg, Paracelsus Medizinische Privatuniversität, Nuremberg, Germany.
| | - Bernd Minnich
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria.
| | - Lukas Forchheimer
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Markus Hornfeck
- Faculty of Material Engineering, Nuremberg, Institute of Technology Georg Simon Ohm, Nuremberg, Germany.
| | - Gundula Schulze-Tanzil
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg and Salzburg, Prof. Ernst-Nathan Str. 1, 90419 Nuremberg, Germany.
| |
Collapse
|
23
|
Ceotto BH, Figueroba SR, Ferreira LEN, Amorim KS, Sánchez JB, Gercina AC, Dos Santos VAB, Groppo FC. The effect of association of aspirin and omega 3 in rat temporomandibular joint with induced arthritis. Ann Anat 2021; 239:151812. [PMID: 34384858 DOI: 10.1016/j.aanat.2021.151812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the effects of omega-3 (ω3) polyunsaturated fatty acids, in association with aspirin (AA), on the morphology of cytokine release in the temporomandibular joint (TMJ) of rats induced with rheumatoid arthritis (IR) by injecting 100 μL of complete Freund's adjuvant with bovine type II collagen at the tail base. Thirty-two adult male rats were divided into treatment groups: Sham, treated with 0.9% sodium chloride (NaCl) p.o.; IR-control, treated with 0.9% NaCl p.o.; IR-ω3 treated with ω3 PUFAS (85 mg/kg/day p.o.); and IR-ω3 + AA treated with ω3 (85 mg/kg/day p.o.) + AA (20 mg/kg/day i.p.). After maintained treatment for seven days, the animals were euthanized. Bilateral TMJs from each rat were removed and one was subjected to histological immunoassays and enzyme-linked immunosorbent assays to assess interleukin (IL)-1β, tumor necrosis factor-α, and IL-10 levels. Data analysis was performed using the Kruskal-Wallis and Dunn tests. In the IR-ω3 and IR-ω3 + AA groups, the TMJ was greater than in the IR-control group (P < 0.0001). The addition of AA did not improve the effects of ω3 (P = 0.0698). Similarly, the addition of AA conferred no additional effects on the cytokine levels (P > 0.05); however, it increased the proteoglycan density, compared with ω3 alone. We found that ω3 exhibited anti-inflammatory activity in arthritic rats, and the addition of AA increased proteoglycan density, but did not affect cytokine expression.
Collapse
Affiliation(s)
- Beatriz H Ceotto
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Sidney R Figueroba
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Luiz Eduardo N Ferreira
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, São Paulo, Brazil.
| | - Klinger S Amorim
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Jonny B Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Anne Caroline Gercina
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Victor Augusto B Dos Santos
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| | - Francisco C Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas - UNICAMP - Piracicaba, São Paulo, Brazil.
| |
Collapse
|
24
|
Hattori K, Takahashi N, Terabe K, Ohashi Y, Kishimoto K, Yokota Y, Suzuki M, Kojima T, Imagama S. Activation of transient receptor potential vanilloid 4 protects articular cartilage against inflammatory responses via CaMKK/AMPK/NF-κB signaling pathway. Sci Rep 2021; 11:15508. [PMID: 34330980 PMCID: PMC8324869 DOI: 10.1038/s41598-021-94938-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) plays an important role in chondrocytes via Ca2+ signaling. However, its role in the progression of osteoarthritis is unclear. This study aimed to evaluate the effects of TRPV4 activation on articular cartilage and chondrocytes stimulated with interleukin (IL)-1β. Bovine and human articular chondrocytes were stimulated with various agents, including IL-1β, GSK1016790A (GSK101; a TRPV4 agonist), Compound C (an AMP-activated protein kinase (AMPK) inhibitor), and STO-609 (a calmodulin-dependent protein kinase kinase (CaMKK) inhibitor), and were processed for Western blot analysis and real-time PCR. The dimethylmethylene blue (DMMB) assay and Safranin O staining were also performed. GSK101 reversed the IL-1β-induced increase in expression of matrix metalloproteinase (MMP)-13 and decrease in expression of aggrecan. GSK101 also decreased proteoglycan release in the DMMB assay and retained Safranin O staining of articular cartilage tissue. Furthermore, GSK101 increased AMPK phosphorylation and decreased IL-1β-induced nuclear factor kappa B (NF-κB) phosphorylation. Compound C and STO-609 reversed the suppressive effects of GSK101 on NF-κB activation and MMP-13 expression. In conclusion, TRPV4 activation had chondroprotective effects on articular cartilage stimulated with IL-1β by activating CaMKK/AMPK and suppressing the NF-κB pathway. TRPV4 activators may offer a promising therapeutic option for preventing the progression of osteoarthritis.
Collapse
Affiliation(s)
- Kyosuke Hattori
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Nobunori Takahashi
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan.
| | - Kenya Terabe
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Yoshifumi Ohashi
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Kenji Kishimoto
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Yutaka Yokota
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Mochihito Suzuki
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Toshihisa Kojima
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| | - Shiro Imagama
- Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 446-8560, Japan
| |
Collapse
|
25
|
Vinod E, Parameswaran R, Manickam Amirtham S, Livingston A, Ramasamy B, Kachroo U. Comparison of the efficiency of laminin versus fibronectin as a differential adhesion assay for isolation of human articular cartilage derived chondroprogenitors. Connect Tissue Res 2021; 62:427-435. [PMID: 32406271 DOI: 10.1080/03008207.2020.1761344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Cartilage repair following trauma or degeneration is poor, making cell-based therapy an important avenue of treatment. Chondrocytes and mesenchymal stem cells have been extensively studied as potential candidates, although tendency toward hypertrophy and formation of mixed hyaline-fibrocartilage necessitates further optimization. Chondroprogenitors, isolated using fibronectin adhesion assay are reported to show reduced hypertrophy and enhanced chondrogenesis. Laminin, an essential component of extracellular matrix, has been shown to positively modulate chondrocyte proliferation, migration, and survival. The aim of our study was to evaluate the effect of laminin as a differential adhesion assay and obtain an enriched population of chondroprogenitors and assess its efficiency when compared to progenitors obtained via fibronectin.Materials and methods: Chondrocytes were isolated from three osteoarthritic knee joints and subjected to fibronectin and laminin adhesion to obtain chondroprogenitors. After expansion in culture, they were assessed for differences in their biological characteristics based on growth kinetics, surface marker expression, gene expression for assessing markers of chondrogenesis and hypertrophy, and potential for tri-lineage differentiation.Results: Our results showed that cells isolated by laminin and fibronectin both displayed comparable characteristics except in terms of proliferative potential (higher in laminin), gene expression of COL2A1 (lower in laminin) and trilineage potential where the laminin group showed higher osteogenic and adipogenic differentiation.Conclusion: This was the first attempt to successfully isolate human articular cartilage derived chondroprogenitor clones using laminin, which retained stem cell like characteristics. Further evaluation to optimize this method will help enhance chondroprogenitor characteristics, for use in cartilage repair.
Collapse
Affiliation(s)
- Elizabeth Vinod
- Department of Physiology, Christian Medical College, Vellore, India.,Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | | | | | - Abel Livingston
- Department of Orthopaedics, Christian Medical College, Vellore, India
| | | | - Upasana Kachroo
- Department of Physiology, Christian Medical College, Vellore, India
| |
Collapse
|
26
|
Binder H, Hoffman L, Zak L, Tiefenboeck T, Aldrian S, Albrecht C. Clinical evaluation after matrix-associated autologous chondrocyte transplantation : a comparison of four different graft types. Bone Joint Res 2021; 10:370-379. [PMID: 34189928 PMCID: PMC8333036 DOI: 10.1302/2046-3758.107.bjr-2020-0370.r1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT). Methods A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m2 (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types. Results The mean defect size of the tibiofemoral joint compartment was 4.28 cm2 (SD 1.70). In total, 11 patients (12.6%) underwent transplantation with Chondro-Gide (matrix-associated autologous chondrocyte implantation (MACI)), 40 patients (46.0%) with Hyalograft C (HYAFF), 21 patients (24.1%) with Cartilage Regeneration System (CaReS), and 15 patients (17.2%) with NOVOCART 3D. The mean IKDC Subjective Knee Form score improved from 35.71 (SD 6.44) preoperatively to 75.26 (SD 18.36) after 24 months postoperatively in the Hyalograft group, from 35.94 (SD 10.29) to 71.57 (SD 16.31) in the Chondro-Gide (MACI) group, from 37.06 (SD 5.42) to 71.49 (SD 6.76) in the NOVOCART 3D group, and from 45.05 (SD 15.83) to 70.33 (SD 19.65) in the CaReS group. Similar improvements were observed in the VAS and Brittberg scores. Conclusion Two years postoperatively, there were no significant differences in terms of outcomes. Our data demonstrated that MACT, regardless of the implants used, resulted in good clinical improvement two years after transplantation for localized tibiofemoral defects. Cite this article: Bone Joint Res 2021;10(7):370–379.
Collapse
Affiliation(s)
- Harald Binder
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Lukas Hoffman
- First Orthopedic Department, Orthopedic Hospital Vienna Speising, Vienna, Austria
| | - Lukas Zak
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Tiefenboeck
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Silke Aldrian
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian Albrecht
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.,First Orthopedic Department, Orthopedic Hospital Vienna Speising, Vienna, Austria
| |
Collapse
|
27
|
Qin Y, Hu X, Fan W, Yan J, Cheng S, Liu Y, Huang W. A Stretchable Scaffold with Electrochemical Sensing for 3D Culture, Mechanical Loading, and Real-Time Monitoring of Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003738. [PMID: 34047055 PMCID: PMC8327466 DOI: 10.1002/advs.202003738] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Indexed: 06/11/2023]
Abstract
In the field of three-dimensional (3D) cell culture and tissue engineering, great advance focusing on functionalized materials and desirable culture systems has been made to mimic the natural environment of cells in vivo. Mechanical loading is one of the critical factors that affect cell/tissue behaviors and metabolic activities, but the reported models or detection methods offer little direct and real-time information about mechanically induced cell responses. Herein, for the first time, a stretchable and multifunctional platform integrating 3D cell culture, mechanical loading, and electrochemical sensing is developed by immobilization of biomimetic peptide linked gold nanotubes on porous and elastic polydimethylsiloxane. The 3D scaffold demonstrates very good compatibility, excellent stretchability, and stable electrochemical sensing performance. This allows mimicking the articular cartilage and investigating its mechanotransduction by 3D culture, mechanical stretching of chondrocytes, and synchronously real-time monitoring of stretch-induced signaling molecules. The results disclose a previously unclear mechanotransduction pathway in chondrocytes that mechanical loading can rapidly activate nitric oxide signaling within seconds. This indicates the promising potential of the stretchable 3D sensing in exploring the mechanotransduction in 3D cellular systems and engineered tissues.
Collapse
Affiliation(s)
- Yu Qin
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Xue‐Bo Hu
- College of Chemistry and Chemical EngineeringInstitute for Conservation and Utilization of Agro‐Bioresources in Dabie MountainsXinyang Normal UniversityXinyang464000China
| | - Wen‐Ting Fan
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Jing Yan
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Shi‐Bo Cheng
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Yan‐Ling Liu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| | - Wei‐Hua Huang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072China
| |
Collapse
|
28
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
30
|
Zhang Y, Sun L, Liu X, Zhu D, Dang J, Xue Y, Fan H. Investigating the protective effect of tanshinone IIA against chondrocyte dedifferentiation: a combined molecular biology and network pharmacology approach. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:249. [PMID: 33708876 PMCID: PMC7940936 DOI: 10.21037/atm-20-4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background Osteoarthritis (OA) is a common degenerative disease with multifactorial etiology. The dedifferentiation of chondrocytes can accelerate the progress of OA. Tanshinone IIA (TIIA) has been widely used to treat OA for many years and has proved to be effective in inhibiting chondrocyte dedifferentiation. Until now, the precise mechanism of TIIA’s effect against dedifferentiation has not been well understood. Methods The targets of TIIA were explored from public databases using various methods. The related targets of OA were obtained from the GeneCards database and the Online Mendelian Inheritance in Man (OMIM) database. The potential targets and signaling pathways were determined using protein-protein interaction (PPI), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Cell viability, proliferation, and metabolic activity were analyzed in vitro. The effects of TIIA on chondrocyte dedifferentiation were evaluated by assessing morphological changes, glycosaminoglycan (GAG) production, and messenger RNA (mRNA) levels of cartilage-related genes. After 48 hours of culture in medium with 100 μg/mL TIIA, chondrocytes/hydrogel spheres were implanted to repair cartilage defects in a rat model. The harvested specimens were examined with hematoxylin and eosin (H&E) staining and immunohistochemistry to evaluate cartilage regeneration. Results The results showed that there were 28 genes potentially interacting in the TIIA-chondrocyte dedifferentiation network, and nine hub genes were identified. In vitro experiments showed an inhibitory effect of TIIA on chondrocyte dedifferentiation. The proliferation and viability of chondrocytes were promoted by TIIA at a concentration of 100–200 μg/mL, but inhibited by TIIA at 400 μg/mL. Furthermore, the histology results showed that chondrocyte/hydrogel spheres pre-treated with TIIA had better cartilage repair. Conclusions This study revealed a systematic network pharmacology approach and provided a basis for the future study of TIIA as an effective treatment for cartilage regeneration. Moreover, in vitro and in vivo results confirmed the protective effects of TIIA against chondrocyte dedifferentiation.
Collapse
Affiliation(s)
- Yushen Zhang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liguo Sun
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xincheng Liu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dongze Zhu
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yingsen Xue
- Department of Orthopedic Surgery, Northwest Women and Children's Hospital, Xi'an, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xi-jing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Liau LL, Hassan MNFB, Tang YL, Ng MH, Law JX. Feasibility of Human Platelet Lysate as an Alternative to Foetal Bovine Serum for In Vitro Expansion of Chondrocytes. Int J Mol Sci 2021; 22:ijms22031269. [PMID: 33525349 PMCID: PMC7865277 DOI: 10.3390/ijms22031269] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects a lot of people worldwide. Current treatment for OA mainly focuses on halting or slowing down the disease progress and to improve the patient’s quality of life and functionality. Autologous chondrocyte implantation (ACI) is a new treatment modality with the potential to promote regeneration of worn cartilage. Traditionally, foetal bovine serum (FBS) is used to expand the chondrocytes. However, the use of FBS is not ideal for the expansion of cells mean for clinical applications as it possesses the risk of animal pathogen transmission and animal protein transfer to host. Human platelet lysate (HPL) appears to be a suitable alternative to FBS as it is rich in biological factors that enhance cell proliferation. Thus far, HPL has been found to be superior in promoting chondrocyte proliferation compared to FBS. However, both HPL and FBS cannot prevent chondrocyte dedifferentiation. Discrepant results have been reported for the maintenance of chondrocyte redifferentiation potential by HPL. These differences are likely due to the diversity in the HPL preparation methods. In the future, more studies on HPL need to be performed to develop a standardized technique which is capable of producing HPL that can maintain the chondrocyte redifferentiation potential reproducibly. This review discusses the in vitro expansion of chondrocytes with FBS and HPL, focusing on its capability to promote the proliferation and maintain the chondrogenic characteristics of chondrocytes.
Collapse
Affiliation(s)
- Ling Ling Liau
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Muhammad Najib Fathi bin Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Yee Loong Tang
- Pathology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia; (M.N.F.b.H.); (M.H.N.)
- Correspondence: ; Tel.: +603-9145-7677; Fax: +603-9145-7678
| |
Collapse
|
32
|
Kwon H, Brown WE, O'Leary SA, Hu JC, Athanasiou KA. Rejuvenation of extensively passaged human chondrocytes to engineer functional articular cartilage. Biofabrication 2021; 13. [PMID: 33418542 DOI: 10.1088/1758-5090/abd9d9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/08/2021] [Indexed: 11/11/2022]
Abstract
Human articular chondrocytes (hACs) are scarce and lose their chondrogenic potential during monolayer passaging, impeding their therapeutic use. This study investigated i) the translatability of conservative chondrogenic passaging and aggregate rejuvenation on restoring chondrogenic properties of hACs passaged up to P9; and ii) the efficacy of a combined treatment of TGF-β1 (T), chondroitinase-ABC (C), and lysyl oxidase-like 2 (L), collectively termed TCL, on engineering functional human neocartilage via the self-assembling process, as a function of passage number up to P11. Here, we show that aggregate rejuvenation enhanced glycosaminoglycan (GAG) content and type II collagen staining at all passages and yielded human neocartilage with chondrogenic phenotype present up to P7. Addition of TCL extended the chondrogenic phenotype to P11 and significantly enhanced GAG content and type II collagen staining at all passages. Human neocartilage derived from high passages, treated with TCL, displayed mechanical properties that were on par with or greater than those derived from low passages. Conservative chondrogenic passaging and aggregate rejuvenation may be a viable new strategy 1) to address the perennial problem of chondrocyte scarcity and 2) to successfully rejuvenate the chondrogenic phenotype of extensively passaged cells (up to P11). Furthermore, tissue engineering human neocartilage via self-assembly in conjunction with TCL treatment advances the clinical use of extensively passaged human chondrocytes for cartilage repair.
Collapse
Affiliation(s)
- Heenam Kwon
- Biomedical Engineering, University of California Irvine, University of California Irvine, Irvine, California, 92697, UNITED STATES
| | - Wendy E Brown
- Biomedical Engineering, University of California Irvine, University of California Irvine, Irvine, California, 92697, UNITED STATES
| | - Siobhan A O'Leary
- Align Technology Inc, 2820 Orchard Pkwy, San Jose, California, 95134, UNITED STATES
| | - Jerry C Hu
- University of California Irvine, University of California Irvine, Irvine, California, 92697, UNITED STATES
| | - Kyriacos A Athanasiou
- Biomedical Engineering, University of California Irvine, University of California Irvine, Irvine, California, 92697, UNITED STATES
| |
Collapse
|
33
|
Borrelli C, Buckley CT. Injectable Disc-Derived ECM Hydrogel Functionalised with Chondroitin Sulfate for Intervertebral Disc Regeneration. Acta Biomater 2020; 117:142-155. [PMID: 33035694 DOI: 10.1016/j.actbio.2020.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Low back pain resulting from intervertebral disc (IVD) degeneration is a significant socioeconomic burden. The main effect of the degeneration process involves the alteration of the nucleus pulposus (NP) via cell-mediated enzymatic breakdown of key extracellular matrix (ECM) components. Thus, the development of injectable and biomimetic biomaterials that can instruct the regenerative cell component to produce tissue-specific ECM is pivotal for IVD repair. Chondroitin sulfate (CS) and type II collagen are the primary components of NP tissue and together create the ideal environment for cells to deposit de-novo matrix. Given their high matrix synthesis capacity potential post-expansion, nasal chondrocytes (NC) have been proposed as a potential cell source to promote NP repair. The overall goal of this study was to assess the effects of CS incorporation into disc derived self-assembled ECM hydrogels on the matrix deposition of NCs. Results showed an increased sGAG production with higher amounts of CS in the gel composition and that its presence was found to be critical for the synthesis of collagen type II. Taken together, our results demonstrate how the inclusion of CS into the composition of the material aids the preservation of a rounded cell morphology for NCs in 3D culture and enhances their ability to synthesise NP-like matrix.
Collapse
|
34
|
miR-23a-3p regulated by LncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5. Cell Tissue Res 2020; 383:723-733. [PMID: 32960357 DOI: 10.1007/s00441-020-03289-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Cartilage generation and degradation are controlled by miRNAs. Our previous study showed miR-23a-3p was downregulated during chondrogenic differentiation in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the present study, we explored the function of miR-23a-3p in chondrogenesis differentiation. The role of miR-23a-3p in chondrogenic differentiation potential of hADSCs was assessed by Alcian blue staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. We show that miR-23a-3p suppressed the chondrogenic differentiation of hADSCs. LncRNA SNHG5 interacted with miR-23a-3p, and suppression or overexpression of SNHG5 correlates with inhibition and promotion of hADSC chondrogenic differentiation, respectively. We have determined that SNHG5 can sponge miR-23a-3p to regulate the expression of SOX6/SOX5, transcription factors that play essential roles in chondrocyte differentiation. Furthermore, the overexpression of SNHG5 activates the JNK/MAPK/ERK pathway. In conclusion, miR-23a-3p regulated by lncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5.
Collapse
|
35
|
De Angelis E, Grolli S, Saleri R, Conti V, Andrani M, Berardi M, Cavalli V, Passeri B, Ravanetti F, Borghetti P. Platelet lysate reduces the chondrocyte dedifferentiation during in vitro expansion: Implications for cartilage tissue engineering. Res Vet Sci 2020; 133:98-105. [PMID: 32961475 DOI: 10.1016/j.rvsc.2020.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In vitro studies have demonstrated that platelet lysate (PL) can serve as an alternative to platelet-rich plasma (PRP) to sustain chondrocyte proliferation and production of extracellular matrix components in chondrocytes. The present study aimed to evaluate the direct effects of PL on equine articular chondrocytes in vitro in order to provide a rationale for in vivo use of PL. An in vitro cell proliferation and de-differentiation model was used: primary articular chondrocytes isolated from horse articular cartilage were cultured at low density under adherent conditions to promote cell proliferation. Chondrocytes were cultured in serum-free medium, 10% foetal bovine serum (FBS) supplemented medium, or in the presence of alginate beads containing 5%, 10% and 20% PL. Cell proliferation and gene expression of relevant chondrocyte differentiation markers were investigated. The proliferative capacity of cultured chondrocytes, was sustained more effectively at certain concentrations of PL as compared to that with FBS. In addition, as opposed to FBS, PL, particularly at percentages of 5% and 10%, could maintain the gene expression pattern of relevant chondrocyte differentiation markers. In particular, 5% PL supplementation showed the best compromise between chondrocyte proliferation capacity and maintenance of differentiation. The results of the present study provide a rationale for using PL as an alternative to FBS for in vitro expansion of chondrocytes for matrix-assisted chondrocyte implantation, construction of 3D scaffolds for tissue engineering, and treatment of damaged articular cartilage.
Collapse
Affiliation(s)
| | - Stefano Grolli
- Department of Veterinary Sciences, University of Parma, Italy
| | - Roberta Saleri
- Department of Veterinary Sciences, University of Parma, Italy
| | - Virna Conti
- Department of Veterinary Sciences, University of Parma, Italy
| | - Melania Andrani
- Department of Veterinary Sciences, University of Parma, Italy
| | - Martina Berardi
- Department of Veterinary Sciences, University of Parma, Italy
| | - Valeria Cavalli
- Department of Veterinary Sciences, University of Parma, Italy
| | | | | | - Paolo Borghetti
- Department of Veterinary Sciences, University of Parma, Italy
| |
Collapse
|
36
|
Influence of Conditioned Media on the Re-Differentiation Capacity of Human Chondrocytes in 3D Spheroid Cultures. J Clin Med 2020; 9:jcm9092798. [PMID: 32872610 PMCID: PMC7564315 DOI: 10.3390/jcm9092798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
A major challenge of cell-based therapy for cartilage lesions is the preservation of the chondrogenic phenotype during ex vivo cell cultivation. In this in vitro study, the chondro-inductive capacity of two different hyaline cartilage-conditioned cell culture media on human chondrocytes in 3D spheroids was determined. Media were conditioned by incubation of 200 mg/mL vital or devitalized cartilage matrix in growth media over 35 days. The media were analyzed for the content of soluble procollagen type (Col) II and glycosaminoglycans (GAGs) as well as released TGF-β1, IGF-1 and IGFBP3. Unconditioned medium served as a negative control while the positive medium control was supplemented with TGF-β1 and IGF-1. Spheroid cultures prepared from human chondrocytes were cultivated at 37 °C, 5% CO2 and 21% O2 in the respective media and controls. After 14 and 35 days, the deposition of ECM components was evaluated by histological analysis. Vital cartilage-conditioned medium contained significantly higher levels of Col II and active TGF-β1 compared to medium conditioned with the devitalized cartilage matrix. Despite these differences, the incubation with vital as well as devitalized cartilage conditioned medium led to similar results in terms of deposition of proteoglycans and collagen type II, which was used as an indicator of re-differentiation of human chondrocytes in spheroid cultures. However, high density 3D cell cultivation showed a positive influence on re-differentiation.
Collapse
|
37
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
38
|
Kachroo U, Livingston A, Vinod E, Sathishkumar S, Boopalan PRJVC. Comparison of Electrophysiological Properties and Gene Expression between Human Chondrocytes and Chondroprogenitors Derived from Normal and Osteoarthritic Cartilage. Cartilage 2020; 11:374-384. [PMID: 30139266 PMCID: PMC7298598 DOI: 10.1177/1947603518796140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Bone-marrow mesenchymal stem cells (MSCs) and chondrocytes are currently used for cell-based therapy in cartilage repair. Chondroprogenitors (CPs), resident cells of articular cartilage, demonstrate likeness to stem cells. Reports suggest that chondrocytes phenotype is altered in culture, thus making differentiation between the two cell populations difficult. Our objectives were to electrophysiologically assess chondrocytes and CPs, compare their mRNA expression with that of ionic channels already reported in MSCs, and to observe the effect of time in culture and osteoarthritic damage on cells. DESIGN AND RESULTS Chondrocytes and CPs at passages 0 (p0) and 5 (p5) derived from normal and osteoarthritic (OA) knee joints were used. Ionic currents were recorded by subjecting cells to depolarizing voltage pulses, and reverse transcriptase-polymerase chain reaction (RT-PCR) was used for studying ion channel expression. Our results demonstrated that both chondrocytes and CPs showed the presence of similar currents belonging to voltage-gated potassium channel subfamily, with RT-PCR confirming high mRNA expression of Maxi K, HKv1.1, HKv1.4, HKv4.2, and hEAG1 channels. Our finding also suggested that CPs were comparatively more sensitive to increased time in culture and inflammatory processes as observed in OA, as was evidenced by the significant decrease in mean current density (p0 normal CP: 183.171 ± 50.80 pA/pF; p5 normal CP: 50.225 ± 17.63 pA/pF; P = 0.0280) and significant increase in cellular size (p0 normal CP: 21.564 ± 2.98 pF; p0 OA CP: 37.939 ± 3.55 pF; P = 0.0057). CONCLUSION Both cell types appear to be optimal candidates for cell-based therapy although initial seeding density, cell source (normal vs. OA), and time in culture are matters of concern, prior to cell-type selection.
Collapse
Affiliation(s)
- Upasana Kachroo
- Department of Physiology, Christian
Medical College, Vellore, India
| | - Abel Livingston
- Department of Orthopaedics, Christian
Medical College, Vellore, India
| | - Elizabeth Vinod
- Department of Physiology, Christian
Medical College, Vellore, India,Centre for Stem Cell Research, Christian
Medical College, Vellore, India,Elizabeth Vinod, Department of Physiology,
Christian Medical College, Bagayam, Vellore 632002, Tamil Nadu, India.
| | | | - P. R. J. V. C. Boopalan
- Department of Orthopaedics, Christian
Medical College, Vellore, India,Centre for Stem Cell Research, Christian
Medical College, Vellore, India
| |
Collapse
|
39
|
Słynarski K, de Jong WC, Snow M, Hendriks JAA, Wilson CE, Verdonk P. Single-Stage Autologous Chondrocyte-Based Treatment for the Repair of Knee Cartilage Lesions: Two-Year Follow-up of a Prospective Single-Arm Multicenter Study. Am J Sports Med 2020; 48:1327-1337. [PMID: 32267734 DOI: 10.1177/0363546520912444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND There is an unmet need for a single-stage cartilage repair treatment that is cost-effective and chondrocyte-based. PURPOSE To evaluate the safety and preliminary efficacy of autologous freshly isolated primary chondrocytes and bone marrow mononucleated cells (MNCs) seeded into a PolyActive scaffold in patients with symptomatic cartilage lesions of the knee. STUDY DESIGN Case series; Level of evidence, 4. METHODS A total of 40 patients with symptomatic knee cartilage lesions were treated with freshly isolated autologous chondrocytes combined with bone marrow MNCs delivered in a biodegradable load-bearing scaffold. The treatment requires only 1 surgical intervention and is potentially a cost-effective alternative to autologous chondrocyte implantation. The primary chondrocytes and bone marrow MNCs were isolated, washed, counted, mixed, and seeded into a load-bearing scaffold in the operating room. Patients were followed up at 3, 6, 12, 18, and 24 months. Primary endpoints were treatment-related adverse events up to 3 months, adverse implant effects between 3 and 24 months, and the implant success rate at 3 months as measured by lesion filling. RESULTS Successful lesion filling (≥67% on magnetic resonance imaging) was found in 40 patients at 3 months and in 32 of the 32 patients analyzed at 24 months. Significant improvement over baseline was found for visual analog scale for pain from 3 months onward; Knee injury and Osteoarthritis Outcome Score (KOOS)-Pain and KOOS-Activities of Daily Living from 6 months onward; for KOOS-Symptoms and Stiffness, KOOS-Quality of Life and International Knee Documentation Committee from 12 months onward; and for KOOS-Sport and Recreation from 18 months onward. Hyaline-like repair tissue was found in 22 of 31 patients available for biopsy. Arthralgia and joint effusion were the most common adverse events. Scaffold delamination and adhesions led to removal of the implant in 2 patients. CONCLUSION The treatment of knee cartilage lesions with autologous primary chondrocytes and bone marrow MNCs, both isolated and seeded into a load-bearing PolyActive scaffold within a single surgical intervention, is safe and clinically effective. Good lesion fill and sustained clinically important and statistically significant improvement in all patient-reported outcome scores were found throughout the 24-month study. Hyaline-like cartilage was observed on biopsy specimen in at least 22 of the 40 patients. REGISTRATION NCT01041885 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
| | - Willem Cornelis de Jong
- Cartilage Repair Systems, LLC, New York, New York, USA.,CellCoTec BV, Bilthoven, the Netherlands
| | - Martyn Snow
- The Royal Orthopaedic Hospital, Birmingham, UK
| | | | - Clayton Ellis Wilson
- Cartilage Repair Systems, LLC, New York, New York, USA.,CellCoTec BV, Bilthoven, the Netherlands
| | - Peter Verdonk
- Antwerp Orthopedic Center, AZ Monica, Antwerp, Belgium.,Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
40
|
Akaraphutiporn E, Sunaga T, Bwalya EC, Echigo R, Okumura M. Alterations in characteristics of canine articular chondrocytes in non-passaged long-term monolayer culture: Matter of differentiation, dedifferentiation and redifferentiation. J Vet Med Sci 2020; 82:793-803. [PMID: 32350166 PMCID: PMC7324834 DOI: 10.1292/jvms.20-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study investigated the effects of culture time on phenotype stability of canine
articular chondrocytes (CACs) in non-passaged long-term monolayer culture. Third passage
(P3) CACs isolated from four cartilage samples were seeded at three different initial
seeding densities (0.2 × 104, 1.0 × 104 and 5.0 × 104
cells/cm2) and maintained in monolayer condition up to 8 weeks without
undergoing subculture after confluence. The characteristic changes of chondrocytes during
the culture period were evaluated based on the cell morphology, cell proliferation,
glycosaminoglycans (GAGs) content, DNA quantification, mRNA expression and ultrastructure
of chondrocytes. Chondrocytes maintained under post-confluence condition exhibited a
capability to grow and proliferate up to 4 weeks. Alcian blue staining and
Dimethylmethylene blue (DMMB) assay revealed that the extracellular matrix (ECM) synthesis
was increased in a time-dependent manner from 2 to 8 weeks. The chondrocyte mRNA
expression profile was dramatically affected by prolonged culture time, with a significant
downregulation of collagen type I, whereas the expression of
collagen type II, aggrecan, Sox9 and
matrix metalloproteinase 13 (MMP-13) were significantly upregulated. In
addition, transmission electron microscopy (TEM) result indicated dilation of rough
endoplasmic reticulum (RER) in these long-term monolayer cultured chondrocytes. These
findings demonstrate that the chondrocytes phenotype could be partially redifferentiated
through the spontaneous redifferentiation process in long-term cultures using standard
culture medium without the addition of chondrogenic supplements or tissue-culture
scaffolds.
Collapse
Affiliation(s)
- Ekkapol Akaraphutiporn
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Takafumi Sunaga
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Eugene C Bwalya
- Department of Clinical Studies, Samora Machel School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Ryosuke Echigo
- Veterinary Medical Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Masahiro Okumura
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
41
|
Establishment and characterization of an immortalized human chondrocyte cell line. Biotechnol Lett 2020; 42:707-716. [PMID: 32040675 DOI: 10.1007/s10529-020-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Following a specific number of mitotic divisions, primary chondrocytes undergo proliferative senescence, thwarting efforts to expand sufficient populations in vitro suitable to meet the needs of scientific research or medical therapies. Therefore, the human telomerase reverse transcriptase (TERT) was used to immortalize human chondrocyte and establish a cell line that escape from cellular senescence. RESULTS The human chondrocytes were successfully immortalized by ectopic stable expression of TERT. The established TERT-Chondrocyte cell line showed robust proliferation capacity, even in late passages up to P20, and displayed little cellular senescence. Moreover, TERT-Chondrocyte cells at 20th passage showed similar chondrocyte properties to normal chondrocytes at early passages. CONCLUSIONS Ectopic stable expression of TERT is an effective way to immortalized human chondrocyte. The immortalized chondrocytes displayed little cellular senescence, showed promise as an in vitro model to investigate osteoarthritis, and may be a promising resource for cell-based therapy for damaged cartilage.
Collapse
|
42
|
Jeon JH, Yun BG, Lim MJ, Kim SJ, Lim MH, Lim JY, Park SH, Kim SW. Rapid Cartilage Regeneration of Spheroids Composed of Human Nasal Septum-Derived Chondrocyte in Rat Osteochondral Defect Model. Tissue Eng Regen Med 2020; 17:81-90. [PMID: 31983036 DOI: 10.1007/s13770-019-00231-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cell-based therapies have been studied for articular cartilage regeneration. Articular cartilage defects have little treatments because articular cartilage was limited regenerative capacity. Damaged articular cartilage is difficult to obtain a successful therapeutic effect. In additionally these articular cartilage defects often cause osteoarthritis. Chondrocyte implantation is a widely available therapy used for regeneration of articular cartilage because this tissue has poor repair capacity after injury. Human nasal septum-drived chondrocytes (hNCs) from the septum show greater proliferation ability and chondrogenic capacity than human articular chondrocytes (hACs), even across different donors with different ages. Moreover, the chondrogenic properties of hNCs can be maintained after extensive culture expansion. METHODS In this study, 2 dimensional (2D) monolayer cultured hNCs (hNCs-2D) and 3 dimensional (3D) spheroids cultured hNCs (hNCs-3D) were examined for chondrogenic capacity in vitro by PCR and immunofluorescence staining for chondrogenic marker, cell survival during cultured and for cartilage regeneration ability in vivo in a rat osteochondral defect model. RESULTS hNCs-3D showed higher viability and more uniform morphology than 3D spheroids cultured hACs (hACs-3D) in culture. hNCs-3D also showed greater expression levels of the chondrocyte-specific marker Type II collagen (COL2A1) and sex-determining region Y (SRY)-box 9 (SOX9) than hNCs-2D. hNCs-3D also expressed chondrogenic markers in collagen. Specially, in the osteochondral defect model, implantation of hNCs-3D led to greater chondrogenic repair of focal cartilage defects in rats than implantation of hNCs-2D. CONCLUSION These data suggest that hNCs-3D are valuable therapeutic agents for repair and regeneration of cartilage defects.
Collapse
Affiliation(s)
- Jung Ho Jeon
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Byeong Gon Yun
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Min Jae Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok Jung Kim
- Orthopedic Department, Uijeongbu St. Mary's Hospital, 271 Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Mi Hyun Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Yeon Lim
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Department of Biomedicine and Health Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
43
|
Platelet-Rich Fibrin Facilitates One-Stage Cartilage Repair by Promoting Chondrocytes Viability, Migration, and Matrix Synthesis. Int J Mol Sci 2020; 21:ijms21020577. [PMID: 31963217 PMCID: PMC7014470 DOI: 10.3390/ijms21020577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/18/2023] Open
Abstract
The main aim of this study is to develop a one-stage method to combine platelet-rich fibrin (PRF) and autologous cartilage autografts for porcine articular cartilage repair. The porcine chondrocytes were treated with different concentrations of PRF-conditioned media and were evaluated for their cell viability and extracellular glycosaminoglycan (GAG) synthesis during six day cultivation. The chemotactic effects of PRF on chondrocytes on undigested cartilage autografts were revealed in explant cultures. For the in vivo part, porcine chondral defects were created at the medial femoral condyles of which were (1) left untreated, (2) implanted with PRF combined with hand-diced cartilage grafts, or (3) implanted with PRF combined with device-diced cartilage grafts. After six months, gross grades, histological, and immunohistochemical analyses were compared. The results showed that PRF promotes the viability and GAG expression of the cultured chondrocytes. Additionally, the PRF-conditioned media induce significant cellular migration and outgrowth of chondrocytes from undigested cartilage grafts. In the in vivo study, gross grading and histological scores showed significantly better outcomes in the treatment groups as compared with controls. Moreover, both treatment groups showed significantly more type II collagen staining and minimal type I collagen staining as compared with controls, indicating more hyaline-like cartilage and less fibrous tissue. In conclusion, PRF enhances the viability, differentiation, and migration of chondrocytes, thus, showing an appealing capacity for cartilage repair. The data altogether provide evidences to confirm the feasibility of a one-stage, culture-free method of combining PRF and cartilage autografts for repairing articular cartilage defects. From translational standpoints, these advantages benefit clinical applications by simplifying and potentiating the efficacy of cartilage autograft transplants.
Collapse
|
44
|
Yan J, Chen X, Pu C, Zhao Y, Liu X, Liu T, Pan G, Lin J, Pei M, Yang H, He F. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110286. [PMID: 31753397 PMCID: PMC9805357 DOI: 10.1016/j.msec.2019.110286] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023]
Abstract
Autologous chondrocyte implantation (ACI) is a promising approach to repair cartilage defects; however, the cartilage trauma-induced inflammatory environment compromises its clinical outcomes. Cell-derived decellularized extracellular matrix (DECM) has been used as a culture substrate for mesenchymal stem cells (MSCs) to improve the cell proliferation and lineage-specific differentiation. In this study, DECM deposited by synovium-derived MSCs was used as an in vitro expansion system for rabbit articular chondrocytes and the response of DECM-expanded chondrocytes to pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated. Compared with those grown on tissue culture polystyrene (TCPS), the proliferation rate was significantly improved in DECM-expanded chondrocytes. TCPS- and DECM-expanded chondrocytes were isolated and induced to redifferentiation in a high-density pellet culture. DECM-expanded chondrocytes exerted a stronger resistance to 1 ng/mL of IL-1β than TCPS-expanded cells, but the production of cartilage matrix in both groups was inhibited by 5 ng/mL of IL-1β. When exposed to 1 or 5 ng/mL of TNF-α, DECM-expanded chondrocytes showed higher levels of cartilage matrix synthesis than TCPS-expanded cells. In addition, the gene expression of IL-1β- or TNF-α-induced matrix degrading enzymes (MMP3, MMP9, MMP13, and ADAMTS5) was significantly lower in DECM-expanded chondrocytes than TCPS-expanded cells. Furthermore, we found that SIRT1 inhibition by nicotinamide completely counteracted the protective effect of DECM on chondrocytes in the presence of IL-1β or TNF-α, indicating that the SIRT1 signaling pathway was involved in the DECM-mediated enhancement of anti-inflammatory properties of chondrocytes. Taken together, this work suggests that stem cell-derived DECM is a superior culture substrate for in vitro chondrocyte expansion by improving proliferation and enhancing the anti-inflammatory properties of chondrocytes. DECM-expanded chondrocytes with enhanced anti-inflammatory properties hold great potential in clinically ACI-based cartilage repair.
Collapse
Affiliation(s)
- Jinku Yan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China,Clinical Sample Bank, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Chengbo Pu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yilang Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xiaozhen Liu
- Clinical Sample Bank, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Corresponding Authors: Tao Liu, M.D., Ph.D., Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China. Telephone: +86-512-67781420; Fax: +86-512-67781165;
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China,Fan He, Ph.D., Orthopaedic Institute, Soochow University, No.708 Renmin Road, Suzhou 215007, Jiangsu, China. Telephone: +86-512-67781420; Fax: +86-512-67781165;
| |
Collapse
|
45
|
Wang X, Song X, Li T, Chen J, Cheng G, Yang L, Chen C. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. Am J Sports Med 2019; 47:2316-2326. [PMID: 31233332 DOI: 10.1177/0363546519856355] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Recruitment of endogenous stem cells has been considered an alternative to cell injection/implantation in articular cartilage repair. PURPOSE (1) To develop a cartilage tissue-engineering scaffold with clinically available biomaterials and functionalize the scaffold with an aptamer (Apt19s) that specifically recognizes pluripotent stem cells. (2) To determine whether this scaffold could recruit joint-resident mesenchymal stem cells (MSCs) when implanted into an osteochondral defect in a rabbit model and to examine the effects of cartilage regeneration. STUDY DESIGN Controlled laboratory study. METHODS The reinforced scaffold was fabricated by embedding a silk fibroin sponge into silk fibroin/hyaluronic acid-tyramine hydrogel and characterized in vitro. A cylindrical osteochondral defect (3.2 mm wide × 4 mm deep) was created in the trochlear grooves of rabbit knees. The rabbits were randomly assigned into 3 groups: Apt19s-functionalized scaffold group, scaffold-only group, and control group. Animals were sacrificed at 6 and 12 weeks after transplantation. Repaired tissues were evaluated via gross examination, histologic examination, and immunohistochemistry. RESULTS In vitro, this aptamer-functionalized scaffold could recruit bone marrow-derived MSCs and support cell adhesion. In vivo, the aptamer-functionalized scaffold enhanced cell homing in comparison with the aptamer-free scaffold. The aptamer-functionalized scaffold group also exhibited superior cartilage restoration when compared with the scaffold-only group and the control group. CONCLUSION The Apt19s-functionalized scaffold exhibited the ability to recruit MSCs both in vitro and in vivo and achieved a better outcome of cartilage repair than the scaffold only or control in an osteochondral defect model. CLINICAL RELEVANCE The findings demonstrate a promising strategy of using aptamer-functionalized bioscaffolds for restoration of chondral/osteochondral defects via aptamer-introduced homing of MSCs.
Collapse
Affiliation(s)
- Xin Wang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiajia Chen
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Guotao Cheng
- College of Biotechnology, Southwest University, Chongqing, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Chen
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
47
|
Erne HC, Broer PN, Weiss F, Loew S, Cerny MK, Schmauss D, Ehrl DC. Four-corner fusion: Comparing outcomes of conventional K-wire-, locking plate-, and retrograde headless compression screw fixations. J Plast Reconstr Aesthet Surg 2019; 72:909-917. [DOI: 10.1016/j.bjps.2018.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 12/21/2022]
|
48
|
Diaz-Rodriguez P, Erndt-Marino J, Chen H, Diaz-Quiroz JF, Samavedi S, Hahn MS. A Bioengineered In Vitro Osteoarthritis Model with Tunable Inflammatory Environments Indicates Context-Dependent Therapeutic Potential of Human Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Zhang T, Yao Y. Effects of inflammatory cytokines on bone/cartilage repair. J Cell Biochem 2019; 120:6841-6850. [PMID: 30335899 DOI: 10.1002/jcb.27953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
Abstract
Many inflammatory factors can affect cell behaviors and work as a form of inter-regulatory networks through the inflammatory pathway. Inflammatory cytokines are critical for triggering bone regeneration after fracture or bone injury. Also, inflammatory cytokines play an important role in cartilage repair. The synergistic or antagonistic effects of both proinflammatory and anti-inflammatory cytokines have a great influence on fracture healing. This review discusses key inflammatory cytokines and signaling pathways involved in bone or cartilage repair.
Collapse
Affiliation(s)
- Tingshuai Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology And Implant Materials, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangdong Key Laboratory of Orthopaedic Technology And Implant Materials, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
McCutchan A, Dobson GP, Stewart N, Letson HL, Grant AL, Jovanovic IA, Hazratwala K, Wilkinson M, McEwen P, Morris J. Absence of cytotoxic and inflammatory effects following in vitro exposure of chondrogenically-differentiated human mesenchymal stem cells to adenosine, lidocaine and Mg 2+ solution. J Exp Orthop 2019; 6:16. [PMID: 30989345 PMCID: PMC6465392 DOI: 10.1186/s40634-019-0185-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background ALM solution, a combination of adenosine, lidocaine and Mg2+, is an emerging small volume therapy that has been shown to prevent and correct coagulopathy and surgery-related inflammation in preclinical models, though its application in orthopaedic surgery is yet to be demonstrated. The effect of ALM solution on chondrocytes is unknown. The aim of this preliminary study was to investigate the effect of ALM solution on viability and inflammatory responses of chondrogenically-differentiated human bone marrow-derived mesenchymal stem cells (chondro-MSC), in vitro. Methods Chondro-MSC were exposed to media only, saline (0.9% NaCl or 1.3% NaCl) only, or saline containing ALM (1 mM adenosine, 3 mM lidocaine, 2.5 mM Mg2+) or tranexamic acid (TXA, 100 mg/ml) for 1 or 4 h. Responses to ALM solutions containing higher lidocaine concentrations were also compared. Chondrocyte viability was determined using WST-8 colorimetric assays and inflammatory cytokine (TNF-α, IL-1β, IL-8) and matrix metalloproteinases (MMP-3, MMP-12, MMP-13) concentrations using multiplex bead arrays. Results The viability of chondro-MSC was significantly greater after 1 h treatment with ALM compared to saline (96.2 ± 7.9 versus 75.6 ± 7.3%). Extension of exposure times to 4 h had no significant adverse effect on cell viability after treatment with ALM (1 h, 85.4 ± 5.6 v 4 h, 74.0 ± 15.2%). Cytotoxicity was evident following exposure to solutions containing lidocaine concentrations greater than 30 mM. There were no significant differences in viability (80 ± 5.4 v 57.3 ± 16.2%) or secretion of IL-8 (60 ± 20 v 160 ± 50 pg/ml), MMP-3 (0.95 ± 0.6 v 3.4 ± 1.6 ng/ml), and MMP-13 (4.2 ± 2.4 v 9.2 ± 4.3 ng/ml) in chondro-MSC exposed to saline, ALM or TXA. Conclusions Short-term, in vitro exposure to clinically-relevant concentrations of ALM solution had no adverse inflammatory or chondrotoxic effects on human chondro-MSC, with responses comparable to saline and TXA. These findings provide support for continued evaluation of ALM solution as a possible therapeutic to improve outcomes following orthopaedic procedures.
Collapse
Affiliation(s)
- Andrew McCutchan
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Natalie Stewart
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Andrea L Grant
- The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | | | - Kaushik Hazratwala
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Matthew Wilkinson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Peter McEwen
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Jodie Morris
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia. .,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia.
| |
Collapse
|