1
|
Pershina EG, Morozova KN, Bgatova NP. Ultrastructural organization of the liver of rat pups in early postnatal ontogenesis when pregnant and lactating rats are kept on a low-protein diet. Ultrastruct Pathol 2025; 49:93-107. [PMID: 39676344 DOI: 10.1080/01913123.2024.2441933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Protein deficiency in the diet during pregnancy and lactation has a serious impact on the offspring by programming a predisposition to such serious diseases as hypertension and type 2 diabetes mellitus. In our study, we examined liver ultrastructure of rat pups at ages 2, 21, and 40 days with maternal protein deficiency. Body weight of the pups progressively lagged behind the control throughout the experiment, and the timing of eye opening indicated a slowdown of development. In the liver of 2-day-old animals, the proportion of hematopoietic cells at early stages of differentiation was higher as compared to the control. At the ultrastructural level, no obvious pathological changes were revealed, but a decrease in the amount of organelles was observed simultaneously with accumulation of lipids and glycogen. In the course of the experiment, a progressive decrease in the amount of the rough endoplasmic reticulum and ribosomes and increasing accumulation of glycogen in the cytoplasm of hepatocytes were noted. The most pronounced difference in ultrastructure between periportal and pericentral hepatocytes of control rat pups was detected on the 40th day of development, whereas in the low-protein diet group, the difference was weakly pronounced throughout the experiment. Thus, we showed that with prenatal and early postnatal protein deficiency, the growth and development of rat pups slows down, and glycogen accumulates excessively in the liver concurrently with a decrease in the amount of organelles.
Collapse
Affiliation(s)
- Elena G Pershina
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, National Research Novosibirsk State University, Novosibirsk, Russia
| | - Ksenia N Morozova
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, National Research Novosibirsk State University, Novosibirsk, Russia
| | - Nataliya P Bgatova
- Sector of Structural Cell Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Laboratory of Ultrastructural Research, Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| |
Collapse
|
2
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
3
|
Dai Y, Peng Y, Lu Z, Mao T, Chen K, Lu X, Liu K, Zhou X, Hu W, Wang H. Prenatal prednisone exposure impacts liver development and function in fetal mice and its characteristics. Toxicol Sci 2024; 199:63-80. [PMID: 38439560 DOI: 10.1093/toxsci/kfae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Prednisone, a widely used glucocorticoid drug in human and veterinary medicine, has been reported to cause developmental toxicity. However, systematic studies about the effect of prednisone on fetal liver development are still unclear. We investigated the potential effects of maternal exposure to clinically equivalent doses of prednisone during different gestational stages on cell proliferation and apoptosis, cell differentiation, glucose and lipid metabolism, and hematopoiesis in the liver of fetal mice, and explored the potential mechanisms. Results showed that prenatal prednisone exposure (PPE) could suppress cell proliferation, inhibit hepatocyte differentiation, and promote cholangiocyte differentiation in the fetal liver. Meanwhile, PPE could result in the enhancement of glyconeogenesis and bile acid synthesis and the inhibition of fatty acid β-oxidation and hematopoiesis in the fetal liver. Further analysis found that PPE-induced alterations in liver development had obvious stage and sex differences. Overall, the alteration in fetal liver development and function induced by PPE was most pronounced during the whole pregnancy (GD0-18), and the males were relatively more affected than the females. Additionally, fetal hepatic insulin-like growth factor 1 (IGF1) signaling pathway was inhibited by PPE. In conclusion, PPE could impact fetal liver development and multiple functions, and these alterations might be partially related to the inhibition of IGF1 signaling pathway.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Yu Peng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Zhengjie Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Kexin Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Wen Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province 430071, China
| |
Collapse
|
4
|
Vidyadharan VA, Blesson CS, Tanchico D, Betancourt A, Smith C, Yallampalli C. Low Protein Programming Causes Increased Mitochondrial Fusion and Decreased Oxygen Consumption in the Hepatocytes of Female Rats. Nutrients 2023; 15:1568. [PMID: 37049409 PMCID: PMC10097083 DOI: 10.3390/nu15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The liver is one of the major organs involved in the regulation of glucose and lipid homeostasis. The effectiveness of metabolic activity in hepatocytes is determined by the quality and quantity of its mitochondria. Mitochondrial function is complex, and they act via various dynamic networks, which rapidly adapt to changes in the cellular milieu. Our present study aims to investigate the effects of low protein programming on the structure and function of mitochondria in the hepatocytes of adult females. Pregnant rats were fed with a control or isocaloric low-protein diet from gestational day 4 until delivery. A normal laboratory chow was given to all dams after delivery and to pups after weaning. The rats were euthanized at 4 months of age and the livers were collected from female offspring for investigating the mitochondrial structure, mtDNA copy number, mRNA, and proteins expression of genes associated with mitochondrial function. Primary hepatocytes were isolated and used for the analysis of the mitochondrial bioenergetics profiles. The mitochondrial ultrastructure showed that the in utero low-protein diet exposure led to increased mitochondrial fusion. Accordingly, there was an increase in the mRNA and protein levels of the mitochondrial fusion gene Opa1 and mitochondrial biogenesis genes Pgc1a and Essra, but Fis1, a fission gene, was downregulated. Low protein programming also impaired the mitochondrial function of the hepatocytes with a decrease in basal respiration ATP-linked respiration and proton leak. In summary, the present study suggests that the hepatic mitochondrial dysfunction induced by an in utero low protein diet might be a potential mechanism linking glucose intolerance and insulin resistance in adult offspring.
Collapse
Affiliation(s)
- Vipin A. Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S. Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Daren Tanchico
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Protein Requirements of Oncorhynchus mykiss Cultured in the Convection-Water Cages by Evaluating Growth, Body Composition and Liver Health. Foods 2023; 12:foods12010175. [PMID: 36613391 PMCID: PMC9818468 DOI: 10.3390/foods12010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
The diet formulation for trout has changed dramatically over the last decade due to changes in the ingredient markets and advances in feed processing technology. The protein requirements of Oncorhynchus mykiss were established at the end of the last century, and it is unclear whether these requirements are applicable to modern dietary formulations. Therefore, an eight-week feeding trial was performed to measure the protein requirements of O. mykiss by evaluating growth, body composition, antioxidation property, innate immune response and liver morphology. The five experimental diets were prepared to contain the same levels of crude lipid (120 g/kg) and graded levels of crude protein (356.3, 383.9, 411.5, 439.2 and 466.8 g/kg). The results suggested that the growth, feed utilization and whole-body crude protein levels were significantly increased when fish were fed diets containing 439.2 and 466.8 g/kg crude protein. Meanwhile, low dietary protein levels (356.3 and 383.9 g/kg) significantly down-regulated the mRNA levels of insulin-like growth factor I, catalase, glutathione peroxidase, superoxide dismutase, complement 3 and lysozyme, and also up-regulated the insulin-like growth factor binding protein 1 as well as proinflammatory cytokine expression in the liver, including interleukin 1β, interleukin 8 and tumor necrosis factor-α. Moreover, low dietary protein levels (356.3 and 383.9 g/kg) damaged liver structure, suppressed total antioxidative capacity and increased the malondialdehyde content in liver. In conclusion, high dietary protein (439.2 and 466.8 g/kg) promoted fish growth, while low dietary protein (356.3 and 383.9 g/kg) damaged liver structure, induced oxidative stress and inflammatory responses and weakened non-specific immunity. The protein requirement of O. mykiss reared in the convection-water cages is no less than 439.2 g/kg for optimal growth, antioxidant and immune properties.
Collapse
|
6
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Vipin VA, Blesson CS, Yallampalli C. Maternal low protein diet and fetal programming of lean type 2 diabetes. World J Diabetes 2022; 13:185-202. [PMID: 35432755 PMCID: PMC8984567 DOI: 10.4239/wjd.v13.i3.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Maternal nutrition is found to be the key factor that determines fetal health in utero and metabolic health during adulthood. Metabolic diseases have been primarily attributed to impaired maternal nutrition during pregnancy, and impaired nutrition has been an immense issue across the globe. In recent years, type 2 diabetes (T2D) has reached epidemic proportion and is a severe public health problem in many countries. Although plenty of research has already been conducted to tackle T2D which is associated with obesity, little is known regarding the etiology and pathophysiology of lean T2D, a variant of T2D. Recent studies have focused on the effects of epigenetic variation on the contribution of in utero origins of lean T2D, although other mechanisms might also contribute to the pathology. Observational studies in humans and experiments in animals strongly suggest an association between maternal low protein diet and lean T2D phenotype. In addition, clear sex-specific disease prevalence was observed in different studies. Consequently, more research is essential for the understanding of the etiology and pathophysiology of lean T2D, which might help to develop better disease prevention and treatment strategies. This review examines the role of protein insufficiency in the maternal diet as the central driver of the developmental programming of lean T2D.
Collapse
Affiliation(s)
- Vidyadharan Alukkal Vipin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Chellakkan Selvanesan Blesson
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
- Family Fertility Center, Texas Children's Hospital, Houston, TX 77030, United States
| | - Chandra Yallampalli
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
8
|
Maternal Protein Restriction and Post-Weaning High-Fat Feeding Alter Plasma Amino Acid Profiles and Hepatic Gene Expression in Mice Offspring. Foods 2022; 11:foods11050753. [PMID: 35267386 PMCID: PMC8909731 DOI: 10.3390/foods11050753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal undernutrition during pregnancy is closely associated with epigenetic changes in the child, and it affects the development of obesity throughout the child’s life. Here, we investigate the effect of fetal low protein exposure and post-weaning high-fat consumption on plasma amino acid profiles and hepatic gene expression. Mother C57BL/6J mice were fed a 20% (CN) or 9% (LP) casein diet during pregnancy. After birth, the male offspring of both these groups were fed a high-fat diet (HF) from 6 to 32 weeks. At 32 weeks, the final body weight between the two groups remained unchanged, but the LP-HF group showed markedly higher white fat weight and plasma leptin levels. The LP-HF group exhibited a significant increase in the concentrations of isoleucine, leucine, histidine, phenylalanine, serine, and tyrosine. However, no differences were observed in the lipid content in the liver. According to the hepatic gene expression analysis, the LP-HF group significantly upregulated genes involved in the chromatin modification/organization pathways. Thus, maternal low protein and a post-weaning high-fat environment contributed to severe obesity states and changes in gene expression related to hepatic chromatin modification in offspring. These findings provide novel insights for the prevention of lifestyle-related diseases at the early life stage.
Collapse
|
9
|
Mutare S, Feehan J, Cheikh Ismail L, Ali HI, Stojanovska L, Shehab A, Khair H, Ali R, Hwalla N, Kharroubi S, Hills AP, Fernandes M, Al Dhaheri AS. The First United Arab Emirates National Representative Birth Cohort Study: Study Protocol. Front Pediatr 2022; 10:857034. [PMID: 35463875 PMCID: PMC9021697 DOI: 10.3389/fped.2022.857034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In recent years, the prevalence of non-communicable diseases (NCDs) has escalated. Evidence suggests that there are strong associations between nutrition in early life and the risk of disease in adulthood. This manuscript describes the study protocol of the First United Arab Emirates National Representative Birth Cohort Study (UAE-BCS), with the objective of investigating nutrition and lifestyle factors in the first 1,000 days of life. The main aims of the study are (1) to address critical issues relating to mother and child nutrition and their effect on growth and development, (2) to profile maternal nutrition, child growth, health, and development outcomes in early life, and (3) to study the associations between these factors among the Emirati population in the UAE. METHODS/DESIGN In this study, a multidisciplinary team of researchers was established including credible researchers from the UAE, Lebanon, Australia, and the United Kingdom to launch the First United Arab Emirates 3-year birth cohort study. We aim to recruit 260 pregnant Emirati women within their first trimester, which is defined by the study as from 8 to 12 weeks pregnant, from obstetrics and gynecology clinics in the UAE. Participants will be recruited via face-to-face interviews and will receive a total of 11 visits with 1 visit in each trimester of pregnancy and 8 visits after delivery. Maternal data collection includes, socio-demographic and lifestyle factors, dietary intake, anthropometric measurements, physical activity, maternal psychological state, and blood samples for biochemical analysis. Post-partum, visits will take place when the child is 0.5, 4, 6, 9, 12, 18, and 24 months old, with data collection including infant anthropometric measurements, young child feeding practices, dietary intake, supplement use and the eating environment at home, as well as all maternal data collection described above, apart from blood samples. Additional data collection for the child includes early child developmental assessments taking place at three timepoints: (1) within 2 weeks of birth, (2) at 10-14 months and (3) at 22-26 months of age. Early child developmental assessments for the infant include vision, hearing, cognition, motor skills, social-emotional reactivity, neurodevelopmental, and sleep assessments. DISCUSSION The United Arab Emirates Birth Cohort study protocol provides a standardized model of data collection methods for collaboration among the multisectoral teams within the United Arab Emirates to enrich the quality and research efficiency in early nutrition, thereby enhancing the health of mothers, infants, and children.
Collapse
Affiliation(s)
- Sharon Mutare
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Habiba I Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Abdullah Shehab
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Howaida Khair
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Raghib Ali
- Public Health Research Centre, New York University, Abu Dhabi, United Arab Emirates
| | - Nahla Hwalla
- Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Samer Kharroubi
- Faculty of Agriculture and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Andrew P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS, Australia
| | - Michelle Fernandes
- MRC Lifecourse Epidemiology Centre and Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Nuffield Department of Women's & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ayesha Salem Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
de Morais Oliveira DA, Lupi LA, Silveira HS, de Almeida Chuffa LG. Protein restriction during puberty alters nutritional parameters and affects ovarian and uterine histomorphometry in adulthood in rats. Int J Exp Pathol 2021; 102:93-104. [PMID: 33729619 PMCID: PMC7981593 DOI: 10.1111/iep.12388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
In a large part of the population inefficient ingestion of proteins, whether for cultural, aesthetic or economic reasons, is a global concern. Low-protein diets can cause severe functional complications, mainly during the development and maturation of organs and systems, including the female reproductive system. The present study investigated the effect of nutritional protein restriction during puberty on the oestrous cycle and expression of sex steroid receptors (AR, ERα e ERβ) in ovarian and uterine tissues of adult rats. Protein restriction promoted lower body weight gain, feed efficiency and higher caloric intake. There was an increase in the oestrus phase arrest without changing the total length of the oestrous cycle. The consumption of low-protein diet also reduced the thickness of the uterine endometrium (uterine epithelium and endometrial stroma) in addition to increasing the number of primary and atretic follicles in the ovaries. Furthermore, the low-protein diet reduced the levels of androgen receptor (AR) and increased the oestrogen receptor β (ERβ) in the ovary, while no significant changes were observed in the uterus. Our study reinforces the importance of adequate protein intake during puberty, since physiological changes in this developmental period interfere with the histomorphometry of the ovaries and uteri, possibly resulting in impaired folliculogenesis and fertility in the reproductive period.
Collapse
Affiliation(s)
- Diego Augusto de Morais Oliveira
- Department of Structural and Functional BiologyInstitute of BiosciencesUNESP ‐ São Paulo State UniversityBotucatu, São PauloBrazil
- Graduate Program in NutritionInstitute of Biosciences of BotucatuUNESPSão PauloBrazil
| | - Luiz Antonio Lupi
- Department of Structural and Functional BiologyInstitute of BiosciencesUNESP ‐ São Paulo State UniversityBotucatu, São PauloBrazil
| | - Henrique Spaulonci Silveira
- Department of Structural and Functional BiologyInstitute of BiosciencesUNESP ‐ São Paulo State UniversityBotucatu, São PauloBrazil
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional BiologyInstitute of BiosciencesUNESP ‐ São Paulo State UniversityBotucatu, São PauloBrazil
| |
Collapse
|
11
|
Zhang D, Liu K, Hu W, Lu X, Li L, Zhang Q, Huang H, Wang H. Prenatal dexamethasone exposure caused fetal rats liver dysplasia by inhibiting autophagy-mediated cell proliferation. Toxicology 2021; 449:152664. [PMID: 33359579 DOI: 10.1016/j.tox.2020.152664] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
As a synthetic glucocorticoid, dexamethasone has been widely used in the clinical treatment of premature birth and related pregnant diseases, but its clinical use is still controversial due to developmental toxicity. This study aimed to confirm the proliferation inhibitory effect of pregnant dexamethasone exposure (PDE) on fetal liver development and elucidate its molecular mechanism. In vitro studies, we found that dexamethasone inhibited hepatocyte proliferation through autophagy activated by glucocorticoid receptor (GR)-forkhead protein O1 (FOXO1) pathway. Subsequently, in vivo, we confirmed in a PDE rat model that male fetal liver proliferation was inhibited, and the expression of the GR-FOXO1 pathway and autophagy were increased. Taken together, PDE induces autophagy by activating the GR-FOXO1 pathway, which leads to fetal liver proliferation inhibition and dysplasia in offspring rats. This study confirmed that dexamethasone activates cell autophagy in utero through the GR-FOXO1 pathway, thereby inhibiting hepatocyte proliferation and liver development, which provides theoretical basis for understanding the developmental toxicity of dexamethasone and guiding the rational clinical use.
Collapse
Affiliation(s)
- Dingmei Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Kexin Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Wen Hu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Li Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Hegui Huang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Wuhan No.1 Hospital, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
12
|
de Toro-Martín J, Fernández-Marcelo T, González-Rodríguez Á, Escrivá F, Valverde ÁM, Álvarez C, Fernández-Millán E. Defective liver glycogen autophagy related to hyperinsulinemia in intrauterine growth-restricted newborn wistar rats. Sci Rep 2020; 10:17651. [PMID: 33077861 PMCID: PMC7573689 DOI: 10.1038/s41598-020-74702-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/01/2020] [Indexed: 02/07/2023] Open
Abstract
Maternal malnutrition plays a critical role in the developmental programming of later metabolic diseases susceptibility in the offspring, such as obesity and type 2 diabetes. Because the liver is the major organ that produces and supplies blood glucose, we aimed at defining the potential role of liver glycogen autophagy in the programming of glucose metabolism disturbances. To this end, newborns were obtained from pregnant Wistar rats fed ad libitum with a standard diet or 65% food-restricted during the last week of gestation. We found that newborns from undernourished mothers showed markedly high basal insulin levels whereas those of glucagon were decreased. This unbalance led to activation of the mTORC1 pathway and inhibition of hepatic autophagy compromising the adequate handling of glycogen in the very early hours of extrauterine life. Restoration of autophagy with rapamycin but not with glucagon, indicated no defect in autophagy machinery per se, but in signals triggered by glucagon. Taken together, these results support the notion that hyperinsulinemia is an important mechanism by which mobilization of liver glycogen by autophagy is defective in food-restricted animals. This early alteration in the hormonal control of liver glycogen autophagy may influence the risk of developing metabolic diseases later in life.
Collapse
Affiliation(s)
- Juan de Toro-Martín
- Centre Nutrition, Santé et Société (NUTRISS)-Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec City, QC, Canada
| | - Tamara Fernández-Marcelo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain
| | - Águeda González-Rodríguez
- Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), ISCIII, Madrid, Spain
| | - Fernando Escrivá
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ángela M Valverde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIBm) (CSIC/UAM), C/ Arturo Duperier 4, 28029, Madrid, Spain
| | - Carmen Álvarez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Elisa Fernández-Millán
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, 28029, Madrid, Spain. .,Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, UCM, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| |
Collapse
|
13
|
Kakadia JH, Jain BB, Biggar K, Sutherland A, Nygard K, Li C, Nathanielsz PW, Jansson T, Gupta MB. Hyperphosphorylation of fetal liver IGFBP-1 precedes slowing of fetal growth in nutrient-restricted baboons and may be a mechanism underlying IUGR. Am J Physiol Endocrinol Metab 2020; 319:E614-E628. [PMID: 32744097 PMCID: PMC7642856 DOI: 10.1152/ajpendo.00220.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In cultured fetal liver cells, insulin-like growth factor (IGF) binding protein (IGFBP)-1 hyperphosphorylation in response to hypoxia and amino acid deprivation is mediated by inhibition of mechanistic target of rapamycin (mTOR) and activation of amino acid response (AAR) signaling and casein kinase (CK)2. We hypothesized that fetal liver mTOR inhibition, activation of AAR and CK2, and IGFBP-1 hyperphosphorylation occur before development of intrauterine growth restriction (IUGR). Pregnant baboons were fed a control (C) or a maternal nutrient restriction (MNR; 70% calories of control) diet starting at gestational day (GD) 30 (term GD 185). Umbilical blood and fetal liver tissue were obtained at GD 120 (C, n = 7; MNR, n = 10) and 165 (C, n = 7; MNR, n = 8). Fetal weights were unchanged at GD 120 but decreased at GD 165 in the MNR group (-13%, P = 0.03). IGFBP-1 phosphorylation, as determined by parallel reaction monitoring mass spectrometry (PRM-MS), immunohistochemistry, and/or Western blot, was enhanced in MNR fetal liver and umbilical plasma at GD 120 and 165. IGF-I receptor autophosphorylationTyr1135 (-64%, P = 0.05) was reduced in MNR fetal liver at GD 120. Furthermore, fetal liver CK2 (α/α'/β) expression, CK2β colocalization, proximity with IGFBP-1, and CK2 autophosphorylationTyr182 were greater at GD 120 and 165 in MNR vs. C. Additionally, mTOR complex (mTORC)1 (p-P70S6KThr389, -52%, P = 0.05) and mTORC2 (p-AktSer473, -56%, P < 0.001) activity were decreased and AAR was activated (p-GCN2Thr898, +117%, P = 0.02; p-eIF2αSer51, +294%, P = 0.002; p-ERKThr202, +111%, P = 0.03) in MNR liver at GD 120. Our data suggest that fetal liver IGFBP-1 hyperphosphorylation, mediated by mTOR inhibition and both AAR and CK2 activation, is a key link between restricted nutrient and oxygen availability and the development of IUGR.
Collapse
Affiliation(s)
- Jenica H Kakadia
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Bhawani B Jain
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Austen Sutherland
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Cun Li
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Peter W Nathanielsz
- University of Wyoming, Laramie, Wyoming
- Southwest National Primate Research Center, San Antonio, Texas
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
14
|
Ajuogu PK, Wolden M, McFarlane JR, Hart RA, Carlson DJ, Van der Touw T, Smart NA. Effect of low- and high-protein maternal diets during gestation on reproductive outcomes in the rat: a systematic review and meta-analysis. J Anim Sci 2020; 98:5680668. [PMID: 31853549 DOI: 10.1093/jas/skz380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/17/2019] [Indexed: 01/17/2023] Open
Abstract
Studies with animal models have consistently demonstrated adverse health outcomes in offspring born following nutritional manipulation during gestation. However, the effects of gestational dietary protein modification on reproductive outcomes at birth are less clear. We, therefore, conducted a systematic review and meta-analysis of controlled trials to determine whether high- or low-protein diets are associated with altered reproductive outcomes in a commonly studied species, the rat. Included studies were identified through a systematic search using electronic databases and manual literature review to identify randomized studies published between June 1972 and March 2019. Thirty-two studies were identified and used to analyze the effects of low- and high-protein gestational diets on litter size, litter weight, gestational weight gain, and gestational feed intake. The results indicate that low-protein diets significantly reduced litter weight (P < 0.00001) and gestational weight gain (P < 0.0006), but did not influence litter size (P = 0.62) or gestational feed intake (P = 0.25). In contrast, high-protein diets were found to reduce gestational feed intake (P = 0.004) but did not influence litter size (P = 0.56), litter weight (P = 0.22), or gestational weight gain (P = 0.35). The results suggest that low but not high-protein gestational diets alter reproductive outcomes at birth in rats.
Collapse
Affiliation(s)
- Peter K Ajuogu
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mitchell Wolden
- Physical Therapy Program, University of Jamestown, Fargo, ND
| | - James R McFarlane
- Centre for Bioactive Discovery in Health and Ageing, University of New England, Armidale, NSW, Australia
| | - Robert A Hart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Debra J Carlson
- School of Health, Medical and Applied Sciences, Central Queensland University Australia, North Rockhampton, QLD, Australia
| | - Tom Van der Touw
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
15
|
Hitting a triple in the non-alcoholic fatty liver disease field: sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed a gestational low-protein diet. J Dev Orig Health Dis 2017; 9:151-159. [PMID: 29249214 DOI: 10.1017/s204017441700099x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The excessive consumption of carbohydrates is related to non-alcoholic fatty liver disease (NAFLD) in infants and adults. The effect of combining maternal malnutrition and a high carbohydrate intake on the development of NAFLD in adulthood remains unknown. We therefore hypothesized that consumption of 5% sucrose by the offspring of dams fed a low-protein diet during pregnancy promotes liver fat accumulation and oxidative damage differently in females and males. To test this, 12-month-old female and male offspring of mothers fed a Control (C) or low-protein diet (Restricted, R) were provided with either tap water or 5% sucrose for a period of 10 weeks. Livers were excised to measure the fat content and 3-nitrotyrosine (3-NTyr) immunostaining; serum samples were also obtained to measure the concentration of malondialdehyde (MDA). Data were analyzed using a non-repeated measures three-way analysis of variance to determine significant differences (P<0.05) regarding to the interaction among maternal diet, sucrose consumption and sex. Results showed that the liver fat content of females from R mothers was higher than that of their male counterpart. Hepatic 3-NTyr immunostaining and serum MDA concentrations were not affected by the interaction involving maternal diet, sucrose consumption and sex. Otherwise, liver fat content was correlated with the hepatic 3-NTyr immunostaining and serum MDA concentrations only in females. Thus, sucrose intake in adulthood increases fat content in the female but not in the male rat offspring of dams fed with a low-protein diet during pregnancy. This research emphasizes the importance of a balanced diet during pregnancy and the influence of the diet on the adult offspring.
Collapse
|
16
|
Naja F, Nasreddine L, Al Thani AA, Yunis K, Clinton M, Nassar A, Farhat Jarrar S, Moghames P, Ghazeeri G, Rahman S, Al-Chetachi W, Sadoun E, Lubbad N, Bashwar Z, Bawadi H, Hwalla N. Study protocol: Mother and Infant Nutritional Assessment (MINA) cohort study in Qatar and Lebanon. BMC Pregnancy Childbirth 2016; 16:98. [PMID: 27146913 PMCID: PMC4855720 DOI: 10.1186/s12884-016-0864-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/06/2016] [Indexed: 01/04/2023] Open
Abstract
Background The Middle East and North Africa region harbors significant proportions of stunting and wasting coupled with surging rates of non-communicable diseases (NCDs). Recent evidence identified nutrition during the first 1000 days of life as a common denominator not only for optimal growth but also for curbing the risk of NCDs later in life. The main objective of this manuscript is to describe the protocol of the first cohort in the region to investigate the association of nutrition imbalances early in life with birth outcomes, growth patterns, as well as early determinants of non-communicable diseases. More specifically the cohort aims to1) examine the effects of maternal and early child nutrition and lifestyle characteristics on birth outcomes and growth patterns and 2) develop evidence-based nutrition and lifestyle guidelines for pregnant women and young children. Methods/design A multidisciplinary team of researchers was established from governmental and private academic and health sectors in Lebanon and Qatar to launch the Mother and Infant Nutritional Assessment 3-year cohort study. Pregnant women (n = 250 from Beirut, n = 250 from Doha) in their first trimester are recruited from healthcare centers in Beirut, Lebanon and Doha, Qatar. Participants are interviewed three times during pregnancy (once every trimester) and seven times at and after delivery (when the child is 4, 6, 9, 12, 18, and 24 months old). Delivery and birth data is obtained from hospital records. Data collection includes maternal socio-demographic and lifestyle characteristics, dietary intake, anthropometric measurements, and household food security data. For biochemical assessment of various indicators of nutritional status, a blood sample is obtained from women during their first trimester. Breastfeeding and complementary feeding practices, dietary intake, as well as anthropometric measurements of children are also examined. The Delphi technique will be used for the development of the nutrition and lifestyle guidelines. Discussion The Mother and Infant Nutritional Assessment study protocol provides a model for collaborations between countries of different socio-economic levels within the same region to improve research efficiency in the field of early nutrition thus potentially leading to healthier pregnancies, mothers, infants, and children. Electronic supplementary material The online version of this article (doi:10.1186/s12884-016-0864-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Naja
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Lara Nasreddine
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Al Anoud Al Thani
- Health Promotion and Non Communicable Disease Prevention Division, Supreme Council of Health, Al Rumaila West, Doha, Qatar
| | - Khaled Yunis
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Michael Clinton
- Social and Behavioral Institutional Review Board, American University of Beirut, Beirut, Lebanon
| | - Anwar Nassar
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sara Farhat Jarrar
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Patricia Moghames
- Department of Nutrition and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ghina Ghazeeri
- Department of Obstetrics and Gynecology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sajjad Rahman
- Department of Pediatrics, Al Ahli Hospital, Doha, Qatar
| | - Walaa Al-Chetachi
- Health Promotion and Non Communicable Disease Prevention Division, Supreme Council of Health, Al Rumaila West, Doha, Qatar
| | - Eman Sadoun
- Department of Healthcare Quality Management, Supreme Council of Health, Doha, Qatar
| | - Nibal Lubbad
- Department of Family Medicine, Primary Health Care Corporation, Doha, Qatar
| | - Zelaikha Bashwar
- Department of Family Medicine, Primary Health Care Corporation, Doha, Qatar
| | - Hiba Bawadi
- Department of Health Sciences, Qatar University, Doha, Qatar
| | - Nahla Hwalla
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
17
|
Moraes C, Rebelato HJ, Amaral MEC, Resende TM, Silva EVC, Esquisatto MAM, Catisti R. Effect of maternal protein restriction on liver metabolism in rat offspring. J Physiol Sci 2014; 64:347-55. [PMID: 24994532 PMCID: PMC10717648 DOI: 10.1007/s12576-014-0325-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
Abstract
Consequences of gestational protein restriction (GPR) on liver metabolism in rat offspring were investigated. Pregnant dams were divided into groups: normal (NP, 17% casein) or low-protein diet (LP, 6% casein). Livers were collected from 30-day-old offspring (d30) for analysis or isolation of mitochondria. At d30, hepatic and muscle glycogen was increased in LP group. Mitochondrial swelling and oxygen uptake (recorded with a Clark-type electrode) were significantly reduced in NP female and LP pups. Thiobarbituric acid reactive substances production was lower in females (NP or LP), suggesting significant inhibition of lipid peroxidation. Measurement of mitochondrial respiration (states 3 and 4 stimulated by succinate) showed a higher ADP/O ratio in LP pups, particularly females, suggesting higher phosphorylation efficiency. In the 1st month of life, under our experimental conditions, GPR protects liver mitochondria against oxidative stress and females seem to be more resistant or more suitable for survival.
Collapse
Affiliation(s)
- Camila Moraes
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Hércules J. Rebelato
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Maria Esmeria C. Amaral
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Thais Marangoni Resende
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Eduarda V. C. Silva
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Marcelo A. M. Esquisatto
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| | - Rosana Catisti
- Biomedical Sciences Graduate Program, Centro Universitário Hermínio Ometto, Uniararas, Av Maximiliano Baruto 500, 13607-339 Araras, SP Brazil
| |
Collapse
|
18
|
Iqbal W, Ciriello J. Effect of maternal chronic intermittent hypoxia during gestation on offspring growth in the rat. Am J Obstet Gynecol 2013; 209:564.e1-9. [PMID: 23981681 DOI: 10.1016/j.ajog.2013.08.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/10/2013] [Accepted: 08/23/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Obstructive sleep apnea, a breathing disorder caused by the repetitive collapse of the upper airway during sleep, results in a state of chronic intermittent hypoxia (CIH). Although the etiology and consequences of CIH are extensively investigated in the adult, the developmental ramifications of this disease process are unknown. DESIGN This study was done to investigate the effect of CIH during gestation on offspring development. Pregnant female Spraque-Dawley rats were exposed to daily CIH throughout the gestational period. RESULTS Postnatal day-1 offspring from CIH mothers were asymmetrically growth restricted, with decreased body weights and elevated brain-weight:liver-weight ratios. Furthermore, CIH newborns had elevated heart- and brain-weight:body weight ratios, and decreased liver-weight:body weight ratios. By adulthood, body weights of growth restricted offspring were significantly greater, as were the liver-weight:body weight ratios. CIH offspring also had greater body fat deposition, were hyperglycemic and had elevated plasma levels of insulin during development into adults. CONCLUSION These data suggest that alteration of the maternal intrauterine environment by gestational CIH effects the long-term development of the offspring and increases the risk of the offspring to metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Waseem Iqbal
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | | |
Collapse
|