1
|
Ullrich N, Ramadani A, Paddenberg-Schubert E, Proff P, Jantsch J, Kirschneck C, Schröder A. Validation of reliable reference genes for qPCR of CD4+ T cells exposed to compressive strain. J Orofac Orthop 2024:10.1007/s00056-024-00543-0. [PMID: 39093346 DOI: 10.1007/s00056-024-00543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/26/2024] [Indexed: 08/04/2024]
Abstract
For accurate interpretation of quantitative real-time PCR (qPCR) data, stable reference genes are essential for normalization of target genes. To date, there is no information on reliable housekeeping genes in CD4+ T cells in a three-dimensional (3D) matrix under pressure stimulation. This in vitro study describes for the first time a method for pressure stimulation of CD4+ T cells in a 3D matrix in the context of orthodontic tooth movement (OTM) and identifies a set of reliable reference genes. CD4+ T cells were isolated from murine spleen and activated with anti-CD3/-CD28 Dynabeads (Thermo Fisher, Langenselbold, Germany) on standard cell culture plates or in 3D scaffolds with or without compressive strain. Expression stability of nine potential reference genes was examined using four mathematical algorithms. Gene expression of Il2 was normalized to all potential reference genes to highlight the importance of correct normalization. Cell proliferation and the expression of the surface markers CD25 and CD69 were also determined. The 3D matrix did not inhibit proliferation after immunological activation of T cells and embedded the cells sufficiently to expose them to pressure load. Expression of ubiquitin C (Ubc) and hypoxanthine phosphoribosyltransferase (Hprt) was the most stable under all conditions tested. A combination of these two genes was suitable for normalization of qPCR data. Normalization of Il2 gene expression showed highly variable results depending on the reference gene used. Pressure reduced cell proliferation and the number of CD69-positive T cells. This study provides a basis for performing valid and reliable qPCR experiments with CD4+ T cells cultured in 3D scaffolds and exposed to compressive forces simulating OTM.
Collapse
Affiliation(s)
- Niklas Ullrich
- Department of Orthodontics, University Medical Center Regensburg, Regensburg, Germany.
| | - Ardita Ramadani
- Department of Orthodontics, University Medical Center Regensburg, Regensburg, Germany
| | | | - Peter Proff
- Department of Orthodontics, University Medical Center Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute for Microbiology and Hygiene, University Medical Centre Regensburg, Regensburg, Germany
- Institute for Microbiology, Immunology and Hygiene, University Medical Center Cologne, Cologne, Germany
| | | | - Agnes Schröder
- Department of Orthodontics, University Medical Center Regensburg, Regensburg, Germany
- Institute for Microbiology and Hygiene, University Medical Centre Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
3
|
Yong J, Groeger S, Ruiz-Heiland G, Ruf S. Selection and validation of reference gene for RT-qPCR studies in co-culture system of mouse cementoblasts and periodontal ligament cells. BMC Res Notes 2022; 15:57. [PMID: 35168676 PMCID: PMC8845258 DOI: 10.1186/s13104-022-05948-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/02/2022] [Indexed: 01/31/2023] Open
Abstract
Abstract
Objective
RT-qPCR is a reliable method for gene expression analysis, but the accuracy of the quantitative data depends on the appropriate selection of reference genes. A Co-culture system consisting of periodontal ligament cells (SV-PDL) and cementoblasts (OCCM-30) to investigate the crosstalk between these two cell lines under orthodontic condition is essential for experimental orthodontic setups in-vitro. Therefore, we aimed to identify a set of reliable reference genes suitable for RT-qPCR studies for prospective co-culture systems of OCCM-30 and SV-PDL cells.
Results
The results demonstrated that PPIB, GUSB and RPLP0 turned out to be the three most stable reference genes for OCCM-30 in the co-culture system, while PPIB, POLR2A and RPLP0 have the three highest rankings for SV-PDL cells in the co-culture system. The most stable gene combination were PPIB and POLR2A in the co-culture system. In conclusion, PPIB is overall the most stably expressed reference gene for OCCM-30 or SV-PDL cell line in the system. The combination of PPIB and POLR2A as reference genes are indicated to be the potential and mandatory to obtain accurate quantification results for normalizing RT-qPCR data in genes of interest expression in these two cell lines co-culture systems.
Collapse
|
4
|
Bergamo AZN, Madalena IR, Omori MA, Ramazzotto LA, Nelson-Filho P, Baratto-Filho F, Proff P, Kirschneck C, Küchler EC. Estrogen deficiency during puberty affects the expression of microRNA30a and microRNA503 in the mandibular condyle. Ann Anat 2021; 240:151865. [PMID: 34813926 DOI: 10.1016/j.aanat.2021.151865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The aim of this study was investigated if estrogen deficiency during puberty affects the expression of miRNA30a and miRNA503 in maxillary and mandibular growth centers, and also evaluated if ERα and ERβ are correlated with miRNA30a and miRNA503 expressions. METHODS Samples from 12 female Wistar rats randomized into experimental group (OVX) and control group (SHAM). At an age of 45 days animals were euthanized for miRNA expression analyses. RT-qPCR was performed to determine miRNA30a and miRNA503 expression in growth sites: midpalatal suture, condyle, mandibular angle, symphysis/parasymphysis and coronoid process. The data was carried out using the parametric tests at 5% of significance level. RESULTS miRNA 30a and miRNA503 presented higher levels in the condylar site in SHAM group when compared with OVX (p = 0.002 and p = 0.020, respectively). In the growth centers, a statistical significant difference was observed only for miRNA30a (p = 0.004), when compared mandibular angle with condyle the in OVX group (p = 0.001). A strong positive correlation between miRNA503 and ERα in the condyle of OVX group was observed (r = 0.90; p = 0.039 and it also between miRNA503 and ERβ in the coronoid process of the OVX group (r = 0.88; p = 0.05). CONCLUSION The results suggested that estrogen regulates specific miRNAs in maxillary and mandibular growth centers, which may participate in posttranscriptional regulation of estrogen-regulated genes.
Collapse
Affiliation(s)
- Ana Zilda Nazar Bergamo
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela Ribeiro Madalena
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Dentistry, University of the Region of Joinville, Joinville, SC, Brazil; Department of Restorative Dentistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marjorie Ayumi Omori
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Alexandre Ramazzotto
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Biotechnology Graduation, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flares Baratto-Filho
- Department of Dentistry, University of the Region of Joinville, Joinville, SC, Brazil
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | | | |
Collapse
|
5
|
Schröder A, Seyler L, Hofmann E, Gölz L, Jantsch J, Proff P, Bäuerle T, Kirschneck C. Administration of a VEGFR‑2-specific MRI contrast agent to assess orthodontic tooth movement : A pilot study. J Orofac Orthop 2021; 83:117-123. [PMID: 34269823 PMCID: PMC8863708 DOI: 10.1007/s00056-021-00326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
Purpose It is thought that orthodontic forces initially reduce periodontal blood flow during orthodontic tooth movement (OTM) via tissue compression with cells responding to concomitant oxygen deprivation with expression of vascular endothelial growth factor (VEGF) triggering angiogenesis via binding to its receptor VEGFR‑2. To test this hypothesis, we performed a pilot study to establish a protocol for molecular magnetic resonance imaging (MRI) of rat jaws administering a VEGFR-2-specific contrast agent. Methods Mesial OTM of a first upper left rat molar was initiated in one male Fischer 344 rat 4 days prior to MRI by insertion of an elastic band between the first and second upper molars with the contralateral side left untreated (internal control). T1-weighted MRI sequences including dynamic contrast-enhanced MRI (DCE-MRI) were recorded before and after administration of a molecular VEGFR‑2 MRI marker with a 7 T MRI dedicated for small animal use. Results After injection of anti-VEGFR2-albumin-gadolinium-DTPA, volume enhancement on T1-weighted images was increased at the OTM side distally of the moved first upper molar (M1) compared to the control side, whereas the T1 relaxation time was reduced on the OTM side. DCE-MRI resulted in an increased area under the curve (AUC), whereas time-to-peak (TTP) and washout rate were reduced during OTM distally of the moved M1 compared to the contralateral side. Conclusions OTM resulted in uptake of the VEGFR-2-specific MRI contrast agent in tension areas of the periodontal ligament. The imaging protocol presented here is useful for the assessment of VEGFR‑2 expression in tension areas of the periodontal ligament in vivo.
Collapse
Affiliation(s)
- Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Lisa Seyler
- PIPE (Preclinical Imaging Platform Erlangen) and Department of Radiology, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | | | - Lina Gölz
- Department of Orthodontics, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tobias Bäuerle
- PIPE (Preclinical Imaging Platform Erlangen) and Department of Radiology, University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Kirschneck C, Straßmair N, Cieplik F, Paddenberg E, Jantsch J, Proff P, Schröder A. Myeloid HIF1α Is Involved in the Extent of Orthodontically Induced Tooth Movement. Biomedicines 2021; 9:biomedicines9070796. [PMID: 34356859 PMCID: PMC8301336 DOI: 10.3390/biomedicines9070796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
During orthodontic tooth movement, transcription factor hypoxia-inducible factor 1α (HIF1α) is stabilised in the periodontal ligament. While HIF1α in periodontal ligament fibroblasts can be stabilised by mechanical compression, in macrophages pressure application alone is not sufficient to stabilise HIF1α. The present study was conducted to investigate the role of myeloid HIF1α during orthodontic tooth movement. Orthodontic tooth movement was performed in wildtype and Hif1αΔmyel mice lacking HIF1α expression in myeloid cells. Subsequently, µCT images were obtained to determine periodontal bone loss, extent of orthodontic tooth movement and bone density. RNA was isolated from the periodontal ligament of the control side and the orthodontically treated side, and the expression of genes involved in bone remodelling was investigated. The extent of tooth movement was increased in Hif1αΔmyel mice. This may be due to the lower bone density of the Hif1αΔmyel mice. Deletion of myeloid Hif1α was associated with increased expression of Ctsk and Acp5, while both Rankl and its decoy receptor Opg were increased. HIF1α from myeloid cells thus appears to play a regulatory role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Nadine Straßmair
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Eva Paddenberg
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Jonathan Jantsch
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, D-93053 Regensburg, Germany;
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, D-93053 Regensburg, Germany; (N.S.); (E.P.); (P.P.); (A.S.)
| |
Collapse
|
7
|
Küchler EC, de Lara RM, Omori MA, Schröder A, Teodoro VB, Baratto-Filho F, Léon JE, Proff P, Madalena IR, Kirschneck C. Estrogen deficiency affects tooth formation and gene expression in the odontogenic region of female rats. Ann Anat 2021; 236:151702. [PMID: 33607226 DOI: 10.1016/j.aanat.2021.151702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is some evidence that estrogen regulates the expression of several genes in different cells, including dental cells. Therefore, the aim of this study was to investigate the role of estrogen deficiency during tooth development regarding tooth structure morphology and its impact on the expression of odontogenesis-related genes. METHODS A total of 40 female Wistar rats was divided into OVX (estrogen deficiency) and Sham (control) groups. Bilateral ovariectomy was performed in the OVX group, while Sham surgery was performed in the control group at the age of 21 days. At an age of 56 days, 16 rats were euthanized for gene expression analyses of Bmp4, Smad6, Tgfb1 and Runx2. At the age of 63 days, the remaining rats were euthanized for histological and morphometric analyses of teeth. The mandibles of the rats were submitted to μCT analysis. Tooth structures (enamel, dentin and dental pulp) were analyzed. T test was used to compare the mean differences between groups (p<0.05). RESULTS In the μCT analysis, enamel and dentin thickness were significantly increased in the control group (p<0.0001). Pulp dimensions were significantly larger in the OVX group (p<0.0001). A reduction of tooth structures in the OVX group was confirmed in HE staining. Smad6 was differentially expressed in the OVX group (p=0.04). CONCLUSION Estrogen deficiency affects gene expression in the odontogenic region and tooth structure morphology.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | | | - Marjorie Ayumi Omori
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Agnes Schröder
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Flares Baratto-Filho
- School of Dentistry, Univille University, R. Paulo Malschitzki, Joinville, SC 89219-710, Brazil
| | - Jorge Esquiche Léon
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Peter Proff
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Isabela Ribeiro Madalena
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
8
|
Proff P, Schröder A, Seyler L, Wolf F, Korkmaz Y, Bäuerle T, Gölz L, Kirschneck C. Local Vascularization during Orthodontic Tooth Movement in a Split Mouth Rat Model-A MRI Study. Biomedicines 2020; 8:biomedicines8120632. [PMID: 33352746 PMCID: PMC7766506 DOI: 10.3390/biomedicines8120632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Orthodontic tooth movement to therapeutically align malpositioned teeth is supposed to impact blood flow in the surrounding tissues. Here, we evaluated actual vascularization in the tension area of the periodontal ligament during experimental tooth movement in rats (N = 8) with magnetic resonance imaging (MRI). We inserted an elastic band between the left upper first and the second rat molar; the right side was not treated and served as control. After four days of tooth movement, we recorded T1-weighted morphologic and dynamic-contrast-enhanced MRI sequences with an animal-specific 7 Tesla MRI to assess of local vascularization. Furthermore, we quantified osteoclasts and monocytes in the periodontal ligament, which are crucial for orthodontic tooth movement, root resorptions as undesirable side effects, as well as the extent of tooth movement using paraffine histology and micro-CT analysis. Data were tested for normal distribution with Shapiro–Wilk tests followed by either a two-tailed paired t-test or a Wilcoxon matched-pairs signed rank test. Significant orthodontic tooth movement was induced within the four days of treatment, as evidenced by increased osteoclast and monocyte activity in the periodontal ligament as well as by µCT analysis. Contrast enhancement was increased at the orthodontically-treated side distally of the moved upper first left molar, indicating increased vascularization at the tension side of the periodontal ligament. Accordingly, we detected reduced time-to-peak and washout rates. Our study using MRI to directly assess local vascularization thus seems to confirm the hypothesis that perfusion is enhanced in tension zones of the periodontal ligament during orthodontic tooth movement.
Collapse
Affiliation(s)
- Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Lisa Seyler
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Franziska Wolf
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Tobias Bäuerle
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Lina Gölz
- Department of Orthodontics, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| |
Collapse
|
9
|
Kirschneck C, Thuy M, Leikam A, Memmert S, Deschner J, Damanaki A, Spanier G, Proff P, Jantsch J, Schröder A. Role and Regulation of Mechanotransductive HIF-1α Stabilisation in Periodontal Ligament Fibroblasts. Int J Mol Sci 2020; 21:ijms21249530. [PMID: 33333756 PMCID: PMC7765204 DOI: 10.3390/ijms21249530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
Orthodontic tooth movement (OTM) creates compressive and tensile strain in the periodontal ligament, causing circulation disorders. Hypoxia-inducible factor 1α (HIF-1α) has been shown to be primarily stabilised by compression, but not hypoxia in periodontal ligament fibroblasts (PDLF) during mechanical strain, which are key regulators of OTM. This study aimed to elucidate the role of heparan sulfate integrin interaction and downstream kinase phosphorylation for HIF-1α stabilisation under compressive and tensile strain and to which extent downstream synthesis of VEGF and prostaglandins is HIF-1α-dependent in a model of simulated OTM in PDLF. PDLF were subjected to compressive or tensile strain for 48 h. In various setups HIF-1α was experimentally stabilised (DMOG) or destabilised (YC-1) and mechanotransduction was inhibited by surfen and genistein. We found that HIF-1α was not stabilised by tensile, but rather by compressive strain. HIF-1α stabilisation had an inductive effect on prostaglandin and VEGF synthesis. As expected, HIF-1α destabilisation reduced VEGF expression, whereas prostaglandin synthesis was increased. Inhibition of integrin mechanotransduction via surfen or genistein prevented stabilisation of HIF-1α. A decrease in VEGF expression was observed, but not in prostaglandin synthesis. Stabilisation of HIF-1α via integrin mechanotransduction and downstream phosphorylation of kinases seems to be essential for the induction of VEGF, but not prostaglandin synthesis by PDLF during compressive (but not tensile) orthodontic strain.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (A.L.); (P.P.); (A.S.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Magdalena Thuy
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (A.L.); (P.P.); (A.S.)
| | - Alexandra Leikam
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (A.L.); (P.P.); (A.S.)
| | - Svenja Memmert
- Department of Orthodontics, University of Bonn, 53111 Bonn, Germany;
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany; (J.D.); (A.D.)
| | - Anna Damanaki
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany; (J.D.); (A.D.)
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (A.L.); (P.P.); (A.S.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (M.T.); (A.L.); (P.P.); (A.S.)
| |
Collapse
|
10
|
Ullrich N, Schröder A, Bauer M, Spanier G, Jantsch J, Deschner J, Proff P, Kirschneck C. The role of HIF-1α in nicotine-induced root and bone resorption during orthodontic tooth movement. Eur J Orthod 2020; 43:516-526. [PMID: 33043973 DOI: 10.1093/ejo/cjaa057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND In orthodontic tooth movement (OTM), pseudo-inflammatory processes occur that are similar to those of nicotine-induced periodontitis. Previous studies have shown that nicotine accelerates OTM, but induces periodontal bone loss and dental root resorption via synergistically increased osteoclastogenesis. This study aimed to investigate the role of hypoxia-inducible factor 1 alpha (HIF-1α) in nicotine-induced osteoclastogenesis during OTM. MATERIALS/METHODS Male Fischer-344 rats were treated with l-Nicotine (1.89 mg/kg/day s.c., N = 10) or NaCl solution (N = 10). After a week of premedication, a NiTi spring was inserted to mesialize the first upper left molar. The extent of dental root resorption, osteoclastogenesis, and HIF-1α protein expression was determined by (immuno)histology, as well as bone volume (BV/TV) and trabecular thickness (TbTh) using µCT. Receptor activator of nuclear factor of activated B-cells ligand (RANK-L), osteoprotegerin (OPG), and HIF-1α expression were examined at the protein level in periodontal ligament fibroblasts (PDLF) exposed to pressure, nicotine and/or hypoxia, as well as PDLF-induced osteoclastogenesis in co-culture experiments with osteoclast progenitor cells. RESULTS Nicotine favoured dental root resorptions and osteoclastogenesis during OTM, while BV/TV and TbTh were only influenced by force. This nicotine-induced increase does not appear to be mediated by HIF-1α, since HIF-1α was stabilized by force application and hypoxia, but not by nicotine. The in vitro data showed that the hypoxia-induced increase in RANK-L/OPG expression ratio and PDLF-mediated osteoclastogenesis was less pronounced than the nicotine-induced increase. CONCLUSIONS Study results indicate that the nicotine-induced increase in osteoclastogenesis and periodontal bone resorption during OTM may not be mediated by hypoxic effects or HIF-1α stabilization in the context of nicotine-induced vasoconstriction, but rather by an alternative mechanism.
Collapse
Affiliation(s)
- Niklas Ullrich
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Maria Bauer
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Medical Centre of Regensburg, Germany
| | - Jonathan Jantsch
- Department of Medical Microbiology and Hygiene, University Medical Centre of Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medicine Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
11
|
Schröder A, Leikam A, Käppler P, Neubert P, Jantsch J, Neuhofer W, Deschner J, Proff P, Kirschneck C. Impact of salt and the osmoprotective transcription factor NFAT-5 on macrophages during mechanical strain. Immunol Cell Biol 2020; 99:84-96. [PMID: 32888231 DOI: 10.1111/imcb.12398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
Myeloid cells regulate bone density in response to increased salt (NaCl) intake via the osmoprotective transcription factor, nuclear factor of activated T cells-5 (NFAT-5). Because orthodontic tooth movement (OTM) is a pseudoinflammatory immunological process, we investigated the influence of NaCl and NFAT-5 on the expression pattern of macrophages in a model of simulated OTM. RAW264.7 macrophages were exposed for 4 h to 2 g cm-2 compressive or 16% tensile or no mechanical strain (control), with or without the addition of 40 mm NaCl. We analyzed the expression of inflammatory genes and proteins [tumor necrosis factor (TNF), interleukin (IL)-6 and prostaglandin endoperoxide synthase-2 (Ptgs-2)/prostaglandin E2 (PG-E2)] by real-time-quantitative PCR and ELISA. To investigate the role of NFAT-5 in these responses, NFAT-5 was both constitutively expressed and silenced. Salt and compressive strain, but not tensile strain increased the expression of NFAT-5 and most tested inflammatory factors in macrophages. NaCl induced the expression of Ptgs-2/PG-E2 and TNF, whereas secretion of IL-6 was inhibited. Similarly, a constitutive expression of NFAT-5 reduced IL-6 expression, while increasing Ptgs-2/PG-E2 and TNF expression. Silencing of NFAT-5 upregulated IL-6 and reduced Ptgs-2/PG-E2 and TNF expression. Salt had an impact on the expression profile of macrophages as a reaction to compressive and tensile strain that occur during OTM. This was mediated via NFAT-5, which surprisingly also seems to play a regulatory role in mechanotransduction of compressive strain. Sodium accumulation in the periodontal ligament caused by dietary salt consumption might propagate local osteoclastogenesis via increased local inflammation and thus OTM velocity, but possibly also entail side effects such as dental root resorptions or periodontal bone loss.
Collapse
Affiliation(s)
- Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Alexandra Leikam
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Paul Käppler
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Wolfgang Neuhofer
- Department of Nephrology, Helios Klinikum Erfurt, Erfurt, 99089, Germany
| | - James Deschner
- Department of Periodontology and Operative Medicine, University Medicine Mainz, Mainz, 55131, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
12
|
Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C. Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod 2020; 42:359-370. [PMID: 31352484 DOI: 10.1093/ejo/cjz052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. MATERIALS AND METHODS PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. RESULTS We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. CONCLUSIONS A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.
Collapse
Affiliation(s)
- Ute Nazet
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
13
|
Kirschneck C, Wolf F, Cieplik F, Blanck-Lubarsch M, Proff P, Schröder A. Impact of NSAID etoricoxib on side effects of orthodontic tooth movement. Ann Anat 2020; 232:151585. [PMID: 32818660 DOI: 10.1016/j.aanat.2020.151585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/03/2020] [Accepted: 07/22/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The non-steroidal anti-inflammatory drug etoricoxib is the most highly selective inhibitor of cyclooxygenase-2 available (344:1) and has been approved for postoperative pain therapy following dental interventions in Europe. At clinically relevant doses it has been reported to only have marginal effects on the velocity of orthodontic tooth movement (OTM). Its effects on associated dental root resorptions, osteoclastogenesis, trabecular number in the alveolar bone and periodontal bone loss during OTM, however, have not yet been investigated. MATERIAL AND METHODS 40 male Fischer344 rats were divided into four groups: 1.5ml tap water/day p.o. (control, 1), additional 7.8mg/kg/day etoricoxib (normal dose) for three (2) or seven (3) days/week and 13.1mg/kg/day (high dose) for seven days/week, respectively (4). After a week of premedication, OTM in anterior direction of the first left upper molar was performed for 28 days by means of a nickel-titanium coil spring (0.25N). We quantified OTM-associated dental root resorptions, osteoclastogenesis, trabecular number and periodontal bone loss by histomorphometrical, histochemical and μCT analyses of the disected tooth-bearing upper jaw sections. RESULTS After 28 days of OTM, associated reduction of trabecular number seemed to be slightly alleviated by high doses of etoricoxib, whereas no significant other etoricoxib effects in the doses administered could be detected regarding OTM-induced or -associated dental root resorptions, osteoclastogenesis or periodontal bone loss. CONCLUSIONS Dental root resorptions, osteoclastogenesis and periodontal bone loss during OTM in rats were not significantly affected by etoricoxib in the clinically relevant dosages investigated with only a slight inhibitory effect on bone remodelling to be expected at high dosages. Etoricoxib is therefore not suitable for the prevention of these detrimental effects, but could be a suitable analgesic during OTM, as it has been reported not to affect tooth movement.
Collapse
Affiliation(s)
| | - Franziska Wolf
- Department of Orthodontics, University Hospital Regensburg, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Germany
| | | | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Germany
| |
Collapse
|
14
|
Groeger M, Spanier G, Wolf M, Deschner J, Proff P, Schröder A, Kirschneck C. Effects of histamine on human periodontal ligament fibroblasts under simulated orthodontic pressure. PLoS One 2020; 15:e0237040. [PMID: 32764823 PMCID: PMC7413485 DOI: 10.1371/journal.pone.0237040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
As type-I-allergies show an increasing prevalence in the general populace, orthodontic patients may also be affected by histamine release during treatment. Human periodontal ligament fibroblasts (PDLF) are regulators of orthodontic tooth movement. However, the impact of histamine on PDLF in this regard is unknown. Therefore PDLF were incubated without or with an orthodontic compressive force of 2g/cm2 with and without additional histamine. To assess the role of histamine-1-receptor (H1R) H1R-antagonist cetirizine was used. Expression of histamine receptors and important mediators of orthodontic tooth movement were investigated. PDLF expressed histamine receptors H1R, H2R and H4R, but not H3R. Histamine increased the expression of H1R, H2R and H4R as well as of interleukin-6, cyclooxygenase-2, and prostaglandin-E2 secretion even without pressure application and induced receptor activator of NF-kB ligand (RANKL) protein expression with unchanged osteoprotegerin secretion. These effects were not observed in presence of H1R antagonist cetirizine. By expressing histamine receptors, PDLF seem to be able to respond to fluctuating histamine levels in the periodontal tissue. Increased histamine concentration was associated with enhanced expression of proinflammatory mediators and RANKL, suggesting an inductive effect of histamine on PDLF-mediated osteoclastogenesis and orthodontic tooth movement. Since cetirizine inhibited these effects, they seem to be mainly mediated via histamine receptor H1R.
Collapse
Affiliation(s)
- Marcella Groeger
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, Mainz, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Role of Oxygen Supply in Macrophages in a Model of Simulated Orthodontic Tooth Movement. Mediators Inflamm 2020; 2020:5802435. [PMID: 32831635 PMCID: PMC7424081 DOI: 10.1155/2020/5802435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Apart from periodontal ligament fibroblasts, immune cells like macrophages also play an important mediating role in orthodontic tooth movement (OTM). Upon orthodontic force application to malpositioned teeth, macrophages in the periodontal ligament get exposed to both mechanical strain and hypoxic conditions (via a compression of blood vessels). In this study, we assessed the relative impact of orthodontically induced mechanical strain and hypoxic conditions on macrophages for the mediation and regulation of OTM. Macrophages were stimulated with physiological orthodontic compressive forces of 2 g/cm2 for 4 h and 24 h on gas-impermeable or gas-permeable cell culture plates under normoxic or hypoxic cell culture conditions. We quantified expression of genes involved in inflammation (Tnf, Il-6, and Cox-2), extracellular remodelling (Mmp-9), and angiogenesis (Vegf) by RT-qPCR. Furthermore, we analysed HIF-1α, prostaglandin-E2, and VEGF protein expression via immunoblotting or ELISA. Mechanical strain and oxygen supply both differentially affected expression of genes and proteins involved in inflammation and angiogenesis. In this context, we found that HIF-1α protein levels were elevated by combined mechanical strain and hypoxic conditions, whereas gas-permeable plates providing sufficient oxygen supply prevented HIF-1α stabilization at the protein level after pressure application on macrophages. Our results thus indicate that macrophages involved in the mediation of OTM are affected by and respond differently to hypoxic conditions and mechanical compressive strain, which occur concomitantly during OTM, than periodontal ligament fibroblasts (PDLF), thus indicating different roles of these cells in the regulation of OTM at the cellular-molecular level. We further observed that contrary to PDLF HIF-1α stabilization in macrophages is rather induced via the decreased oxygen supply associated with OTM than via mechanotransduction by mechanical strain.
Collapse
|
16
|
Comparative assessment of mouse models for experimental orthodontic tooth movement. Sci Rep 2020; 10:12154. [PMID: 32699355 PMCID: PMC7376195 DOI: 10.1038/s41598-020-69030-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Animal experiments are essential for the elucidation of biological-cellular mechanisms in the context of orthodontic tooth movement (OTM). So far, however, no studies comparatively assess available mouse models regarding their suitability. OTM of first upper molars was induced in C57BL/6 mice either via an elastic band or a NiTi coil spring for three, seven or 12 days. We assessed appliance survival rate, OTM and periodontal bone loss (µCT), root resorptions, osteoclastogenesis (TRAP+ area) and local expression of OTM-related genes (RT-qPCR). Seven days after the elastic bands were inserted, 87% were still in situ, but only 27% after 12 days. Survival rate for the NiTi coil springs was 100% throughout, but 8.9% of the animals did not survive. Both methods induced significant OTM, which was highest after 12 (NiTi spring) and 7 days (band), with a corresponding increase in local gene expression of OTM-related genes and osteoclastogenesis. Periodontal bone loss and root resorptions were not induced at a relevant extent by neither of the two procedures within the experimental periods. To induce reliable OTM in mice beyond 7 days, a NiTi coil spring is the method of choice. The elastic band method is recommended only for short-term yes/no-questions regarding OTM.
Collapse
|
17
|
Effects of sodium chloride on the gene expression profile of periodontal ligament fibroblasts during tensile strain. J Orofac Orthop 2020; 81:360-370. [PMID: 32632652 PMCID: PMC8494687 DOI: 10.1007/s00056-020-00232-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Purpose During orthodontic tooth movement, pressure and tension zones develop in the periodontal ligament, and periodontal ligament fibroblasts (PDLF) become exposed to mechanical strain. Enhanced salt (NaCl) concentrations are known to modulate responses of PDLF and immune cells to different stimuli like mechanical strain. Here, we investigated the impact of tensile strain on the gene expression profile of PDLF under normal (NS) and high salt (HS) conditions. Methods After preincubation under NS or HS (+40 mM NaCl in medium) conditions for 24 h, PDLF were stretched 16% for 48 h using custom-made spherical cap silicone stamps using an established and published setup. After determination of cell number and cytotoxicity, we analyzed expression of genes involved in extracellular matrix reorganization, angiogenesis, bone remodeling, and inflammation by quantitative real-time polymerase chain reaction (RT-qPCR). Results Tensile strain did not affect the expression of genes involved in angiogenesis or extracellular matrix reorganization by PDLF, which however modulate inflammatory responses and bone remodeling in reaction to 16% static tensile strain. Salt (NaCl) treatment triggered enhanced extracellular matrix formation, expression of cyclooxygenase 2 and bone metabolism in PDLF during tensile strain. Conclusions Salt (NaCl) consumption may influence orthodontic tooth movement and periodontal bone loss via modulation of extracellular matrix and bone metabolism. Excessive salt intake during orthodontic therapy may cause adverse effects regarding periodontal inflammation and bone resorption.
Collapse
|
18
|
Niederau C, Craveiro RB, Azraq I, Brockhaus J, Bastian A, Kirschneck C, Wolf M. Selection and validation of reference genes by RT-qPCR for murine cementoblasts in mechanical loading experiments simulating orthodontic forces in vitro. Sci Rep 2020; 10:10893. [PMID: 32616794 PMCID: PMC7331740 DOI: 10.1038/s41598-020-67449-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
Different structures and cell types of the periodontium respond to orthodontic tooth movement (OTM) individually. Cementoblasts (OC/CM) located in the immediate vicinity of the fibroblasts on the cement have found way to the centre of actual research. Here, we identify and validate possible reference genes for OC/CM cells by RT-qPCR with and without static compressive loading. We investigated the suitability of 3 reference genes in an in vitro model of cementoblast cells using four different algorithms (Normfinder, geNorm, comparative delta-Ct method and BestKeeper) under different confluences and time. Comparable to our previous publications about reference genes in OTM in rats and human periodontal ligament fibroblasts (hPDLF), Rpl22 in murine OC/CM cells appears as the least regulated gene so that it represents the most appropriate reference gene. Furthermore, unlike to the expression of our recommended reference genes, the expression of additionally investigated target genes changes with confluence and under loading compression. Based on our findings for future RT-qPCR analyses in OC/CM cells, Rpl22 or the combination Rpl22/Tbp should be favored as reference gene. According to our results, although many publications propose the use of Gapdh, it does not seem to be the most suitable approach.
Collapse
Affiliation(s)
- Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Irma Azraq
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Julia Brockhaus
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Early OA Stage Like Response Occurs after Dynamic Stretching of Human Synovial Fibroblasts. Int J Mol Sci 2020; 21:ijms21113874. [PMID: 32485947 PMCID: PMC7312748 DOI: 10.3390/ijms21113874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
As events triggering early osteoarthritis onset can be related to mechanical stress and proinflammatory signaling, we investigated the effect of different mechanical strain protocols on the expression of proinflammatory genes, as well as extracellular matrix remodelling in human synovial fibroblasts. Three distinct models of tensile stretching were applied: static isotropic tensile strain at 0 Hz, 16% tension for 48 h; short-term high-frequency cyclic tension at 1 Hz, 10% tension for 4 h; and dynamic tensile stretching for 48 h, consisting of two blocks of moderate stretching at 0.2 Hz, 2%, advanced stretching at 0.5 Hz, 15%, or a combination of both. General signs of inflammation were present after static isotropic tension, whereas short-term high-frequency cyclic tension showed increased levels of IL-6 paired with diminished levels of IL-1β. Reduced inflammatory effects of TNF-α, IL-6, and IL-1β were observed when exposed to advanced stretching. Long-term tensile strain induced extracellular matrix remodelling at the gene and protein levels. While hyaluronan acid synthesis was increased with static tensile strain, dynamic tensile stretching had a reducing effect. Our study revealed that proinflammatory markers were activated by mechanical strain as seen in static isotropic tension and short-term high-frequency tensile strain, whereas long-term exposure induced extracellular matrix remodelling processes.
Collapse
|
20
|
Effects of Compressive and Tensile Strain on Macrophages during Simulated Orthodontic Tooth Movement. Mediators Inflamm 2020; 2020:2814015. [PMID: 32410848 PMCID: PMC7204109 DOI: 10.1155/2020/2814015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022] Open
Abstract
During orthodontic tooth movement (OTM) to therapeutically correct the position of misaligned teeth, thus improving oral health and quality of life, fibroblasts, macrophages, and other immune cells within the periodontal ligament (PDL), which connects a tooth to its surrounding bone, are exposed to compressive and tensile strain. While it is known that PDL fibroblasts are critically involved in the biological regulation of OTM by a mechanotransductively triggered release of cytokines, it is unclear whether macrophages also react to pressure and tension in a similar manner thus impacting on or mediating OTM. RAW264.7 macrophages were seeded onto conventional 6-well cell culture plates for pressure or on Bioflex plates for tension assays and preincubated for 24 h. For in vitro simulation of physiological orthodontic compressive or tensile strain for 2 h, 4 h, 24 h, and 48 h, glass discs (2 g/cm2) were placed or adherent macrophages isotropically stretched for 16%, respectively. We determined cell number, cytotoxicity, and gene/protein expression of Vegf-a/VEGF-A (macrophage-mediated angiogenesis), Mmp-8/9 (extracellular matrix reorganization), and Cox-2/PG-E2, Il-6/IL-6, and Tnf-α/TNF-α (proinflammatory mediators) by RT-qPCR and ELISA. Compressive but not tensile strain resulted in a significant reduction in cell number after only 2 h. Mmp-8 and Mmp-9 expression was significantly enhanced within 24 h of compressive and in part tensile strain. Significantly increased Vegf-a/VEGF-A expression was detected within 4 h of pressure, but not during application of tensile strain. Expression of proinflammatory mediators Cox-2/PG-E2, Il-6/IL-6, and Tnf-α/TNF-α was significantly increased as early as 2-4 h after application of compressive or tensile strain. Our results indicate that macrophages respond early on to compressive and tensile strain occurring during OTM with an enhanced gene expression of proinflammatory cytokines, which could affect PDL fibroblasts, osteoblasts, and immune cells triggering or enhancing the biological mechanisms and osteoclastogenesis underlying OTM.
Collapse
|
21
|
Omori MA, Marañón‐Vásquez GA, Romualdo PC, Martins Neto EC, Stuani MBS, Matsumoto MAN, Nelson‐Filho P, Proff P, León JE, Kirschneck C, Küchler EC. Effect of ovariectomy on maxilla and mandible dimensions of female rats. Orthod Craniofac Res 2020; 23:342-350. [DOI: 10.1111/ocr.12376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Marjorie Ayumi Omori
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Guido Artemio Marañón‐Vásquez
- Department of Pediatric Dentistry and Orthodontics School of Dentistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Priscilla Coutinho Romualdo
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Evandro Carneiro Martins Neto
- Department of Oral & Maxillofacial Surgery, and Periodontology School of dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Maria Bernadete Sasso Stuani
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Paulo Nelson‐Filho
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Peter Proff
- Department of Orthodontics University Medical Centre of Regensburg Regensburg Germany
| | - Jorge Esquiche León
- Department of Stomatology, Public Health and Forensic Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
| | - Christian Kirschneck
- Department of Orthodontics University Medical Centre of Regensburg Regensburg Germany
| | - Erika C. Küchler
- Department of Pediatric Dentistry School of Dentistry of Ribeirão Preto University of São Paulo Ribeirão Preto Brazil
- Department of Dentistry Universidade Positivo Curitiba Brazil
| |
Collapse
|
22
|
Housekeeping gene validation for RT-qPCR studies on synovial fibroblasts derived from healthy and osteoarthritic patients with focus on mechanical loading. PLoS One 2019; 14:e0225790. [PMID: 31809510 PMCID: PMC6897414 DOI: 10.1371/journal.pone.0225790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Selection of appropriate housekeeping genes is essential for the validity of data normalization in reverse transcription quantitative PCR (RT-qPCR). Synovial fibroblasts (SF) play a mediating role in the development and progression of osteoarthritis (OA) pathogenesis, but there is no information on reliable housekeeping genes available. Therefore the goal of this study was to identify a set of reliable housekeeping genes suitable for studies of mechanical loading on SF from healthy and OA patients. Nine genes were evaluated towards expression stability and ranked according their relative stability determined by four different mathematical procedures (geNorm, NormFinder, BestKeeper and comparative ΔCq). We observed that RPLP0 (ribosomal protein, large, P0) and EEF1A1 (eukaryotic translation elongation factor 1 alpha 1) turned out to be the genes with the most stable expression in SF from non-OA or OA patients treated with or without mechanical loading. According to geNorm two genes are sufficient for normalization throughout. Expression of one tested target gene varied considerably, if normalized to different candidate housekeeping genes. Our study provides a tool for accurate and valid housekeeping gene selection in gene expression experiments on SF from healthy and OA patients with and without mechanical loading in consistent with the MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines and additionally demonstrates the impact of proper housekeeping gene selection on the expression of the gene of interest.
Collapse
|
23
|
Janjic Rankovic M, Docheva D, Wichelhaus A, Baumert U. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Investig 2019; 24:2497-2511. [PMID: 31728735 DOI: 10.1007/s00784-019-03113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.
Collapse
Affiliation(s)
- Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| |
Collapse
|
24
|
Zou Y, Xu L, Lin H. Stress overload‐induced periodontal remodelling coupled with changes in high mobility group protein B1 during tooth movement: an in‐vivo study. Eur J Oral Sci 2019; 127:396-407. [DOI: 10.1111/eos.12644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuchun Zou
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
| | - Linyu Xu
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
| | - Hanyu Lin
- Orthodontics Department School and Hospital of Stomatology Fujian Medical University Fuzhou Fujian ProvinceChina
- Fujian Provincial Engineering Research Center of Oral Biomaterial Fujian Medical University Fuzhou Fujian Province China
| |
Collapse
|
25
|
Setiawan M, Jäger A, Konermann A. The stability of different housekeeping genes in human periodontal ligament cells under inflammatory conditions. Ann Anat 2019; 224:81-87. [DOI: 10.1016/j.aanat.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
|
26
|
Schröder A, Nazet U, Neubert P, Jantsch J, Spanier G, Proff P, Kirschneck C. Sodium-chloride-induced effects on the expression profile of human periodontal ligament fibroblasts with focus on simulated orthodontic tooth movement. Eur J Oral Sci 2019; 127:386-395. [PMID: 31254476 DOI: 10.1111/eos.12643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 11/28/2022]
Abstract
Increased salt (NaCl) consumption triggers chronic diseases such as hypertension or osteopenia. Its impact on orthodontic tooth movement and periodontitis, however, has not been investigated, although both processes are related to the immune system, with periodontal ligament fibroblasts (PDLFs) playing a key mediating role. Here, we investigated the impact of NaCl on the expression pattern of PDLFs in a model of simulated compressive orthodontic strain. Periodontal ligament fibroblasts were preincubated for 24 h with additional 0 or 40 mM NaCl and concurrently treated for another 48 h with or without compressive strain of 2 g cm-2 . We analyzed the expression of genes and proteins involved in orthodontic tooth movement by reverse transcription quantitative polymerase chain reaction (RT-qPCR), ELISA, and immunoblot. Co-culture experiments were performed to observe PDLF-mediated osteoclastogenesis. A higher (40 mM) concentration of NaCl in the culture medium resulted in increased secretion of prostaglandin, expression of alkaline phosphatase, and expression of genes involved in extracellular matrix remodeling, but decreased compression-induced expression of the interleukin-6 (IL6) gene. The 40 mM concentration of NaCl also enhanced receptor activator of nuclear factor kappa-B ligand (RANKL) but reduced that of osteoprotegerin (OPG), resulting in upregulated PDLF-mediated osteoclastogenesis. A high NaCl concentration in the periodontal ligament, corresponding to a high-salt diet in vivo, may influence orthodontic tooth movement and periodontitis through increased secretion of prostaglandins by PDLFs and upregulated PDLF-mediated osteoclastogenesis, possibly accelerating orthodontic tooth movement and propagating periodontitis and periodontal bone loss.
Collapse
Affiliation(s)
- Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Ute Nazet
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Gerrit Spanier
- Department of Cranio-Maxillo-Facial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|
27
|
Gul Amuk N, Kurt G, Karsli E, Ozcan S, Acar MB, Amuk M, Lekesizcan A, Gurgan CA. Effects of mesenchymal stem cell transfer on orthodontically induced root resorption and orthodontic tooth movement during orthodontic arch expansion protocols: an experimental study in rats. Eur J Orthod 2019; 42:305-316. [DOI: 10.1093/ejo/cjz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Summary
Objectives
The aim was to evaluate the effects of mesenchymal stem cell (MSC) transfer to periodontal ligament (PDL) on the inhibition and/or repair of orthodontically induced root resorption (OIRR) during and after arch expansion and on the orthodontic tooth movement (OTM) rate of the maxillary first molar teeth of rats.
Material and methods
Sixty Wistar rats were divided into three groups as the untreated group, MSC and control injections during the expansion period group (EMSC-EC), and MSC and control injections at the retention period group (RMSC-RC). Fifty grams of orthodontic force was applied to the maxillary first molar teeth of the rats for 14 days in the vestibular direction, and then, 20 days of retention was carried out. MSCs and control injections were performed every 3 days in the EC, RC, EMSC, and RMSC groups. At the end of the experiment, samples were prepared for OTM evaluation, mRNA expression analysis, micro-computed tomography measurements, cementum thickness calculations, and structural examinations.
Results
The amount of OTM in EMSC group was significantly higher than in EC group (P < 0.001). MSC transfer during the expansion and retention periods reduced the number of resorption lacunae, volumetric and linear resorptive measurements, and cyclooxygenase-2 and receptor activator of nuclear factor kappa B ligand (RANKL) mRNA expression levels, and increased the osteoprotegerin (OPG) expression levels, OPG/RANKL ratio, and cementum thickness in the EMSC and RMSC groups.
Conclusions
MSC transfer to PDL during expansion increased the amount of OTM. Injection of MSC during the retention period was found to be slightly more effective in prevention and/or repair of OIRR than MSC transfer during the expansion period.
Collapse
Affiliation(s)
- Nisa Gul Amuk
- Department of Orthodontics, Faculty of Dentistry, Erciyes University, Kayseri
| | - Gokmen Kurt
- Department of Orthodontics, Faculty of Dentistry, Bezmialem Vakif University, Istanbul
| | | | | | | | - Mehmet Amuk
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Kayseri
| | - Ayca Lekesizcan
- Department of Histology Embryology, Faculty of Medicine, Erciyes University, Kayseri
| | - Cem Abdulkadir Gurgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| |
Collapse
|
28
|
Kirschneck C, Maurer M, Wolf M, Reicheneder C, Proff P. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int J Oral Sci 2018; 9:174-184. [PMID: 28960194 PMCID: PMC5709548 DOI: 10.1038/ijos.2017.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/25/2022] Open
Abstract
Orthodontic forces have been reported to significantly increase nicotine-induced periodontal bone loss. At present, however, it is unknown, which further (side) effects can be expected during orthodontic treatment at a nicotine exposure corresponding to that of an average European smoker. 63 male Fischer344 rats were randomized in three consecutive experiments of 21 animals each (A/B/C) to 3 experimental groups (7 rats, 1/2/3): (A) cone-beam-computed tomography (CBCT); (B) histology/serology; (C) reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR)/cotinine serology—(1) control; (2) orthodontic tooth movement (OTM) of the first and second upper left molar (NiTi closed coil spring, 0.25 N); (3) OTM with 1.89 mg·kg−1 per day s.c. of L(−)-nicotine. After 14 days of OTM, serum cotinine and IL-6 concentration as well as orthodontically induced inflammatory root resorption (OIIRR), osteoclast activity (histology), orthodontic tooth movement velocity (CBCT, within 14 and 28 days of OTM) and relative gene expression of known inflammatory and osteoclast markers were quantified in the dental-periodontal tissue (RT–qPCR). Animals exposed to nicotine showed significantly heightened serum cotinine and IL-6 levels corresponding to those of regular European smokers. Both the extent of root resorption, osteoclast activity, orthodontic tooth movement and gene expression of inflammatory and osteoclast markers were significantly increased compared to controls with and without OTM under the influence of nicotine. We conclude that apart from increased periodontal bone loss, a progression of dental root resorption and accelerated orthodontic tooth movement are to be anticipated during orthodontic therapy, if nicotine consumption is present. Thus patients should be informed about these risks and the necessity of nicotine abstinence during treatment.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Michael Maurer
- Department of Oral and Maxillofacial Surgery, University Medical Centre of Regensburg, Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, Rheinische Friedrich Wilhelm University of Bonn, Bonn, Germany
| | - Claudia Reicheneder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 2017; 7:14751. [PMID: 29116140 PMCID: PMC5677027 DOI: 10.1038/s41598-017-15281-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
Meaningful, reliable and valid mRNA expression analyses by real-time quantitative PCR (RT-qPCR) can only be achieved, if suitable reference genes are chosen for normalization and if appropriate RT-qPCR quality standards are met. Human periodontal ligament (hPDL) fibroblasts play a major mediating role in orthodontic tooth movement and periodontitis. Despite corresponding in-vitro gene expression studies being a focus of interest for many years, no information is available for hPDL fibroblasts on suitable reference genes, which are generally used in RT-qPCR experiments to normalize variability between samples. The aim of this study was to identify and validate suitable reference genes for normalization in untreated hPDL fibroblasts as well as experiments on orthodontic tooth movement or periodontitis (Aggregatibacter actinomycetemcomitans). We investigated the suitability of 13 candidate reference genes using four different algorithms (geNorm, NormFinder, comparative ΔCq and BestKeeper) and ranked them according to their expression stability. Overall PPIB (peptidylprolyl isomerase A), TBP (TATA-box-binding protein) and RPL22 (ribosomal protein 22) were found to be most stably expressed with two genes in conjunction sufficient for reliable normalization. This study provides an accurate tool for quantitative gene expression analysis in hPDL fibroblasts according to the MIQE guidelines and shows that reference gene reliability is treatment-specific.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany.
| | - Sarah Batschkus
- Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Josef Köstler
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Gerrit Spanier
- Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
30
|
Ohkura M, Ohkura N, Yoshiba N, Yoshiba K, Ida-Yonemochi H, Ohshima H, Saito I, Okiji T. Orthodontic force application upregulated pain-associated prostaglandin-I 2/PGI 2-receptor/TRPV1 pathway-related gene expression in rat molars. Odontology 2017. [PMID: 28631175 DOI: 10.1007/s10266-017-0309-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to analyze the mRNA expression and protein localization of prostaglandin I2 (PGI2) synthase (PGIS), the PGI2 receptor (IP receptor) and transient receptor potential cation channel, subfamily V, member 1 (TRPV1) in force-stimulated rat molars, toward the elucidation of the PGI2-IP receptor-TRPV1 pathway that is in operation in the pulp and possibly associated with orthodontic pain and inflammation. Experimental force was applied to the maxillary first and second molars by inserting an elastic band between them for 6-72 h. PGIS, PTGIR (the IP receptor gene), and TRPV1 mRNA levels in the coronal pulp were analyzed with real-time PCR. PGIS, IP receptor, and TRPV1 proteins were immunostained. The force stimulation induced significant upregulation of PGIS at 6-24 h, and PTGIR and TRPV1 at 6 and 12 h in the pulp. PGIS was immunolocalized in odontoblasts and some fibroblasts in the force-stimulated pulp. The IP receptor and TRPV1 immunoreactivities were detected on odontoblasts and some nerve fibers. It was concluded that PGIS, PTGIR, and TRPV1 in rat molar pulp were significantly upregulated shortly after the force application, and that the IP receptor was co-expressed on TRPV1-expressing nerves and odontoblasts. These findings suggest that the PGI2-IP receptor-TRPV1 pathway is associated with the acute phase of force-induced pulp changes involving odontoblasts and nerves.
Collapse
Affiliation(s)
- Mariko Ohkura
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kunihiko Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Isao Saito
- Division of Orthodontics, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
31
|
Kirschneck C, Meier M, Bauer K, Proff P, Fanghänel J. Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 2017; 368:61-78. [PMID: 28044198 DOI: 10.1007/s00441-016-2553-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/29/2016] [Indexed: 01/16/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are used to alleviate pain sensations during orthodontic therapy but are also assumed to interfere with associated pseudo-inflammatory reactions. In particular, the effects of partially selective COX-2 inhibition over the constitutively expressed COX-1 (11:1) on periodontal cells and tissue, as induced by the NSAID meloxicam, remain unclear. We investigate possible adverse side-effects and potentially useful beneficial effects during orthodontic therapy and examine underlying cellular and tissue reactions. We randomly assigned 63 male Fischer344 rats to three consecutive experiments of 21 animals each (cone-beam computed tomography; histology/serology; reverse-transcription quantitative real-time polymerase chain reaction) in three experimental groups (n = 7; control; orthodontic tooth movement [OTM] of the first/second upper left molars [NiTi coil spring, 0.25 N]; OTM with a daily oral meloxicam dose of 3 mg/kg). In vitro, we stimulated human periodontal ligament fibroblasts (hPDL) with orthodontic pressure (2 g/cm2) with/without meloxicam (10 μM). In vivo, meloxicam significantly reduced serum C-reactive protein concentration, tooth movement velocity, orthodontically induced dentine root resorption (OIRR), osteoclast activity and the relative expression of inflammatory/osteoclast marker genes within the dental-periodontal tissue, while presenting good gastric tolerance. In vitro, we observed a corresponding significant decrease of prostaglandin E2/interleukin-6/RANKL(-OPG) expression and of hPDL-mediated osteoclastogenesis. By inhibiting prostaglandin synthesis, meloxicam seems to downregulate hPDL-mediated inflammation, RANKL-induced osteoclastogenesis and, consequently, tooth movement velocity by about 50%, thus limiting its suitability for analgesia during orthodontic therapy. However, its protective effects regarding OIRR and good tolerance profile suggest future prophylactic application, which merits its further investigation.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Matthias Meier
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Kathrin Bauer
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Jochen Fanghänel
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Anatomical Institute, Ernst-Moritz-Arndt University, Greifswald, Germany
| |
Collapse
|
32
|
Nogueira AVB, de Molon RS, Nokhbehsaim M, Deschner J, Cirelli JA. Contribution of biomechanical forces to inflammation-induced bone resorption. J Clin Periodontol 2016; 44:31-41. [PMID: 27716969 DOI: 10.1111/jcpe.12636] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
AIM This study aimed to evaluate the contribution of biomechanical loading to inflammation-induced tissue destruction. MATERIALS AND METHODS A total of 144 adult Holtzman rats were randomly assigned into four experimental groups: control (C), ligature-induced periodontal disease (P), orthodontic movement (OM), and combination group (OMP). On days 1, 3, 7, and 15, following baseline, nine animals from each experimental group were killed. Bone volume fraction (BVF) and bone mineral density (BMD) were measured using micro-computed tomography. Expression and synthesis profile of cytokines and receptors of inflammation in gingival tissues were evaluated by PCR array assay and multiplex immunoassay. RESULTS At 15 days, the OMP group presented a significantly (p < 0.05) lower BVF and BMD levels when compared to all the other groups. The OMP group presented the highest number of upregulated protein targets in comparison to the other groups. Furthermore, the gene expression and protein levels of CCL2, CCL3, IL-1β, IL1-α, IL-18, TNF-α, and VEGF were significantly (p < 0.05) higher in the OMP group when compared to the P group. CONCLUSIONS In summary, mechanical loading modulates the inflammatory response of periodontal tissues to periodontal disease by increasing the expression of several pro-inflammatory mediators and receptors, which leads to increased bone resorption.
Collapse
Affiliation(s)
- Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
33
|
Kirschneck C, Fanghänel J, Wahlmann U, Wolf M, Roldán JC, Proff P. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann Anat 2016; 210:32-43. [PMID: 27838559 DOI: 10.1016/j.aanat.2016.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/05/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Many adult orthodontic patients suffer from chronic periodontitis with recurrent episodes of active periodontal inflammation. As their number is steadily increasing, orthodontists are more and more frequently challenged by respective treatment considerations. However, little is currently known regarding interactive effects on undesired dental root resorption (DRR), tooth movement velocity, periodontal bone loss and the underlying cellular and tissue reactions. MATERIAL AND METHODS A total of 63 male Fischer344 rats were used in three consecutive experiments employing 21 animals each (A/B/C), randomly assigned to 3 experimental groups (n=7, 1/2/3), respectively: (A) CBCT; (B) histology/serology; (C) RT-qPCR-(1) control; (2) orthodontic tooth movement (OTM) of the first/second upper left molars (NiTi coil spring, 0.25N); (3) OTM with experimentally induced periodontitis (cervical silk ligature). After 14days of OTM, we quantified blood leukocyte level, DRR, osteoclast activity and relative gene expression of inflammatory and osteoclast marker genes within the dental-periodontal tissue as well as tooth movement velocity and periodontal bone loss after 14 and 28 days. RESULTS The experimentally induced periodontal bone loss was significantly increased by concurrent orthodontic force application. Periodontal inflammation during OTM on the other hand significantly augmented the extent of DRR, relative expression of inflammatory/osteoclast marker genes, blood leukocyte level and periodontal osteoclast activity. In addition, contrary to previous studies, we observed a significant increase in tooth movement velocity. CONCLUSIONS Although accelerated tooth movement would be favourable for orthodontic treatment, our results suggest that orthodontic interventions should only be performed after successful systematic periodontal therapy and paused in case of recurrent active inflammation.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Jochen Fanghänel
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Ulrich Wahlmann
- Department of Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Michael Wolf
- Department of Orthodontics, Rheinische Friedrich Wilhelm University of Bonn, Welschnonnenstraße 17, D-53111 Bonn, Germany.
| | - J Camilo Roldán
- Director of the Division of Pediatric Facial Plastic Surgery and Craniofacial Anomalies, Catholic Children's Hospital Wilhelmstift, Liliencronstraße 130, D-22149 Hamburg, Germany; Lecturer at the Department of Cranio-Maxillofacial Surgery, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|