1
|
Mao N, Xie X. Mechanisms of Tripterygium wilfordii Hook F on treating rheumatoid arthritis explored by network pharmacology analysis and molecular docking. Open Med (Wars) 2024; 19:20240967. [PMID: 38841174 PMCID: PMC11151399 DOI: 10.1515/med-2024-0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic inflammatory and disabling disease that imposes significant economic and social costs. Tripterygium wilfordii Hook F (TwHF) has a long history of use in traditional Chinese medicine for treating joint disorders, and it has been shown to be cost-effective in treating RA, but its exact mechanism is unknown. Objective The goal of the network pharmacology analysis and molecular docking was to investigate the potential active compounds and associated anti-RA mechanisms of TwHF. Methods TCMSP and UniProt databases were searched for active compounds and related targets of TwHF. PharmGKB, DrugBank, OMIM, TTD, and the Human Gene Databases were used to identify RA-related targets. The intersected RA and TwHF targets were entered into the STRING database to create a protein-protein interaction network. R software was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking technology was used to analyze the optimal effective components from TwHF for docking with the selected target gene. Results Following screening and duplicate removal, a total of 51 active compounds and 96 potential targets were chosen. The PPI network revealed that the target proteins are CXCL8, CXCL6, STAT3, STAT1, JUN, PPARG, TP53, IL14, MMP9, VEGFA, RELA, CASP3, PTGS2, IFNG, AKT1, FOS, ICAM1, and MAPK14. The results of the GO enrichment analysis focused primarily on the response to lipopolysaccharide, the response to molecules of bacterial origin, and the response to drugs. The KEGG results indicated that the mechanisms were closely related to lipid and atherosclerosis, chemical carcinogenesis-receptor activation, Kaposi sarcoma-associated, herpesvirus infection, hepatitis B, fluid shear stress and atherosclerosis, IL-17 signaling pathways, Th17-cell differentiation, and so on, all of which are involved in angiogenesis, immune cell chemotaxis, and inflammatory responses. Molecular docking results suggested that triptolide was the appropriate PTGS1, PTGS2, and TNF inhibitors. Conclusion Our findings provide an essential role and basis for further immune inflammatory studies into the molecular mechanisms of TwHF and PTGS1, PTGS2, and TNF inhibitor development in RA.
Collapse
Affiliation(s)
- Ni Mao
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Xi Xie
- Department of Rheumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Li Y, Li J, Lu Y, Ma Y. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells. Cell Biochem Funct 2024; 42:e3909. [PMID: 38269499 DOI: 10.1002/cbf.3909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024]
Abstract
In recent years, the application of engineering nanomaterials has significantly contributed to the development of various biomedical fields. Zinc oxide nanomaterials (ZnO NMts) have gained wide popularity due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anticancer applications. This article provides a comprehensive review of the synthesis methods of ZnO NMts and highlights the advantages of combining ZnO NMts with anticancer drugs as a nano platform for cancer treatment. Additionally, the article briefly explains the mechanism of action of ZnO NMts in tumor cells, focusing on the mitochondrial pathways that target cell apoptosis and autophagy. It is observed that these pathways are primarily influenced by reactive oxygen species generated through oxidative stress. The article discusses the promising prospects of ZnO NMts combined with anticancer drugs in the field of cancer medicine and emphasizes the need for further in-depth research on the mitochondrial apoptosis and mitochondrial autophagy pathways.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Jingjing Li
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Lu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, China
| | - Yonghua Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| |
Collapse
|
3
|
Chen M, Wu S, Tang P. Acupuncture plus naloxone hydrochloride in the treatment of coma after surgery for cerebral hemorrhage: a randomized controlled trial. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Niu X, Cheng R, Wang Y, Chen J, Wang C, Ji H. Development of a Prognostic Model of Glioma Based on Pyroptosis-Related Genes. World Neurosurg 2021; 158:e929-e945. [PMID: 34861452 DOI: 10.1016/j.wneu.2021.11.112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glioma is the most malignant tumor of the central nervous system, with a poor prognosis. Pyroptosis is known to regulate the malignant phenotype of tumor cells, thus affecting the prognosis of patients. However, the role of pyroptosis-related genes (PRGs) in glioma remains unclear. METHODS We used the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Rembrandt database of patients with glioma to construct a PRG-based prognostic model and analyzed the relationship between the prognostic model and tumor immune microenvironment. The Wilcox test was used to compare the expression of PRGs in glioma and normal tissues based on TCGA. Univariate Cox and LASSO regression were used to construct the prognostic model. The CGGA and Rembrandt database were used as validation sets to validate the model. RESULTS Five genes were included in the model (BAX, CASP1, CASP3, CASP6, and NOD1). The survival of patients in the high-risk group was lower than that in the low-risk group. The receiver operating characteristic curve showed that the model had good prognostic evaluation ability and accuracy in all 3 cohorts of patients with glioma. The correlation analysis between the prognostic model and immune infiltration showed that the degree of immune cell infiltration, immune response process, and the expression level of immune checkpoints in the high-risk group were higher than those in the low-risk group. CONCLUSIONS We have constructed a reliable PRG-related prognostic model, which can provide reference for the prognostic evaluation of patients with glioma.
Collapse
Affiliation(s)
- Xiaochen Niu
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Rui Cheng
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China
| | - Yongqi Wang
- The Second Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Juanjuan Chen
- The Second Clinical Medical College of Shanxi Medical University, Tai Yuan, China
| | - Chunhong Wang
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China
| | - Hongming Ji
- The Fifth Clinical Medical College of Shanxi Medical University, Tai Yuan, China; Department of Neurosurgery, Shanxi Provincial People's Hospital, Tai Yuan, China.
| |
Collapse
|
5
|
Masood N, Dubey V, Luqman S. Activation of Caspase-3 by Terpenoids and Flavonoids in Different Types of Cancer Cells. Curr Top Med Chem 2020; 20:1876-1887. [PMID: 32648841 DOI: 10.2174/1568026620666200710101859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Caspase-3 is accountable for the execution of apoptosis. Recently, it has gained attention as a promising target for the discovery of natural products as anticancer agents. METHODS We examined the efficacy of two different sets of natural products (terpenoids and flavonoids) towards caspase-3 activity adopting in silico, cell-free and cell-based activity and real-time gene expression analysis. RESULTS It was observed that terpenes activate caspase-3 activity in both the cell-free and cell-based systems, which was supported by the gene expression analysis, binding energy and activation constant. Flavonoids' action, however, was limited to the cell-based system and transcriptional regulation suggesting their indirect association, which enhanced the enzyme activity and up-regulated the expression of mRNA levels in the cells. Among the tested natural products, (+) carvone was observed to be the best activator of caspase-3 in K562 (34.4 μM), WRL-68 (22.3 μM), HeLa (18.7 μM), MCF-7 (39.4 μM) and MDA-MB-231 cell lines (45.1 μM). CONCLUSION Overall, terpenoids have a persistent activation of caspase-3 in all the investigated systems, while flavonoids circuitously affect the enzyme activity.
Collapse
Affiliation(s)
- Nusrat Masood
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Vijaya Dubey
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
6
|
Saravanan S, Vimalraj S, Pavani K, Nikarika R, Sumantran VN. Intussusceptive angiogenesis as a key therapeutic target for cancer therapy. Life Sci 2020; 252:117670. [PMID: 32298741 DOI: 10.1016/j.lfs.2020.117670] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis is a key reason for tumor growth and progression. Several anti-angiogenic drugs in clinical practice attempt to normalize abnormal tumor vasculature. Unfortunately, these drugs are ineffective due to the development of resistance in patients after drug holidays. A sizable literature suggests that resistance to these anti-angiogenic drugs occurs due to various compensatory mechanisms of tumor angiogenesis. Therefore, we describe different compensatory mechanisms of tumor angiogenesis, and explain why intussusceptive angiogenesis (IA), is a crucial mechanism of compensatory angiogenesis in tumors which resist anti-VEGF (vascular endothelial growth factor) therapies. IA is often overlooked due to the scarcity of experimental models. Therefore, we examine data from existing experimental models and our novel ex-ovo model of angiogenesis in chick embryos, and explain the important genes and signaling pathways driving IA. Using bio-informatic analyses of major genes regulating conventional sprouting angiogenesis (SA) and intussusceptive angiogenesis, we provide fresh insights on the 'angiogenic switch' which regulates the transition from SA to IA. Finally, we examine the interplay between molecules regulating SA, IA, and molecules known to promote tumor progression. Based on these analyses, we conclude that intussusceptive angiogenesis (IA) is a promising therapeutic target for developing effective anti-cancer treatment regimes.
Collapse
Affiliation(s)
- Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India.
| | - Koka Pavani
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Ramesh Nikarika
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Venil N Sumantran
- Abdul Kalam Center for Innovation and Entrepreneurship, Dr. MGR Educational & Research Institute, Maduravoyal, Chennai 600095, India
| |
Collapse
|
7
|
Naringin inhibits thyroid cancer cell proliferation and induces cell apoptosis through repressing PI3K/AKT pathway. Pathol Res Pract 2019; 215:152707. [DOI: 10.1016/j.prp.2019.152707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/12/2019] [Accepted: 10/19/2019] [Indexed: 01/08/2023]
|
8
|
Yapa AS, Shrestha TB, Wendel SO, Kalubowilage M, Yu J, Wang H, Pyle M, Basel MT, Toledo Y, Ortega R, Malalasekera AP, Thapa PS, Troyer DL, Bossmann SH. Peptide Nanosponges Designed for the Delivery of Perillyl Alcohol to Glioma Cells. ACS APPLIED BIO MATERIALS 2018; 2:49-60. [DOI: 10.1021/acsabm.8b00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Asanka S. Yapa
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Tej B. Shrestha
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sebastian O. Wendel
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Madumali Kalubowilage
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jing Yu
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hongwang Wang
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Marla Pyle
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Matthew T. Basel
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yubisela Toledo
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Raquel Ortega
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aruni P. Malalasekera
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Prem S. Thapa
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, Kansas 66045, United States
| | - Deryl L. Troyer
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Stefan H. Bossmann
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
9
|
Naringin inhibits ovarian tumor growth by promoting apoptosis: An in vivo study. Oncol Lett 2018; 16:59-64. [PMID: 29928387 PMCID: PMC6006451 DOI: 10.3892/ol.2018.8611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the antitumor activities of naringin in ovarian cancer, and to assess the underlying mechanisms. Ovarian tumor cells were implanted into nude mice to produce ovarian tumors in vivo. The mice were divided into six groups: Control, low dose naringin [0.5 mg/kg, intraperitoneal (i.p.)], middle dose naringin (1 mg/kg, i.p.), high dose naringin (2 mg/kg, i.p.), positive control (cisplatin, 2 mg/kg, i.p.) and a combination of cisplatin and naringin (both 2 mg/kg). Following administration of naringin and/or cisplatin, the tumor size and weight were measured. Apoptosis of tumor cells was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Apoptosis-associated gene expression was detected using reverse transcription-polymerase chain reaction and immunohistochemistry. In the range of 0.5–2 mg/kg, naringin dose-dependently inhibited tumor growth, as demonstrated by a decrease in tumor size and weight. Naringin promoted apoptosis of the ovarian tumor cells. Additionally, naringin reduced the expression of B-cell lymphoma (Bcl)-2, Bcl-extra large (Bcl-xL), cyclin D1, c-Myc and survivin, while it increased the expression of caspase-3 and caspase-7. The data demonstrated that naringin inhibited ovarian tumor growth in vivo. Its mechanisms may be associated with caspase-7-, caspase-3-, Bcl-2- and Bcl-xL-mediated apoptosis. Nevertheless, the clinical application of naringin in the treatment of ovarian cancer requires further study.
Collapse
|
10
|
Resveratrol alleviates FFA and CCl4 induced apoptosis in HepG2 cells via restoring endoplasmic reticulum stress. Oncotarget 2018; 8:43799-43809. [PMID: 28415630 PMCID: PMC5546441 DOI: 10.18632/oncotarget.16460] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Cell apoptosis often induces inflammation and injury in the liver, with endoplasmic reticulum (ER) stress as the most possible reason. Resveratrol (RSV) has been shown to prevent hepatic steatosis and alleviate apoptosis, however, the exact mechanisms underlying the effects still need to be explored. Here we co-cultured HepG2 cells with free fatty acid (FFA) solution (oleic acid: palmitic acid = 2:1) and then exposed to a carbon tetrachloride (CCl4) solution to induce apoptosis. To evaluate the therapeutic effects, RSV (2.5 μM, 5 μM, 10 μM) was added to the cells. Results showed that HepG2 cells co-cultured with FFA exhibited lipid infiltration and were susceptible to apoptosis upon exposure to the CCl4 solution. The expression of molecules related to apoptosis (Caspases, Bcl-2/Bax) and ER stress (GRP78, IRE1, ATF6, PERK, et al.) was all significantly decreased upon RSV treatment. We further inhibited GRP78 by siRNA, results showed that the anti-apoptotic effect of RSV still maintained under GRP78 siRNA condition. Our data demonstrated that lipid accumulated HepG2 cells were susceptible to injury, and RSV could improve apoptosis in FFA and CCl4 stressed cells, which partially via restoring ER function.
Collapse
|
11
|
Yapa AS, Wang H, Wendel SO, Shrestha TB, Kariyawasam N, Kalubowilage M, Perera AS, Pyle M, Basel MT, Malalasekera AP, Manawadu H, Yu J, Toledo Y, Ortega R, Thapa PS, Smith PE, Troyer DL, Bossmann SH. Peptide nanosponges designed for rapid uptake by leukocytes and neural stem cells. RSC Adv 2018; 8:16052-16060. [PMID: 35542227 PMCID: PMC9080234 DOI: 10.1039/c8ra00717a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
The structure of novel binary nanosponges consisting of (cholesterol-(K/D)nDEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement between these findings and structure predictions through explicit solvent and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the nanosponges' structure and dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been demonstrated. Furthermore, the binary (DK20) nanosponges have been found to be virtually non-toxic in cultures of neural progenitor cells. It is of a special importance for the future development of cell-based therapies that DK20 nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3 h of exposure. The percentage of live cells among the WBC was not significantly decreased by the DK20 nanosponges. In contrast to stem cell or leucocyte cell cultures, which have to be matched to the patient, autologous cells are optimal for cell-mediated therapy. Therefore, the nanosponges hold great promise for effective cell-based tumor targeting. Nanosponges for drug delivery.![]()
Collapse
|
12
|
Rationally designed peptide nanosponges for cell-based cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2555-2564. [DOI: 10.1016/j.nano.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 11/20/2022]
|
13
|
Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, Jeleń M, Akim AM, Ang KP, Ooi KK. 10 H-3,6-Diazaphenothiazine induces G 2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3045-3063. [PMID: 29123378 PMCID: PMC5661483 DOI: 10.2147/dddt.s144415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing
| | - Chen Ming
- Department of Gynecologic Oncology, Taizhou People's Hospital, Jiangsu, People's Republic of China
| | | | | | - Beata Morak-Młodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
| | | | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang.,Research Centre for Crystaline Materials, School of Science and Technology, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
14
|
Shen Z, Xu L, Li J, Zhang N. Capilliposide C Sensitizes Esophageal Squamous Carcinoma Cells to Oxaliplatin by Inducing Apoptosis Through the PI3K/Akt/mTOR Pathway. Med Sci Monit 2017; 23:2096-2103. [PMID: 28463955 PMCID: PMC5424653 DOI: 10.12659/msm.901183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although platinum-based chemotherapy is the most effective strategy for esophageal cancer, toxicity and drug resistance limit the dose administration and the application of chemotherapy. Capilliposide C (CPS-C) is isolated from the Chinese herb Lysimachia capillipes Hemsl and is approved to be effective against carcinomas. However, the activity of CPS-C against esophageal cancer remains unclear. The present study was conducted to assess the chemosensitizing effects of CPS-C for enhancing the therapeutic efficacy of oxaliplatin in esophageal squamous carcinoma cells and explore the underlying mechanism. MATERIAL AND METHODS Human esophageal squamous cell carcinoma (ESCC) TE-1 and TE-2 were used. Several in vitro and in vivo analyses were carried out, including MTT, Annexin V/PI, Western blot, and TUNEL and immunohistochemistry in a xenograft model. RESULTS CPS-C significantly enhanced the proliferative inhibition and apoptotic effect of oxaliplatin in ESCC cells. Oxaliplatin combined with CPS-C decreased the expressions of PI3K, phospho-Akt, phospho-mTOR, Bcl-2, and Bcl-XL, and increased the expression of Bax and caspase-3 significantly compared to oxaliplatin-only treatment. Furthermore, in the ESCC xenograft model, CPS-C significantly enhanced the anti-cancer effects and apoptosis of oxaliplatin. CONCLUSIONS The results indicated that CPS-C enhanced the anti-proliferative and apoptotic effect of oxaliplatin by modulating the PI3K/Akt/mTOR pathway on ESCC in vitro and in vivo.
Collapse
Affiliation(s)
- Zhipeng Shen
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Lixia Xu
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Juan Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|