1
|
Cheng J, Williams JP, Zhou L, Wang PC, Sun LN, Li RH, An JX. Ozone rectal insufflation mitigates chronic rapid eye movement sleep deprivation-induced cognitive impairment through inflammation alleviation and gut microbiota regulation in mice. Med Gas Res 2024; 14:213-224. [PMID: 39073330 DOI: 10.4103/mgr.medgasres-d-23-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/20/2023] [Indexed: 07/30/2024] Open
Abstract
A range of sleep disorders has the potential to adversely affect cognitive function. This study was undertaken with the objective of investigating the effects of ozone rectal insufflation (O3-RI) on cognitive dysfunction induced by chronic REM sleep deprivation, as well as elucidating possible underlying mechanisms. O3-RI ameliorated cognitive dysfunction in chronic REM sleep deprived mice, improved the neuronal damage in the hippocampus region and decreased neuronal loss. Administration of O3-RI may protect against chronic REM sleep deprivation induced cognitive dysfunction by reversing the abnormal expression of Occludin and leucine-rich repeat and pyrin domain-containing protein 3 inflammasome as well as interleukin-1β in the hippocampus and colon tissues. Moreover, the microbiota diversity and composition of sleep deprivation mice were significantly affected by O3-RI intervention, as evidenced by the reversal of the Firmicutes/Bacteroidetes abundance ratio and the relative abundance of the Bacteroides genus. In particular, the relative abundance of the Bacteroides genus demonstrated a pronounced correlation with cognitive impairment and inflammation. Our findings suggested that O3-RI can improve cognitive dysfunction in sleep deprivation mice, and its mechanisms may be related to regulating gut microbiota and alleviating inflammation and damage in the hippocampus and colon.
Collapse
Affiliation(s)
- Jie Cheng
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - John P Williams
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Zhou
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Peng-Cheng Wang
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Li-Na Sun
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Rui-Hua Li
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Jian-Xiong An
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute for lnnoration Diagnosis & Treatment in Anesthesiology, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Center of Anesthesiology, Pain and Sleep Medicine, Rapid Anti-depression, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Zhang YN, Chen XL, Guo LY, Jiang PR, Lu H, Pan K, Guo L, Hu YT, Bao AM. Downregulation of peripheral luteinizing hormone rescues ovariectomy-associated cognitive deficits in APP/PS1 mice. Neurobiol Aging 2024; 135:60-69. [PMID: 38185053 DOI: 10.1016/j.neurobiolaging.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Lu Chen
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Ling-Yu Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Pei-Ran Jiang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Brain Bank for Health and Disease, Hangzhou, China
| | - Hui Lu
- National Brain Bank for Health and Disease, Hangzhou, China
| | - Kai Pan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lei Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
3
|
Clavo B, Cánovas-Molina A, Díaz-Garrido JA, Cañas S, Ramallo-Fariña Y, Laffite H, Federico M, Rodríguez-Abreu D, Galván S, García-Lourve C, González-Beltrán D, Caramés MA, Hernández-Fleta JL, Serrano-Aguilar P, Rodríguez-Esparragón F. Effects of ozone therapy on anxiety and depression in patients with refractory symptoms of severe diseases: a pilot study. Front Psychol 2023; 14:1176204. [PMID: 37599784 PMCID: PMC10437070 DOI: 10.3389/fpsyg.2023.1176204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Background Patients with refractory symptoms of severe diseases frequently experience anxiety, depression, and an altered health-related quality of life (HRQOL). Some publications have described the beneficial effect of ozone therapy on several symptoms of this kind of patient. The aim of this study was to preliminarily evaluate, in patients treated because of refractory symptoms of cancer treatment and advanced nononcologic diseases, if ozone therapy has an additional impact on self-reported anxiety and depression. Methods Before and after ozone treatment, we assessed (i) anxiety and depression according to the Hospital Anxiety and Depression Scale (HADS); (ii) the HRQOL (according to the EQ-5D-5L questionnaire), which includes a dimension on anxiety and depression and a visual analog scale (VAS) measuring self-perceived general health. Results Before ozone therapy, 56% of patients were on anxiolytic and/or antidepressant treatment. Before and after ozone therapy, the anxiety and depression HADS subscales (i) significantly correlated with the anxiety/depression dimension of the EQ-5D-5L questionnaire and (ii) inversely correlated with the health status as measured by the VAS. After ozone therapy, we found a significant improvement in anxiety and depression measured by both the (i) HADS subscales and (ii) EQ-5D-5L questionnaire. Conclusion The addition of ozone therapy for patients with refractory symptoms of cancer treatment and advanced chronic nononcologic diseases can decrease anxiety and depression severity levels. Additional, more focused studies are ongoing to provide the needed explanatory information for this finding.
Collapse
Affiliation(s)
- Bernardino Clavo
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Universitary Institute for Research in Biomedicine and Health (iUIBS), Molecular and Translational Pharmacology Group, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Spanish Group of Clinical Research in Radiation Oncology (GICOR), Madrid, Spain
| | - Angeles Cánovas-Molina
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
| | - Juan A. Díaz-Garrido
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Silvia Cañas
- Psychiatry Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Yolanda Ramallo-Fariña
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Santa Cruz de Tenerife, Spain
- Servicio de Evaluación y Planificación del Servicio Canario de Salud (SESCS), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Horus Laffite
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Mario Federico
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Delvys Rodríguez-Abreu
- Medical Oncology Department, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Saray Galván
- Medical Oncology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Carla García-Lourve
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
| | - Damián González-Beltrán
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Miguel A. Caramés
- Chronic Pain Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Jose L. Hernández-Fleta
- Psychiatry Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Pedro Serrano-Aguilar
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| | - Francisco Rodríguez-Esparragón
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria/Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias de la Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Kodavanti UP, Jackson TW, Henriquez AR, Snow SJ, Alewel DI, Costa DL. Air Pollutant impacts on the brain and neuroendocrine system with implications for peripheral organs: a perspective. Inhal Toxicol 2023; 35:109-126. [PMID: 36749208 PMCID: PMC11792093 DOI: 10.1080/08958378.2023.2172486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.
Collapse
Affiliation(s)
- Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Daniel L. Costa
- Department of Environmental Sciences and Engineering, Gilling’s School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27713, USA
| |
Collapse
|
5
|
Bette M, Cors E, Kresse C, Schütz B. Therapeutic Treatment of Superoxide Dismutase 1 (G93A) Amyotrophic Lateral Sclerosis Model Mice with Medical Ozone Decelerates Trigeminal Motor Neuron Degeneration, Attenuates Microglial Proliferation, and Preserves Monocyte Levels in Mesenteric Lymph Nodes. Int J Mol Sci 2022; 23:ijms23063403. [PMID: 35328829 PMCID: PMC8950555 DOI: 10.3390/ijms23063403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and lethal neurodegenerative disease in which progressive motor neuron loss and associated inflammation represent major pathology hallmarks. Both the prevention of neuronal loss and neuro-destructive inflammation are still unmet challenges. Medical ozone, an ozonized oxygen mixture (O3/O2), has been shown to elicit profound immunomodulatory effects in peripheral organs, and beneficial effects in the aging brain. We investigated, in a preclinical drug testing approach, the therapeutic potential of a five-day O3/O2i.p. treatment regime at the beginning of the symptomatic disease phase in the superoxide dismutase (SOD1G93A) ALS mouse model. Clinical assessment of SOD1G93A mice revealed no benefit of medical ozone treatment over sham with respect to gross body weight, motor performance, disease duration, or survival. In the brainstem of end stage SOD1G93A mice, however, neurodegeneration was found decelerated, and SOD1-related vacuolization was reduced in the motor trigeminal nucleus in the O3/O2 treatment group when compared to sham-treated mice. In addition, microglia proliferation was less pronounced in the brainstem, while the hypertrophy of astroglia remained largely unaffected. Finally, monocyte numbers were reduced in the blood, spleen, and mesenteric lymph nodes at postnatal day 60 in SOD1G93A mice. A further decrease in monocyte numbers seen in mesenteric lymph nodes from sham-treated SOD1G93A mice at an advanced disease stage, however, was prevented by medical ozone treatment. Collectively, our study revealed a select neuroprotective and possibly anti-inflammatory capacity for medical ozone when applied as a therapeutic agent in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| | - Eileen Cors
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Department of Mitochondrial Proteostasis, Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolin Kresse
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| |
Collapse
|
6
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|