García-Mesa Y, Feito J, Cuendias P, García-Piqueras J, Germanà A, García-Suárez O, Martín-Biedma B, Vega JA. The acquisition of mechanoreceptive competence by human digital Merkel cells and sensory corpuscles during development: an immunohistochemical study of PIEZO2.
Ann Anat 2022;
243:151953. [PMID:
35523396 DOI:
10.1016/j.aanat.2022.151953]
[Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND
PIEZO2 is a transmembrane protein forming part of an ion channel required for mechanotransduction. In humans, PIEZO2 is present in axon terminals of adult Meissner and Pacinian corpuscles, as well as Merkel cells in Merkel cell-neurite complexes.
METHODS
To study the acquisition of functional capability for mechanotransduction of developing type I slowly adapting low-threshold mechanoreceptors, i.e., Merkel cell-neurite complexes, a battery of immunohistochemical and immunofluorescence techniques was performed on human skin specimens covering the whole development and growth, from 11 weeks of estimated gestational age to 20 years of life. In addition, developmental expression of PIEZO2 type I (Meissner's corpuscles) and type II (Pacinian corpuscles) rapidly adapting mechanoreceptors was studied in parallel.
RESULTS
The first evidence of Merkel cells showing the typical morphology and placement was at 13 weeks of estimated gestation age, and at this time positive immunoreactivity for PIEZO2 was achieved. PIEZO2 expression in axons terminals started at 23 WEGA in Pacinian corpuscles and at 36 WEGA in the case of Meissner corpuscles. The occurrence of PIEZO2 in Merkel cells, Meissner and Pacinian corpuscles was maintained for all the time investigated. Interestingly PIEZO2 was absent in most Aβ type I slowly adapting low-threshold mechanoreceptors that innervate MC while it was regularly present in most Aβ type I and type II rapidly adapting low-threshold mechanoreceptors that supplies Meissner and Pacinian corpuscles.
CONCLUSION
The present results provide evidence that human cutaneous mechanoreceptors could perform mechanotransduction already during embryonic development.
Collapse