1
|
Morino C, Kait J, Bass CR. Hydration State Throughout Porcine Lumbar Intervertebral Discs: Comparing Fresh and Frozen-Thawed Specimens. Ann Biomed Eng 2024:10.1007/s10439-024-03577-y. [PMID: 39012562 DOI: 10.1007/s10439-024-03577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
Water content in intervertebral discs (IVDs) is essential for physiological and mechanical function. Freezing post-mortem tissue prior to biomechanical testing is a common practice to prevent tissue degradation, but this process has been theorized to alter hydration within IVDs. The hydration state throughout porcine lumbar IVDs, a common lumbar surrogate, is unknown as are the effects of freezing on porcine IVD hydration. Nineteen porcine lumbar spines were stored in one of the three conditions: frozen (- 20 °C) wrapped in saline-soaked gauze, frozen (- 20 °C) without saline, or fresh. Water content was measured in four disc regions within each of 89 discs: nucleus pulposus (NP), inner (AF-A), intermediate (AF-B), and outer (AF-C) annulus fibrosus. A three-factor, repeated measure analysis of variance was conducted for storage condition, spinal level, and repeated measure disc region. No significant differences were observed in spinal level or storage condition as a main effect. Mean hydration was significantly different in each disc region with mass percentage of water found to be 88.8 ± 1.7% in NP, 79.6 ± 3.8% in AF-A, 71.9 ± 3.7% in AF-B, and 62.3 ± 3.3% in AF-C. No significant differences were shown in NP and AF-C regions between storage conditions. Two significant differences in storage condition were observed in AF-A and AF-B regions, but there is likely no biological difference in these populations. Water content throughout porcine lumbar IVD was determined and results suggest one freeze-thaw cycle at - 20 °C does not alter the overall hydration within the porcine lumbar IVD.
Collapse
Affiliation(s)
- Concetta Morino
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Engineering Systems Inc., Charlotte, NC, USA.
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cameron R Bass
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Morino C, Middleton S, Op't Eynde J, Dimbath E, Kait J, Luck J, Bass C. Primary Creep Characterization in Porcine Lumbar Spine Subject to Repeated Loading. Ann Biomed Eng 2024:10.1007/s10439-024-03557-2. [PMID: 38951421 DOI: 10.1007/s10439-024-03557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Low back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury. Fifteen porcine lumbar spinal units were loaded in repeated flexion-compression with peak compressive stresses ranging from 1.41 to 4.68 MPa. Applied loading simulated real loading exposures experienced by high-speed watercraft occupants. The strain response in the primary creep region was modeled for all tests using a generalized Kelvin-Voigt model. A quasilinear viscoelastic (QLV) approach was used to separate time-dependent (creep) and stress-dependent (elastic) responses. Optimizations between the models and experimental data determined creep time constants, creep coefficients, and elastic constants associated with this tissue under repeated flexion-compression loading. Average R2 for all fifteen models was 0.997. Creep time constants optimized across all fifteen models were 24 s and 580 s and contributed to 20 ± 3% and 30 ± 3% of the overall strain response, respectively. The non-transient behavior contributed to 50 ± 0% of the overall response. Elastic behavior for this porcine population had an average standard deviation of 24.5% strain across the applied stress range. The presented primary creep characterization provides the response precursor to injurious behavior in the lumbar spine. Results from this study can further inform lumbar injury prediction and kinematic models.
Collapse
Affiliation(s)
- Concetta Morino
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Engineering Systems Inc., Charlotte, North Carolina, USA.
| | - Shea Middleton
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joost Op't Eynde
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Elizabeth Dimbath
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jason Kait
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jason Luck
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Cameron Bass
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
3
|
Kent R, Cormier J, McMurry TL, Johan Ivarsson B, Funk J, Hartka T, Sochor M. Spinal injury rates and specific causation in motor vehicle collisions. ACCIDENT; ANALYSIS AND PREVENTION 2023; 186:107047. [PMID: 37003164 DOI: 10.1016/j.aap.2023.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Motor vehicle collisions (MVCs) are a leading cause of acute spinal injuries. Chronic spinal pathologies are common in the population. Thus, determining the incidence of different types of spinal injuries due to MVCs and understanding biomechanical mechanism of these injuries is important for distinguishing acute injuries from chronic degenerative disease. This paper describes methods for determining causation of spinal pathologies from MVCs based on rates of injury and analysis of the biomechanics require to produce these injuries. Rates of spinal injuries in MVCs were determined using two distinct methodologies and interpreted using a focused review of salient biomechanical literature. One methodology used incidence data from the Nationwide Emergency Department Sample and exposure data from the Crash Report Sample System supplemented with a telephone survey to estimate total national exposure to MVC. The other used incidence and exposure data from the Crash Investigation Sampling System. Linking the clinical and biomechanical findings yielded several conclusions. First, spinal injuries caused by an MVC are relatively rare (511 injured occupants per 10,000 exposed to an MVC), which is consistent with the biomechanical forces required to generate injury. Second, spinal injury rates increase as impact severity increases, and fractures are more common in higher-severity exposures. Third, the rate of sprain/strain in the cervical spine is greater than in the lumbar spine. Fourth, spinal disc injuries are extremely rare in MVCs (0.01 occupants per 10,000 exposed) and typically occur with concomitant trauma, which is consistent with the biomechanical findings 1) that disc herniations are fatigue injuries caused by cyclic loading, 2) the disc is almost never the first structure to be injured in impact loading unless it is highly flexed and compressed, and 3) that most crashes involve predominantly tensile loading in the spine, which does not cause isolated disc herniations. These biomechanical findings illustrate that determining causation when an MVC occupant presents with disc pathology must be based on the specifics of that presentation and the crash circumstances and, more broadly, that any causation determination must be informed by competent biomechanical analysis.
Collapse
Affiliation(s)
- Richard Kent
- Center for Applied Biomechanics, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA; Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Joseph Cormier
- Biomechanics Consulting and Research, Charlottesville, VA, USA
| | - Timothy L McMurry
- Center for Applied Biomechanics, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - B Johan Ivarsson
- Biomechanics Consulting and Research, Charlottesville, VA, USA; Forensic Failure Engineering (FFE), LLC, Tempe, AZ, USA
| | - James Funk
- Center for Applied Biomechanics, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Biomechanics Consulting and Research, Charlottesville, VA, USA
| | - Thomas Hartka
- Center for Applied Biomechanics, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Emergency Medicine, University of Virginia, Charlottesville, VA, USA; Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Mark Sochor
- Center for Applied Biomechanics, Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA; Emergency Medicine, University of Virginia, Charlottesville, VA, USA; Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Chen X, Chen Z, Gao Y, Liu W, Jiang R, Du M, Jiang H. An investigation on power loss of an out-to-in body wireless radio frequency link. Technol Health Care 2019; 29:1089-1098. [PMID: 30829624 DOI: 10.3233/thc-181485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Implantable medical sensors for monitoring and transmitting physiological signals like blood glucose, blood oxygen, electrocardiogram, and endoscopic video present a new way for health care and disease prevention. Nevertheless, the signals transmitted by implantable sensors undergo significant attenuation as they propagate through various biological tissue layers. OBJECTIVE This paper mainly aims to investigate the power loss of an out-to-in body wireless radio frequency link at 2.45 GHz. METHODS Two simulation models including the single-layer human tissue model and three-layer human tissue model were established, applying the finite element method (FEM). Two experiments using physiological saline and excised porcine tissue were conducted to measure the power loss of a wireless radio frequency link at 2.45 GHz. Various communication distances and implantation depths were investigated in our study. RESULTS The results from our measurements show that each 2 cm increase in implantation depth will result in an additional power loss of about 10 dB. The largest difference in values obtained from the measurements and the simulations is within 4 dB, which indicates that the experiments are in good agreement with the simulations. CONCLUSIONS These results are significant for the estimate of how electromagnetic energy changes after propagating through human tissues, which can be used as a reference for the link budget of transceivers or other implantable medical devices.
Collapse
Affiliation(s)
- Xingguang Chen
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Zhiying Chen
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, Fujian, China
| | - Yueming Gao
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Wenzhu Liu
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ruixin Jiang
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Min Du
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, China.,Key Lab of Eco-Industrial Green Technology of Fujian Province, Nanping, Fujian, China
| | - Haiyan Jiang
- Key Lab of Medical Instrumentation and Pharmaceutical Technology of Fujian Province, Fuzhou University, Fuzhou, Fujian, China.,Laser Precision Machining Engineering Technology Research Center of Fujian Province, Putian, Fujian, China
| |
Collapse
|
5
|
Danelson K, Watkins L, Hendricks J, Frounfelker P, Pizzolato-Heine K, Valentine R, Loftis K. Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast Environment. STAPP CAR CRASH JOURNAL 2018; 62:489-513. [PMID: 30609005 DOI: 10.4271/2018-22-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent. The most common injury mechanisms were bending with probable vehicle contact (leg) and compression (foot). The most severe injuries sustained by Warfighters were to the pelvis, lumbar spine, and thoracic spine. These injuries were attributed to a compressive load from the seat pan that directly loaded the pelvis or created flexion in the lumbar spine. Rare types of injuries included severe abdominal organ injury, severe brain injury, and cervical spine injury. These typically occurred in conjunction with other fractures. Mitigating the frequently observed skeletal injuries using the WIAMan would have substantial long-term benefits for Warfighters.
Collapse
|
6
|
Blood RP, Yost MG, Camp JE, Ching RP. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12:351-362. [PMID: 25625530 DOI: 10.1080/15459624.2014.989357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.
Collapse
Affiliation(s)
- Ryan P Blood
- a Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington , Seattle , Washington
| | | | | | | |
Collapse
|
7
|
Kemper AR. Response corridors for the medial-lateral compressive stiffness of the human arm: Implications for side impact protection. ACCIDENT; ANALYSIS AND PREVENTION 2013; 50:204-222. [PMID: 22579220 DOI: 10.1016/j.aap.2012.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 03/09/2012] [Accepted: 04/16/2012] [Indexed: 05/31/2023]
Abstract
The biofidelity of side impact anthropomorphic test devices (ATDs) is crucial in order to accurately predict injury risk of human occupants. Although the arm serves as a load path to the thorax, there are currently no biofidelity response requirements for the arm. The purpose of this study was to characterize the compressive stiffness of male and female arms in medial-lateral loading and develop corresponding stiffness response corridors. This was accomplished by performing a series of pendulum tests on 18 isolated post-mortem human surrogate (PMHS) arms, obtained from four male and five female surrogates, at impact velocities of 2m/s and 4m/s. Matched tests were performed on the arm of the SID-IIs ATD for comparison. The arms were oriented vertically with the medial side placed against a rigid wall to simulate loading during a side impact automotive collision. The force versus deflection response data were normalized to that of a 50th percentile male and a 5th percentile female using a new normalizing technique based on initial arm width, and response corridors were developed for each impact velocity. A correlation analysis showed that all non-normalized dependent variables (initial stiffness, secondary stiffness, peak force, and peak deflection) were highly correlated with the initial arm width and initial arm circumference. For both impact velocities the PMHS arms exhibited a considerable amount of deflection under very low force before any substantial increase in force occurred. The compression at which the force began to increase considerably was consistent with the average tolerable medial-lateral arm compression experienced by volunteers. The initial stiffness (K1), secondary stiffness (K2), peak force, and peak deflection were found to significantly increase (p<0.05) with respect to impact velocity for both the non-normalized and normalized PMHS data. Although the response of the SID-IIs arm was similar to that of the female PMHS arms for both impact velocities, the SID-IIs arm did not exhibit a considerable toe region and therefore did not fall within the response corridors for the 5th percentile female. Overall, the results of the current study could lead to improved biofidelity of side impact ATDs by providing valuable data necessary to validate the compressive response of the ATD arm independent of the global ATD thoracic response.
Collapse
Affiliation(s)
- Andrew R Kemper
- Virginia Tech - Wake Forest University, Center for Injury Biomechanics, Blacksburg, VA 24061, United States.
| |
Collapse
|
8
|
Cutcliffe HC, Schmidt AL, Lucas JE, Bass CR. How few? Bayesian statistics in injury biomechanics. STAPP CAR CRASH JOURNAL 2012; 56:349-386. [PMID: 23625566 DOI: 10.4271/2012-22-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In injury biomechanics, there are currently no general a priori estimates of how few specimens are necessary to obtain sufficiently accurate injury risk curves for a given underlying distribution. Further, several methods are available for constructing these curves, and recent methods include Bayesian survival analysis. This study used statistical simulations to evaluate the fidelity of different injury risk methods using limited sample sizes across four different underlying distributions. Five risk curve techniques were evaluated, including Bayesian techniques. For the Bayesian analyses, various prior distributions were assessed, each incorporating more accurate information. Simulated subject injury and biomechanical input values were randomly sampled from each underlying distribution, and injury status was determined by comparing these values. Injury risk curves were developed for this data using each technique for various small sample sizes; for each, analyses on 2000 simulated data sets were performed. Resulting median predicted risk values and confidence intervals were compared with the underlying distributions. Across conditions, the standard and Bayesian survival analyses better represented the underlying distributions included in this study, especially for extreme (1, 10, and 90%) risk. This study demonstrates that the value of the Bayesian analysis is the use of informed priors. As the mean of the prior approaches the actual value, the sample size necessary for good reproduction of the underlying distribution with small confidence intervals can be as small as 2. This study provides estimates of confidence intervals and number of samples to allow the selection of the most appropriate sample sizes given known information.
Collapse
|