1
|
Analysis of protein kinases by Phos-tag SDS-PAGE. J Proteomics 2022; 255:104485. [DOI: 10.1016/j.jprot.2022.104485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/18/2022]
|
2
|
Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast 2020; 2020:6970190. [PMID: 32587608 PMCID: PMC7293752 DOI: 10.1155/2020/6970190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5, also known as STK9) is a serine/threonine protein kinase originally identified in 1998 during a transcriptional mapping project of the human X chromosome. Thereafter, a mutation in CDKL5 was reported in individuals with the atypical Rett syndrome, a neurodevelopmental disorder, suggesting that CDKL5 plays an important regulatory role in neuronal function. The disease associated with CDKL5 mutation has recently been recognised as CDKL5 deficiency disorder (CDD) and has been distinguished from the Rett syndrome owing to its symptomatic manifestation. Because CDKL5 mutations identified in patients with CDD cause enzymatic loss of function, CDKL5 catalytic activity is likely strongly associated with the disease. Consequently, the exploration of CDKL5 substrate characteristics and regulatory mechanisms of its catalytic activity are important for identifying therapeutic target molecules and developing new treatment. In this review, we summarise recent findings on the phosphorylation of CDKL5 substrates and the mechanisms of CDKL5 phosphorylation and dephosphorylation. We also discuss the relationship between changes in the phosphorylation signalling pathways and the Cdkl5 knockout mouse phenotype and consider future prospects for the treatment of mental and neurological disease associated with CDKL5 mutations.
Collapse
|
3
|
Uezato Y, Kameshita I, Morisawa K, Sakamoto S, Kinoshita E, Kinoshita-Kikuta E, Koike T, Sugiyama Y. A method for profiling the phosphorylation state of tyrosine protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:71-75. [PMID: 29753089 DOI: 10.1016/j.bbapap.2018.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/14/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023]
Abstract
Protein kinases are known to be implicated in various biological phenomena and diseases through their involvement in protein phosphorylation. Therefore, analysis of the activity of protein kinases by examination of their phosphorylation state is important to elucidate their mechanisms. However, a method for analyzing the phosphorylation state of entire protein kinases in cells is not established. In the present study, we developed a new profiling method to analyze the expression and phosphorylation state of protein kinases using a Multi-PK antibody and Phos-tag 2D-PAGE. When HL-60 cells were differentiated into macrophage-like cells induced by 12-O-tetradecanoylphorbol-13-acetate, we observed significant changes in the expression and phosphorylation state of immunoreactive spots by this method. These results show that tyrosine kinase expression levels and phosphorylation state are changed by differentiation. Taken together, the developed method will be a useful tool for analysis of intracellular tyrosine protein kinases.
Collapse
Affiliation(s)
- Yuuki Uezato
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Keiko Morisawa
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
| |
Collapse
|
4
|
Yamashita M, Sueyoshi N, Yamada H, Katayama S, Senga Y, Takenaka Y, Ishida A, Kameshita I, Shigeri Y. Characterization of CoPK02, a Ca 2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea. Biosci Biotechnol Biochem 2018; 82:1335-1343. [PMID: 29673297 DOI: 10.1080/09168451.2018.1462692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca2+/CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca2+/CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca2+-signaling in C. cinerea.
Collapse
Affiliation(s)
- Masashi Yamashita
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Noriyuki Sueyoshi
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Hiroki Yamada
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Syouichi Katayama
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Yukako Senga
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan.,b Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Yasuhiro Takenaka
- c Department of Physiology , Nippon Medical School , Bunkyo-ku, Japan
| | - Atsuhiko Ishida
- d Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences , Hiroshima University , Higashi-Hiroshima , Japan
| | - Isamu Kameshita
- a Faculty of Agriculture, Department of Life Sciences , Kagawa University , Miki-Cho , Japan
| | - Yasushi Shigeri
- e Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Takamatsu , Japan
| |
Collapse
|
5
|
Sugiyama Y, Kameshita I. Multi-PK antibodies: Powerful analytical tools to explore the protein kinase world. Biochem Biophys Rep 2017; 11:40-45. [PMID: 28955766 PMCID: PMC5614692 DOI: 10.1016/j.bbrep.2017.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/07/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Diverse biological events are regulated through protein phosphorylation mediated by protein kinases. Some of these protein kinases are known to be involved in the pathogenesis of various diseases. Although 518 protein kinase genes were identified in the human genome, it remains unclear how many and what kind of protein kinases are expressed and activated in cells and tissues under varying situations. To investigate cellular signaling by protein kinases, we developed monoclonal antibodies, designated as Multi-PK antibodies, that can recognize multiple protein kinases in various biological species. These Multi-PK antibodies can be used to profile the kinases expressed in cells and tissues, identify the kinases of special interest, and analyze protein kinase expression and phosphorylation state. Here we introduce some applications of Multi-PK antibodies to identify and characterize the protein kinases involved in epigenetics, glucotoxicity in type 2 diabetes, and pathogenesis of ulcerative colitis. In this review, we focus on the recently developed technologies for kinomics studies using the powerful analytical tools of Multi-PK antibodies. Multi-PK antibodies recognize a wide variety of protein kinases. New analytical methods using Multi-PK antibodies for protein kinase studies are explained. Kinomics studies using Multi-PK antibodies are introduced.
Collapse
Key Words
- 2D-PAGE, two-dimensional polyacrylamide gel electrophoresis
- CDKL5, cyclin-dependent kinase-like 5
- CNBr, cyanogen bromide
- CaMK, Ca2+/calmodulin-dependent protein kinase
- DCLK, double-cortin like protein kinase
- Dnmt1, DNA methyltransferase 1
- FAK, focal adhesion kinase
- IEF, isoelectric focusing
- IPG, immobilized pH gradient
- Kinomics
- MAPK, mitogen-activated protein kinase
- MeCP2, methylated-CpG-binding protein 2
- Monoclonal antibody
- Protein kinase
- Protein phosphorylation
- Proteomics
Collapse
|
6
|
Expression analyses of splice variants of zebrafish cyclin-dependent kinase-like 5 and its substrate, amphiphysin 1. Gene 2016; 583:15-23. [DOI: 10.1016/j.gene.2016.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 12/27/2022]
|
7
|
Sugiyama Y, Katayama S, Kameshita I, Morisawa K, Higuchi T, Todaka H, Kinoshita E, Kinoshita-Kikuta E, Koike T, Taniguchi T, Sakamoto S. Expression and phosphorylation state analysis of intracellular protein kinases using Multi-PK antibody and Phos-tag SDS-PAGE. MethodsX 2015; 2:469-74. [PMID: 26844212 PMCID: PMC4703585 DOI: 10.1016/j.mex.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022] Open
Abstract
Protein kinase expression and activity play important roles in diverse cellular functions through regulation of phosphorylation signaling. The most commonly used tools for detecting the protein kinase are protein kinase-specific antibodies, and phosphorylation site-specific antibodies were used for detecting activated protein kinase. Using these antibodies, only one kinase was analyzed at a time, however, a method for analyzing the expression and activation of a panel of protein kinases in cells is not established. Therefore, we developed a combined method using Multi-PK antibody and Phos-tag SDS-PAGE for profiling the expression and phosphorylation state of intracellular protein kinases. Using the new method, changes in the expression and phosphorylation state of various protein kinases were detected in cells treated with anticancer agent which inhibit multiple tyrosine kinase activities. Therefore, the new method is a useful technique for analysis of intracellular protein kinases.Multi-PK antibody recognizes a wide variety of protein kinases in various species. Using Phos-tag SDS-PAGE, phosphorylated proteins are visualized as slower migration bands compared with corresponding non-phosphorylated proteins. This combined method can be used for detecting changes in the expression and phosphorylation state of various intracellular protein kinases.
Collapse
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Syouichi Katayama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Keiko Morisawa
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Takuma Higuchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Hiroshi Todaka
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tohru Koike
- Department of Functional Molecular Science, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Taketoshi Taniguchi
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| | - Shuji Sakamoto
- Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan
| |
Collapse
|
8
|
Onouchi T, Kishino-Kaneko Y, Kameshita I, Ishida A, Sueyoshi N. Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin-γC5 (Pcdh-γC5). Arch Biochem Biophys 2015; 585:109-120. [PMID: 26386307 DOI: 10.1016/j.abb.2015.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr protein phosphatase that belongs to the PPM family. It is important to identify an endogenous regulator of CaMKP. Using an Escherichia coli two-hybrid screening method, we identified the C-terminal cytoplasmic fragment of protocadherin γ subfamily C5 (Pcdh-γC5), which was generated by intracellular processing, as a CaMKP-binding protein. Dephosphorylation of phosphorylated Ca(2+)/calmodulin-dependent protein kinase I (CaMKI) by CaMKP was significantly activated by the C-terminal cytoplasmic fragment, Pcdh-γC5(715-944), both in vitro and in cells, suggesting that the C-terminal fragment functions as an endogenous activator of CaMKP. The nuclear translocation of the fragment was blocked by its binding to cytoplasmic CaMKP to form a ternary complex with CaMKI. Taken together, these results strongly suggest that the C-terminal cytoplasmic fragment of Pcdh-γC5 acts as a scaffold for CaMKP and CaMKI to regulate CaMKP activity. These findings may provide new insights into the reversible regulation of CaMKP in cells.
Collapse
Affiliation(s)
- Takashi Onouchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Yoshimi Kishino-Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
| |
Collapse
|
9
|
Deng Z, Ye M, Bian Y, Liu Z, Liu F, Wang C, Qin H, Zou H. Multiplex isotope dimethyl labeling of substrate peptides for high throughput kinase activity assay via quantitative MALDI MS. Chem Commun (Camb) 2015; 50:13960-2. [PMID: 25267994 DOI: 10.1039/c4cc04906c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A simple, cost-effective and high throughput method was developed for multiplexed kinase activity assay based on the multiplex isotope labeling of designed substrate peptides. This strategy was successfully applied to monitor the time-dependent consumption of substrates and generation of products in the single and multiple substrate systems.
Collapse
Affiliation(s)
- Zhenzhen Deng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
The Phosphatase-Resistant Isoform of CaMKI, Ca²⁺/Calmodulin-Dependent Protein Kinase Iδ (CaMKIδ), Remains in Its "Primed" Form without Ca²⁺ Stimulation. Biochemistry 2015; 54:3617-30. [PMID: 25994484 DOI: 10.1021/bi5012139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ca²⁺/calmodulin-dependent protein kinase I (CaMKI) is known to play pivotal roles in Ca²⁺ signaling pathways. Four isoforms of CaMKI (α, β, γ, and δ) have been reported so far. CaMKI is activated through phosphorylation by the upstream kinase, CaMK kinase (CaMKK), and phosphorylates downstream targets. When CaMKI was transiently expressed in 293T cells, CaMKIα was not phosphorylated at all under low-Ca²⁺ conditions in the cells. In contrast, we found that CaMKIδ was significantly phosphorylated and activated to phosphorylate cAMP response element-binding protein (CREB) under the same conditions. Herein, we report that the sustained activation of CaMKIδ is ascribed to its phosphatase resistance resulting from the structure of its N-terminal region. First, we examined whether CaMKIδ is more readily phosphorylated by CaMKK than CaMKIα, but no significant difference was observed. Next, to compare the phosphatase resistance between CaMKIα and CaMKIδ, we assessed the dephosphorylation of the phosphorylated CaMKIs by CaMK phosphatase (CaMKP/PPM1F). Surprisingly, CaMKIδ was hardly dephosphorylated by CaMKP, whereas CaMKIα was significantly dephosphorylated under the same conditions. To date, there have been no detailed reports concerning dephosphorylation of CaMKI. Through extensive analysis of CaMKP-catalyzed dephosphorylation of various chimeric and point mutants of CaMKIδ and CaMKIα, we identified the amino acid residues responsible for the phosphatase resistance of CaMKIδ (Pro-57, Lys-62, Ser-66, Ile-68, and Arg-76). These results also indicate that the phosphatase resistance of CaMKI is largely affected by only several amino acids in its N-terminal region. The phosphatase-resistant CaMKI isoform may play a physiological role under low-Ca²⁺ conditions in the cells.
Collapse
|
11
|
Katayama S, Sueyoshi N, Kameshita I. Critical Determinants of Substrate Recognition by Cyclin-Dependent Kinase-like 5 (CDKL5). Biochemistry 2015; 54:2975-87. [PMID: 25905439 DOI: 10.1021/bi501308k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase known to be associated with X-linked neurodevelopmental disorders. In a previous study, we identified amphiphysin 1 (Amph1) as a potential substrate for CDKL5 and identified a single phosphorylation site at Ser-293. In this study, we investigated the molecular mechanisms of substrate recognition by CDKL5 using Amph1 as a model substrate. Amph1 served as an efficient CDKL5 substrate, whereas Amph2, a structurally related homologue of Amph1, was not phosphorylated by CDKL5. The sequence around the Amph1 phosphorylation site is RPR(293)SPSQ, while the corresponding sequence in Amph2 is IPK(332)SPSQ. To define the amino acid sequence specificity of the substrate, various point mutants of Amph1 and Amph2 were prepared and phosphorylated by CDKL5. Both Amph2(I329R) and Amph1 served as efficient CDKL5 substrates, but Amph1(R290I) did not, indicating that the arginyl residue at the P -3 position is critical for substrate recognition. With regard to prolyl residues around the phosphorylation site of Amph1, Pro-291 at the P -2 position, but not Pro-294 at the P +1 position, is indispensable for phosphorylation by CDKL5. Phosphorylation experiments using various deletion mutants of Amph1 revealed that the proline-rich domain (PRD) (amino acids 247-315) alone was not phosphorylated by CDKL5. In contrast, Amph1(247-385), which comprised the PRD and CLAP domains, served as an efficient CDKL5 substrate. These results, taken together, suggest that both the phosphorylation site sequence (RPXSX) and the CLAP domain structure in Amph1 play crucial roles in recognition and phosphorylation by CDKL5.
Collapse
Affiliation(s)
- Syouichi Katayama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| |
Collapse
|
12
|
Kameshita I, Yamashita S, Katayama S, Senga Y, Sueyoshi N. TandeMBP: generation of a unique protein substrate for protein kinase assays. J Biochem 2014; 156:147-54. [DOI: 10.1093/jb/mvu025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Kaneko K, Tabuchi M, Sueyoshi N, Ishida A, Utsumi T, Kameshita I. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation. J Biochem 2014; 156:51-61. [PMID: 24659342 DOI: 10.1093/jb/mvu018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mitsuaki Tabuchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Atsuhiko Ishida
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshihiko Utsumi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-Cho, Kagawa 761-0795; Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521; and Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
14
|
Nagamine T, Nomada S, Onouchi T, Kameshita I, Sueyoshi N. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2. Biochem Biophys Res Commun 2014; 446:73-8. [DOI: 10.1016/j.bbrc.2014.02.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
15
|
Senga Y, Yoshioka K, Kameshita I, Sueyoshi N. Expression and gene knockdown of zebrafish Ca2+/calmodulin-dependent protein kinase Iδ-LL. Arch Biochem Biophys 2013; 540:41-52. [DOI: 10.1016/j.abb.2013.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 02/03/2023]
|
16
|
Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I. Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys 2013; 535:257-67. [DOI: 10.1016/j.abb.2013.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
17
|
Baba H, Sueyoshi N, Shigeri Y, Ishida A, Kameshita I. Regulation of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) by oxidation/reduction at Cys-359. Arch Biochem Biophys 2012; 526:9-15. [DOI: 10.1016/j.abb.2012.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
18
|
Xu X, Zhou J, Liu X, Nie Z, Qing M, Guo M, Yao S. Aptameric Peptide for One-Step Detection of Protein Kinase. Anal Chem 2012; 84:4746-53. [DOI: 10.1021/ac3001918] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Phosphorylation and activation of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) by Ca2+/calmodulin-dependent protein kinase I (CaMKI). Biochem Biophys Res Commun 2012; 422:703-9. [DOI: 10.1016/j.bbrc.2012.05.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/12/2012] [Indexed: 11/19/2022]
|
20
|
Knockdown of two splice variants of Ca2+/calmodulin-dependent protein kinase Iδ causes developmental abnormalities in zebrafish, Danio rerio. Arch Biochem Biophys 2012; 517:71-82. [DOI: 10.1016/j.abb.2011.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/18/2022]
|
21
|
Sueyoshi N, Nimura T, Onouchi T, Baba H, Takenaka S, Ishida A, Kameshita I. Functional processing of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N): evidence for a critical role of proteolytic processing in the regulation of its catalytic activity, subcellular localization and substrate targeting in vivo. Arch Biochem Biophys 2011; 517:43-52. [PMID: 22100705 DOI: 10.1016/j.abb.2011.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/21/2011] [Accepted: 10/29/2011] [Indexed: 11/28/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear homolog CaMKP-N are Ser/Thr protein phosphatases that belong to the PPM family. These phosphatases are highly specific for multifunctional CaM kinases and negatively regulate their activities. CaMKP-N is only expressed in the brain and specifically localized in the nucleus. In this study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing in both the zebrafish brain and Neuro2a cells. In Neuro2a cells, the proteolytic processing was effectively inhibited by the proteasome inhibitors MG-132, Epoxomicin, and Lactacystin, suggesting that the ubiquitin-proteasome pathway was involved in this processing. Using MG-132, we found that the proteolytic processing changed the subcellular localization of zCaMKP-N from the nucleus to the cytosol. Accompanying this change, the cellular targets of zCaMKP-N in Neuro2a cells were significantly altered. Furthermore, we obtained evidence that the zCaMKP-N activity was markedly activated when the C-terminal domain was removed by the processing. Thus, the proteolytic processing of zCaMKP-N at the C-terminal region regulates its catalytic activity, subcellular localization and substrate targeting in vivo.
Collapse
|
22
|
Kaneko K, Sugiyama Y, Yamada Y, Sueyoshi N, Watanabe A, Asada Y, Ishida A, Kameshita I. CoPK32 is a novel stress-responsive protein kinase in the mushroom Coprinopsis cinerea. Biochim Biophys Acta Gen Subj 2011; 1810:620-9. [DOI: 10.1016/j.bbagen.2011.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
23
|
Nagamine T, Shimomura S, Sueyoshi N, Kameshita I. Influence of Ser/Pro-rich domain and kinase domain of double cortin-like protein kinase on microtubule-binding activity. J Biochem 2011; 149:619-27. [DOI: 10.1093/jb/mvr013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Sugiyama Y, Murao K, Imachi H, Sueyoshi N, Ishida T, Kameshita I. Calcium/calmodulin-dependent protein kinase IV involvement in the pathophysiology of glucotoxicity in rat pancreatic β-cells. Metabolism 2011; 60:145-53. [PMID: 20423744 DOI: 10.1016/j.metabol.2010.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/08/2010] [Accepted: 03/22/2010] [Indexed: 01/24/2023]
Abstract
Glucotoxicity is a critical component of the pathophysiology of type 2 diabetes mellitus; however, the molecular mechanisms of glucotoxicity are still not fully understood. We have attempted to determine the protein kinases involved in glucotoxicity in pancreatic β-cells by the use of a new technique. Using Multi-PK antibodies, which are capable of detecting a wide variety of protein kinases, we analyzed the protein kinase that correlated with insulin synthesis in INS-1 cells under glucotoxic conditions. When expression patterns of protein kinases in INS-1 cells were analyzed by Western blotting with Multi-PK antibodies, a kinase of 63 kd was significantly reduced concomitant with the decrease of insulin secretion under glucotoxic conditions. To identify the 63-kd kinase, we used a unique 2-dimensional gel electrophoretic technique and MicroRotofor (Bio-Rad Laboratories, Tokyo, Japan) electrophoresis. From the molecular size of a native kinase/cyanogen bromide fragment and pI value, the 63-kd protein kinase was deduced to be CaMKIV. This was confirmed by Western blotting analysis using anti-CaMKIV antibodies. The decreased CaMKIV levels under glucotoxic conditions recovered to original levels after changing the medium to a normal glucose concentration. Recombinant CaMKIV was degraded in a Ca²+-dependent manner by incubation with cell lysates from INS-1 cells under glucotoxic conditions, and degradation was protected by calpain inhibitor. Furthermore, CaMKIV was reduced in the pancreatic islets of diabetic Otsuka Long-Evans Tokushima fatty rats, whereas that of nondiabetic Long-Evans Tokushima Otsuka rats was not. This study suggests that the abnormal regulation of CaMKIV is a component of β-cell dysfunction caused by high glucose.
Collapse
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, 2393 Ikenobe Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
25
|
The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1delta/epsilon. Biochem J 2010; 427:489-97. [PMID: 20192920 DOI: 10.1042/bj20091856] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dnmt1 (DNA methyltansferase 1) is an enzyme that recognizes and methylates hemimethylated DNA during DNA replication to maintain methylation patterns. The N-terminal region of Dnmt1 is known to form an independent domain structure that interacts with various regulatory proteins and DNA. In the present study, we investigated protein kinases in the mouse brain that could bind and phosphorylate the N-terminal regulatory domain of Dnmt1. A protein fraction containing protein kinase activity for phosphorylation of Dnmt1(1-290) was prepared using Dnmt1(1-290)-affinity, DNA-cellulose and gel-filtration columns. When the proteins in this fraction were analysed by LC-MS/MS (liquid chromatography tandem MS), CK1delta/epsilon (casein kinase 1delta/epsilon) was the only protein kinase identified. Recombinant CK1delta/epsilon was found to bind to the N-terminal domain of Dnmt1 and significantly phosphorylated this domain, especially in the presence of DNA. Phosphorylation analyses using various truncation and point mutants of Dnmt1 revealed that the major priming site phosphorylated by CK1delta/epsilon was Ser146, and that subsequent phosphorylation at other sites may occur after phosphorylation of the priming site. When the DNA-binding activity of phosphorylated Dnmt1 was compared with that of the non-phosphorylated form, phosphorylation of Dnmt1 was found to decrease the affinity for DNA. These results suggest that CK1delta/epsilon binds to and phosphorylates the N-terminal domain of Dnmt1 and regulates Dnmt1 function by reducing the DNA-binding activity.
Collapse
|
26
|
Nimura T, Sugiyama Y, Sueyoshi N, Shigeri Y, Ishida A, Kameshita I. A minimum size homologue of Ca2+/calmodulin-dependent protein kinase IV naturally occurring in zebrafish. J Biochem 2010; 147:857-65. [DOI: 10.1093/jb/mvq021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Kameshita I, Shimomura S, Nishio K, Sueyoshi N, Nishida T, Nomura M, Tajima S. Expression and characterization of PKL01, an Ndr kinase homolog in Lotus japonicus. J Biochem 2010; 147:799-807. [DOI: 10.1093/jb/mvq011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Shimomura S, Nagamine T, Hatano N, Sueyoshi N, Kameshita I. Identification of an endogenous substrate of zebrafish doublecortin-like protein kinase using a highly active truncation mutant. J Biochem 2010; 147:711-22. [PMID: 20097902 DOI: 10.1093/jb/mvq005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doublecortin-like protein kinase (DCLK), a Ser/Thr protein kinase predominantly expressed in brain and eyes, is believed to play crucial roles in neuronal functions. However, the regulatory mechanisms for DCLK activation and its physiological targets are still unknown. In the present study, we found that a deletion mutant consisting of the catalytic domain of zebrafish DCLK, zDCLK(377-677), exhibited the highest activity among various mutants. Since fully active zDCLK(377-677) showed essentially the same substrate specificity as wild-type zDCLK, we used it to search for physiological substrates of zDCLK. When a zebrafish brain extract was resolved by isoelectric focusing and then phosphorylated by zDCLK(377-677), a highly basic protein with a molecular mass of approximately 90 kDa was detected. This protein was identified as synapsin II by mass spectrometric analysis. Synapsin II was found to interact with the catalytic domain of zDCLK and was phosphorylated at Ser-9 and Ser-58. When synaptosomes were isolated from zebrafish brain, both synapsin II and zDCLK were found to coexist in this preparation. Furthermore, synapsin II in the synaptosomes was efficiently phosphorylated by zDCLK. These results suggest that zDCLK mediates its neuronal functions through phosphorylation of physiological substrates such as synapsin II.
Collapse
Affiliation(s)
- Sachiko Shimomura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | | | |
Collapse
|
29
|
Kameshita I, Baba H, Umeda Y, Sueyoshi N. In-gel protein phosphatase assay using fluorogenic substrates. Anal Biochem 2010; 400:118-22. [PMID: 20045670 DOI: 10.1016/j.ab.2009.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 10/20/2022]
Abstract
We developed a method for the detection of phosphatase activity using fluorogenic substrates after polyacrylamide gel electrophoresis. When phosphatases such as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), protein phosphatase 2C (PP2C), protein phosphatase 5 (PP5), and alkaline phosphatase were resolved by polyacrylamide gel electrophoresis in the absence of SDS and the gel was incubated with a fluorogenic substrate such as 4-methylumbelliferyl phosphate (MUP), all of these phosphatase activities could be detected in situ. Although 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as well as MUP could be used as a fluorogenic substrate for an in-gel assay, MUP exhibited lower background fluorescence. Using this procedure, several fluorescent bands that correspond to endogenous phosphatases were observed after electrophoresis of various crude samples. The in-gel phosphatase assay could also be used to detect protein phosphatases resolved by SDS-polyacrylamide gel electrophoresis. In this case, however, the denaturation/renaturation process of resolved proteins was necessary for the detection of phosphatase activity. This procedure could be used for detection of renaturable protein phosphatases such as CaMKP and some other phosphatases expressed in cell extracts. The present fluorescent in-gel phosphatase assay is very useful, since no radioactive compounds or no special apparatus are required.
Collapse
Affiliation(s)
- Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
| | | | | | | |
Collapse
|
30
|
Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N. Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun 2008; 377:1162-7. [PMID: 18977197 DOI: 10.1016/j.bbrc.2008.10.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/19/2008] [Indexed: 10/21/2022]
Abstract
DNA methyltransferase 1 (Dnmt1) is an enzyme that recognizes and methylates hemimethylated CpG after DNA replication to maintain methylation patterns. Although the N-terminal region of Dnmt1 is known to interact with various proteins, such as methyl-CpG-binding protein 2 (MeCP2), the associations of protein kinases with this region have not been reported. In the present study, we found that a 110-kDa protein kinase in mouse brain could bind to the N-terminal domain of Dnmt1. This 110-kDa kinase was identified as cyclin-dependent kinase-like 5 (CDKL5) by LC-MS/MS analysis. CDKL5 and Dnmt1 were found to colocalize in nuclei and appeared to interact with each other. Catalytically active CDKL5, CDKL5(1-352), phosphorylated the N-terminal region of Dnmt1 in the presence of DNA. Considering that defects in the MeCP2 or CDKL5 genes cause Rett syndrome, we propose that the interaction between Dnmt1 and CDKL5 may contribute to the pathogenic processes of Rett syndrome.
Collapse
Affiliation(s)
- Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kaneko K, Yamada Y, Sueyoshi N, Watanabe A, Asada Y, Kameshita I. Novel Ca2+/calmodulin-dependent protein kinase expressed in actively growing mycelia of the basidiomycetous mushroom Coprinus cinereus. Biochim Biophys Acta Gen Subj 2008; 1790:71-9. [PMID: 18786613 DOI: 10.1016/j.bbagen.2008.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 07/18/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
We isolated cDNA clones for novel protein kinases by expression screening of a cDNA library from the basidiomycetous mushroom Coprinus cinereus. One of the isolated clones was found to encode a calmodulin (CaM)-binding protein consisting of 488 amino acid residues with a predicted molecular weight of 53,906, which we designated CoPK12. The amino acid sequence of the catalytic domain of CoPK12 showed 46% identity with those of rat Ca2+/CaM-dependent protein kinase (CaMK) I and CaMKIV. However, a striking difference between these kinases is that the critical Thr residue in the activating phosphorylation site of CaMKI/IV is replaced by a Glu residue at the identical position in CoPK12. As predicted from its primary sequence, CoPK12 was found to behave like an activated form of CaMKI phosphorylated by an upstream CaMK kinase, indicating that CoPK12 is a unique CaMK with different properties from those of the well-characterized CaMKI, II, and IV. CoPK12 was abundantly expressed in actively growing mycelia and phosphorylated various proteins, including endogenous substrates, in the presence of Ca2+/CaM. Treatment of mycelia of C. cinereus with KN-93, which was found to inhibit CoPK12, resulted in a significant reduction in growth rate of mycelia. These results suggest that CoPK12 is a new type of multifunctional CaMK expressed in C. cinereus, and that it may play an important role in the mycelial growth.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Sugiyama Y, Shimomura S, Sueyoshi N, Kameshita I. Two-dimensional gel electrophoretic analysis of cyanogen bromide fragments containing subdomain VIB of protein kinases using a Multi-PK antibody. Anal Biochem 2008; 373:173-5. [PMID: 17963683 DOI: 10.1016/j.ab.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | |
Collapse
|
33
|
Sueyoshi N, Takao T, Nimura T, Sugiyama Y, Numano T, Shigeri Y, Taniguchi T, Kameshita I, Ishida A. Inhibitors of the Ca2+/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N). Biochem Biophys Res Commun 2007; 363:715-21. [PMID: 17897624 DOI: 10.1016/j.bbrc.2007.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca(2+)/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro.
Collapse
Affiliation(s)
- Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kameshita I, Yamada Y, Nishida T, Sugiyama Y, Sueyoshi N, Watanabe A, Asada Y. Involvement of Ca2+/calmodulin-dependent protein kinases in mycelial growth of the basidiomycetous mushroom, Coprinus cinereus. Biochim Biophys Acta Gen Subj 2007; 1770:1395-403. [PMID: 17640808 DOI: 10.1016/j.bbagen.2007.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 05/26/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Although multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaM-kinases) are widely distributed in animal cells, the occurrence of CaM-kinases in the basidiomycetous mushroom has not previously been documented. When the extracts from various developmental stages from mycelia to the mature fruiting body of Coprinus cinereus were analyzed by Western blotting using Multi-PK antibodies, which had been generated to detect a wide variety of protein serine/threonine kinases (Ser/Thr kinases), a variety of stage-specific Ser/Thr kinases was detected. Calmodulin (CaM) overlay assay using digoxigenin-labeled CaM detected protein bands of 65 kDa, 58 kDa, 46 kDa, 42 kDa, and 38 kDa only in the presence of CaCl(2), suggesting that these bands were CaM-binding proteins. When the CaM-binding fraction was prepared from mycelial extract of C. cinereus by CaM-Sepharose and analyzed with Multi-PK antibodies, two major immunoreactive bands corresponding to 65 kDa and 46 kDa were detected. CaM-binding fraction, thus obtained, exhibited Ca(2+)/CaM-dependent protein kinase activity toward protein substrates such as histones. These CaM-kinases were found to be highly expressed in the actively growing mycelia, but not in the resting mycelial cells. Mycelial growth was enhanced by the addition of CaCl(2) in the culture media, but inhibited by the addition of EGTA or trifluoperazine, a potent CaM inhibitor. This suggested that CaM-dependent enzymes including CaM-kinases play crucial roles in mycelial growth of basidiomycete C. cinereus.
Collapse
Affiliation(s)
- Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Shimomura S, Nagamine T, Nimura T, Sueyoshi N, Shigeri Y, Kameshita I. Expression, characterization, and gene knockdown of zebrafish doublecortin-like protein kinase. Arch Biochem Biophys 2007; 463:218-30. [PMID: 17498644 DOI: 10.1016/j.abb.2007.03.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/15/2007] [Accepted: 03/20/2007] [Indexed: 01/22/2023]
Abstract
Doublecortin-like protein kinase (DCLK) is a protein Ser/Thr kinase expressed in brain and believed to play crucial roles in neuronal development. To investigate the biological significance of DCLK, we isolated cDNA clones for zebrafish DCLK (zDCLK) and found that there were five splice variants of the kinase. In this study, the catalytic properties of a major isoform of zDCLK, which we designated as zDCLK1, and of an N-terminal truncated mutant retaining the kinase domain were examined by expressing them in Escherichia coli. Mutational analysis of recombinant zDCLK suggested that the kinase was activated not only by phosphorylation at Thr-576 in the activation loop but also by autophosphorylation at the other site(s) in the catalytic domain. zDCLK significantly phosphorylated protein substrates such as myelin basic protein, histones, and synapsin I. Subcellular localization of zDCLK and its N-terminal deletion mutant implicated that microtubule-association of zDCLK is mediated through N-terminal doublecortin like domain of this enzyme. Western blotting analysis and whole mount in situ hybridization revealed that zDCLK was highly expressed in brain and eyes after 24-h post fertilization. Gene knockdown of zDCLK using morpholino-based antisense oligonucleotides induced significant increase of apoptotic cells in the central nervous systems and resulted in the increase of the morphologically abnormal embryos in a dose-dependent manner. These results suggest that zDCLK may play crucial roles in the central nervous systems during the early stage of embryogenesis.
Collapse
Affiliation(s)
- Sachiko Shimomura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Ishida A, Kameshita I, Sueyoshi N, Taniguchi T, Shigeri Y. Recent Advances in Technologies for Analyzing Protein Kinases. J Pharmacol Sci 2007; 103:5-11. [PMID: 17202749 DOI: 10.1254/jphs.cp0060026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Most cellular events are regulated by protein phosphorylation mediated by protein kinases, whose malfunction is involved in the etiology of various disorders. The elucidation of the biochemical properties of the protein phosphorylation reaction will lead not only to a better understanding of the signal transduction mechanism, but also to developing new therapeutic agents. In this review, we briefly summarize the technologies to detect or characterize protein kinases with special emphasis on recently developed and/or commercially available techniques.
Collapse
Affiliation(s)
- Atsuhiko Ishida
- Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | |
Collapse
|
37
|
Nimura T, Sueyoshi N, Ishida A, Yoshimura Y, Ito M, Tokumitsu H, Shigeri Y, Nozaki N, Kameshita I. Knockdown of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase causes developmental abnormalities in zebrafish. Arch Biochem Biophys 2007; 457:205-16. [PMID: 17169323 DOI: 10.1016/j.abb.2006.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
Nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N) is an enzyme that dephosphorylates and concomitantly downregulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) in vitro. However, the functional roles of this enzyme in vivo are not well understood. To investigate the biological significance of CaMKP-N during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP-N (zCaMKP-N). Based on the nucleotide sequences in the zebrafish whole genome shotgun database, we isolated a cDNA clone for zCaMKP-N, which encoded a protein of 633 amino acid residues. Transiently expressed full-length zCaMKP-N in mouse neuroblastoma, Neuro2a cells, was found to be localized in the nucleus. In contrast, the C-terminal truncated mutant lacking RKKRRLDVLPLRR (residues 575-587) had cytoplasmic staining, suggesting that the nuclear localization signal of zCaMKP-N exists in the C-terminal region. Ionomycin treatment of CaMKIV-transfected Neuro2a cells resulted in a marked increase in the phosphorylated form of CaMKIV. However, cotransfection with zCaMKP-N significantly decreased phospho-CaMKIV in ionomycin-stimulated cells. Whole mount in situ hybridization analysis of zebrafish embryos showed that zCaMKP-N is exclusively expressed in the head and neural tube regions. Gene knockdown of zCaMKP-N using morpholino-based antisense oligonucleotides induced significant morphological abnormalities in zebrafish embryos. A number of apoptotic cells were observed in brain and spinal cord of the abnormal embryos. These results suggest that zCaMKP-N plays a crucial role in the early development of zebrafish.
Collapse
Affiliation(s)
- Takaki Nimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sugiyama Y, Sueyoshi N, Kameshita I. Two-dimensional expression pattern analysis of protein kinases after separation by MicroRotofor/SDS–PAGE. Anal Biochem 2006; 359:271-3. [PMID: 16962552 DOI: 10.1016/j.ab.2006.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 11/22/2022]
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | |
Collapse
|
39
|
Sugiyama Y, Sueyoshi N, Shigeri Y, Tatsu Y, Yumoto N, Ishida A, Taniguchi T, Kameshita I. Generation and application of a monoclonal antibody that detects a wide variety of protein tyrosine kinases. Anal Biochem 2005; 347:112-20. [PMID: 16236242 DOI: 10.1016/j.ab.2005.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/25/2005] [Accepted: 08/30/2005] [Indexed: 11/19/2022]
Abstract
To investigate expression profiles of the entire family of protein tyrosine kinases (PTKs), we attempted to generate an antibody that detects a variety of PTKs. For production of the antibody, antigenic peptides corresponding to amino acid sequences of a highly conserved region (subdomain VIB) of PTKs were synthesized and immunized to BALB/c mice. Among various antigens, a peptide with 11 amino acids, CYVHRDLRAAN, efficiently produced a polyclonal antibody with a broad cross-reactivity to PTKs. We established a hybridoma cell line producing a monoclonal antibody, YK34, which appeared to cross-react with at least 68 PTKs in the human genome, as evidenced by its reactivity with the recombinant Src tyrosine kinases whose subdomain VIB had been replaced by those of the other PTKs. When differentiation of HL-60 cells was induced by 12-O-tetradecanoylphorbol-13-acetate, on Western blotting we observed significant changes in immunoreactive bands with YK34 in HL-60 cell extracts along with changes in the morphology of the cells. These results suggest that the YK34 antibody will be a powerful tool for analysis of a variety of cellular PTKs.
Collapse
Affiliation(s)
- Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kameshita I, Kinoshita S, Shigeri Y, Tatsu Y, Yumoto N, Ishida A. Generation of a polyclonal antibody that simultaneously detects multiple Ser/Thr protein kinases. ACTA ACUST UNITED AC 2004; 60:13-22. [PMID: 15236906 DOI: 10.1016/j.jbbm.2004.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 03/17/2004] [Accepted: 03/18/2004] [Indexed: 10/26/2022]
Abstract
In order to obtain a polyclonal antibody that recognizes various protein kinases, a peptide corresponding to an amino acid sequence of a highly conserved subdomain (subdomain VIB) of the protein kinase family was synthesized and used for immunization. When the synthetic peptide, CVVHRDLKPENLLLAS, was coupled to keyhole limpet hemocyanin (KLH) and used to immunize rabbits, polyclonal antibodies that detected multiple protein kinases on a Western blot were generated. One of the antibodies obtained, KI98, detected a variety of purified Ser/Thr protein kinases, such as calmodulin-dependent protein kinase II (CaM-kinase II), calmodulin-dependent protein kinase IV (CaM-kinase IV), cAMP-dependent protein kinase, protein kinase C, and Erk2. The antibody detected as low as 0.2 ng of protein kinases blotted onto a nitrocellulose membrane by dot-immunobinding assay. When a rat brain extract was analyzed with this antibody, various protein kinases were simultaneously detected. The present anti-peptide antibody with a broad spectrum of cross-reactivity to multiple protein kinases may be a powerful tool for comprehensive analysis focused on protein kinases.
Collapse
Affiliation(s)
- Isamu Kameshita
- Faculty of Agriculture, Department of Life Sciences, Kagawa University, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | | | | | |
Collapse
|