1
|
Manoj KM. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J Cell Physiol 2024; 239:e30954. [PMID: 36716112 DOI: 10.1002/jcp.30954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Murburn concept constitutes the thesis that diffusible reactive species or DRS are obligatorily involved in routine metabolic and physiological activities. Murzymes are defined as biomolecules/proteins that generate/modulate/sustain/utilize DRS. Murburn posttranslational modifications (PTMs) result because murburn/murzyme functionalism is integral to cellular existence. Cells must incorporate the inherently stochastic nature of operations mediated by DRS. Due to the earlier/inertial stigmatic perception that DRS are mere agents of chaos, several such outcomes were either understood as deterministic modulations sponsored by house-keeping enzymes or deemed as unregulated nonenzymatic events resulting out of "oxidative stress". In the current review, I dispel the myths around DRS-functions, and undertake systematic parsing and analyses of murburn modifications of proteins. Although it is impossible to demarcate all PTMs into the classical or murburn modalities, telltale signs of the latter are evident from the relative inaccessibility of the locus, non-specificities and mechanistic details. It is pointed out that while many murburn PTMs may be harmless, some others could have deleterious or beneficial physiological implications. Some details of reversible/irreversible modifications of amino acid residues and cofactors that may be subjected to phosphorylation, halogenation, glycosylation, alkylation/acetylation, hydroxylation/oxidation, etc. are listed, along with citations of select proteins where such modifications have been reported. The contexts of these modifications and their significance in (patho)physiology/aging and therapy are also presented. With more balanced explorations and statistically verified data, a definitive understanding of normal versus pathological contexts of murburn modifications would be obtainable in the future.
Collapse
|
2
|
Manoj KM, Gideon DA, Parashar A, Nirusimhan V, Annadurai P, Jacob VD, Manekkathodi A. Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons. J Biomol Struct Dyn 2022; 40:11024-11056. [PMID: 34328391 DOI: 10.1080/07391102.2021.1953607] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this second half of our treatise on oxygenic photosynthesis, we provide support for the murburn model of the light reaction of photosynthesis and ratify key predictions made in the first part. Molecular docking and visualization of various ligands of quinones/quinols (and their derivatives) with PS II/Cytochrome b6f complexes did not support chartered 2e-transport role of quinols. A broad variety of herbicides did not show any affinity/binding-based rationales for inhibition of photosynthesis. We substantiate the proposal that disubstituted phenolics (perceived as protonophores/uncouplers or affinity-based inhibitors in the classical purview) serve as interfacial modulators of diffusible reactive (oxygen) species or DR(O)S. The DRS-based murburn model is evidenced by the identification of multiple ADP-binding sites on the extra-membraneous projection of protein complexes and structure/distribution of the photo/redox catalysts. With a panoramic comparison of the redox metabolic machinery across diverse organellar/cellular systems, we highlight the ubiquitous one-electron murburn facets (cofactors of porphyrin, flavin, FeS, other metal centers and photo/redox active pigments) that enable a facile harnessing of the utility of DRS. In the summative analyses, it is demonstrated that the murburn model of light reaction explains the structures of membrane supercomplexes recently observed in thylakoids and also accounts for several photodynamic experimental observations and evolutionary considerations. In toto, the work provides a new orientation and impetus to photosynthesis research. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Daniel Andrew Gideon
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Abhinav Parashar
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vijay Nirusimhan
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Pushparaj Annadurai
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Afsal Manekkathodi
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| |
Collapse
|
3
|
Manoj KM, Bazhin NM, Jacob VD, Parashar A, Gideon DA, Manekkathodi A. Structure-function correlations and system dynamics in oxygenic photosynthesis: classical perspectives and murburn precepts. J Biomol Struct Dyn 2022; 40:10997-11023. [PMID: 34323659 DOI: 10.1080/07391102.2021.1953606] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HIGHLIGHTS Contemporary beliefs on oxygenic photosynthesis are critiqued.Murburn model is suggested as an alternative explanation.In the new model, diffusible reactive species are the main protagonists.All pigments are deemed photo-redox active in the new stochastic mechanism.NADPH synthesis occurs via simple electron transfers, not via elaborate ETC.Oxygenesis is delocalized and not just centered at Mn-Complex.Energetics of murburn proposal for photophosphorylation is provided.The proposal ushers in a paradigm shift in photosynthesis research.
Collapse
Affiliation(s)
| | | | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | - Abhinav Parashar
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| | | | - Afsal Manekkathodi
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Kerala, India
| |
Collapse
|
4
|
Wu FY, Cheng YS, Wang DM, Li ML, Lu WS, Xu XY, Zhou XH, Wei XW. Nitrogen-doped MoS2 quantum dots: Facile synthesis and application for the assay of hematin in human blood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110898. [DOI: 10.1016/j.msec.2020.110898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/04/2020] [Accepted: 03/24/2020] [Indexed: 02/09/2023]
|
5
|
Manoj KM, Ramasamy S, Parashar A, Gideon DA, Soman V, Jacob VD, Pakshirajan K. Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomol Concepts 2020; 11:32-56. [PMID: 32187011 DOI: 10.1515/bmc-2020-0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The inefficiency of cyanide/HCN (CN) binding with heme proteins (under physiological regimes) is demonstrated with an assessment of thermodynamics, kinetics, and inhibition constants. The acute onset of toxicity and CN's mg/Kg LD50 (μM lethal concentration) suggests that the classical hemeFe binding-based inhibition rationale is untenable to account for the toxicity of CN. In vitro mechanistic probing of CN-mediated inhibition of hemeFe reductionist systems was explored as a murburn model for mitochondrial oxidative phosphorylation (mOxPhos). The effect of CN in haloperoxidase catalyzed chlorine moiety transfer to small organics was considered as an analogous probe for phosphate group transfer in mOxPhos. Similarly, inclusion of CN in peroxidase-catalase mediated one-electron oxidation of small organics was used to explore electron transfer outcomes in mOxPhos, leading to water formation. The free energy correlations from a Hammett study and IC50/Hill slopes analyses and comparison with ligands ( CO/ H 2 S/ N 3 - ) $\left( {\text{CO}}/{{{{\text{H}}_{2}}\text{S}}/{\text{N}_{3}^{\text{-}}}\;}\; \right)$ provide insights into the involvement of diffusible radicals and proton-equilibriums, explaining analogous outcomes in mOxPhos chemistry. Further, we demonstrate that superoxide (diffusible reactive oxygen species, DROS) enables in vitro ATP synthesis from ADP+phosphate, and show that this reaction is inhibited by CN. Therefore, practically instantaneous CN ion-radical interactions with DROS in matrix catalytically disrupt mOxPhos, explaining the acute lethal effect of CN.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Surjith Ramasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, India-522213
| | - Daniel Andrew Gideon
- Department of Biotechnology, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India-620017
| | - Vidhu Soman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India-110016
| | - Vivian David Jacob
- Satyamjayatu: The Science & Ethics Foundation Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala, India-679122
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039
| |
Collapse
|
6
|
Manoj KM. Murburn concept: a paradigm shift in cellular metabolism and physiology. Biomol Concepts 2020; 11:7-22. [PMID: 31961793 DOI: 10.1515/bmc-2020-0002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Two decades of evidence-based exploratory pursuits in heme-flavin enzymology led to the formulation of a new biological electron/moiety transfer paradigm, called murburn concept. Murburn is a novel literary abstraction from "mured burning" or "mild unrestricted burning". This concept was invoked to explain the longstanding conundrum of maverick physiological dose responses and also applied to remodel the prevailing understanding of drug metabolism and cellular respiration. A conglomeration of simple ideas grounded in the known principles of thermodynamics and reaction chemistry, murburn concept invokes catalytic/functional roles for diffusible reactive species or radicals. Hitherto, diffusible reactive species were primarily seen as toxic agents of chaos, non-conducible to the maintenance of life-order. Since the murburn paradigm offers a distinctly different perspective for several biological phenomena, researchers holding conventional views of cellular metabolism pose a direct conflict of interests to the advancement of murburn concept. Murburn schemes are poised to integrate numerous metabolic motifs with holistic physiological outcomes; redefining pursuits in biology and medicine. To advance this agenda, I present a brief account of murburn concept and point out how redundant ideas are still advocated in some prestigious journals.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation,Snehatheeram, Kulappully, Shoranur-2 (PO), Kerala,India-679122
| |
Collapse
|
7
|
García-Zamora JL, Santacruz-Vázquez V, Valera-Pérez MÁ, Moreira MT, Cardenas-Chavez DL, Tapia-Salazar M, Torres E. Oxidation of Flame Retardant Tetrabromobisphenol A by a Biocatalytic Nanofiber of Chloroperoxidase. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244917. [PMID: 31817344 PMCID: PMC6950518 DOI: 10.3390/ijerph16244917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Background: Tetrabromobisphenol (TBBPA), a flame retardant compound, is considered a ubiquitous pollutant, with potential impact on the environment and human health. Several technologies have been applied to accelerate its degradation and minimize environmental impacts. Due to its aromaticity character, peroxidase enzymes may be employed to carry out its transformation in mild conditions. Therefore, the purpose of this work was to determine the capacity of the enzyme chloroperoxidase (CPO) to oxidize TBBPA in several water samples. Methods: The oxidation capacity of CPO was evaluated in catalytic conditions using water samples from surface and groundwater, as well as effluents from wastewater treatment plants. The biocatalytic performance of CPO was improved due to its immobilization on nanofibers composed of polyvinyl alcohol and chitosan (PVA/chitosan). Results: Free and immobilized CPO were able to transform more than 80% in short reaction times (60 min); producing more biodegradable and less toxic products. Particularly, the immobilized enzyme was catalytically active in a wider range of pH than the free enzyme with the possibility of reusing it up to five times. Conclusions: The biocatalytic oxidation of TBBPA under environmental conditions is highly efficient, even in complex media such as treated effluents of wastewater treatment plants.
Collapse
Affiliation(s)
| | | | - Miguel Ángel Valera-Pérez
- Departamento de Investigaciones en Ciencias Agrícolas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - María Teresa Moreira
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, Santiago de Compostela, E-15782 Galicia, Spain;
| | - Diana L. Cardenas-Chavez
- Tecnologico de Monterrey, School of Engineering and Science, Atlixcayotl 5718, Reserva Territorial Atrixcayotl, Puebla 72570, Mexico;
| | - Mireya Tapia-Salazar
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba, Ciudad Universitaria, San Nicolás de los Garza 66451, Mexico;
| | - Eduardo Torres
- Centro de Química, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
- Correspondence:
| |
Collapse
|
8
|
Manoj KM, Parashar A, David Jacob V, Ramasamy S. Aerobic respiration: proof of concept for the oxygen-centric murburn perspective. J Biomol Struct Dyn 2019; 37:4542-4556. [PMID: 30488771 DOI: 10.1080/07391102.2018.1552896] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inner mitochondrial membrane protein complexes (I-V) and prokaryotic respiratory machinery are examined for a deeper understanding of their structure-function correlations and dynamics. In silico analysis of the structure of complexes I-IV, docking studies and erstwhile literature confirm that they carry sites which are in close proximity to DROS (diffusible reactive oxygen species) generating redox centers. These findings provide supportive evidence for the newly proposed oxygen-centric chemical-coupling mechanism (murburn concept), wherein DROS catalyzes the esterification of inorganic phosphate to ADP. Further, in a reductionist system, we demonstrate that a DROS (like superoxide) can effectively esterify inorganic phosphate to ADP. The impact of these findings and the interactive dynamics of classical inhibitors (rotenone and cyanide), uncouplers (dinitrophenol and uncoupling protein) and other toxins (atractyloside and oligomycin) are briefly discussed. Highlights • Earlier perception: Complexes (I-IV) pump protons and Complex V make ATP (aided by protons) • Herein: Respiratory molecular machinery is probed for new structure-function correlations • Analyses: Quantitative arguments discount proton-centric ATP synthesis in mitochondria and bacteria • In silico data: ADP-binding sites and O2/ diffusible reactive oxygen species (DROS)-accessible channels are unveiled in respiratory proteins • In vitro data: Using luminometry, ATP synthesis is demonstrated from ADP, Pi and superoxide • Inference: Findings agree with decentralized ADP-Pi activation via oxygen-centric murburn scheme Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research , Vadlamudi , Guntur, Andhra Pradesh, India
| | | | - Surjith Ramasamy
- Department of Biotechnology, Indian Institute of Technology Guwahati , Guwahati , Assam, India
| |
Collapse
|
9
|
Parashar A, Gideon DA, Manoj KM. Murburn Concept: A Molecular Explanation for Hormetic and Idiosyncratic Dose Responses. Dose Response 2018; 16:1559325818774421. [PMID: 29770107 PMCID: PMC5946624 DOI: 10.1177/1559325818774421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Recently, electron transfers and catalyses in a bevy of redox reactions mediated by hemeproteins were explained by murburn concept. The term “murburn” is abstracted from “muredburning” or “mildunrestrictedburning” and connotes a novel “molecule-unbound ion–radical” interaction paradigm. Quite unlike the genetic regulations and protein-level affinity-based controls that govern order and specificity/selectivity in conventional treatments, murburn concept is based on stochastic/thermodynamic regulatory principles. The novel insight necessitates a “reactivity outside the active-site” perspective, because select redox enzymatic activity is obligatorily mediated via diffusible radical/species. Herein, reactions employing key hemeproteins (as exemplified by CYP2E1) establish direct experimental connection between “additive-influenced redox catalysis” and “unusual dose responses” in reductionist and physiological milieu. Thus, direct and conclusive molecular-level experimental evidence is presented, supporting the mechanistic relevance of murburn concept in “maverick” concentration-based effects brought about by additives. Therefore, murburn concept could potentially explain several physiological hormetic and idiosyncratic dose responses.
Collapse
Affiliation(s)
- Abhinav Parashar
- Department of Biotechnology, Vignan's University, Vadlamudi, Guntur, Andhra Pradesh, India
| | | | | |
Collapse
|
10
|
Metallo-vesicular catalysis: A mixture of vesicular cysteine/iron mediates oxidative pH switchable catalysis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie 2016; 125:91-111. [DOI: 10.1016/j.biochi.2016.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/03/2016] [Indexed: 01/09/2023]
|
12
|
Celis AI, Geeraerts Z, Ngmenterebo D, Machovina MM, Kurker RC, Rajakumar K, Ivancich A, Rodgers KR, Lukat-Rodgers GS, DuBois JL. A dimeric chlorite dismutase exhibits O2-generating activity and acts as a chlorite antioxidant in Klebsiella pneumoniae MGH 78578. Biochemistry 2014; 54:434-46. [PMID: 25437493 PMCID: PMC4303309 DOI: 10.1021/bi501184c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Chlorite
dismutases (Clds) convert chlorite to O2 and
Cl–, stabilizing heme in the presence of strong
oxidants and forming the O=O bond with high efficiency. The
enzyme from the pathogen Klebsiella pneumoniae (KpCld) represents a subfamily of Clds that share most of
their active site structure with efficient O2-producing
Clds, even though they have a truncated monomeric structure, exist
as a dimer rather than a pentamer, and come from Gram-negative bacteria
without a known need to degrade chlorite. We hypothesized that KpCld, like others in its subfamily, should be able to make
O2 and may serve an in vivo antioxidant
function. Here, it is demonstrated that it degrades chlorite with
limited turnovers relative to the respiratory Clds, in part because
of the loss of hypochlorous acid from the active site and destruction
of the heme. The observation of hypochlorous acid, the expected leaving
group accompanying transfer of an oxygen atom to the ferric heme,
is consistent with the more open, solvent-exposed heme environment
predicted by spectroscopic measurements and inferred from the crystal
structures of related proteins. KpCld is more susceptible
to oxidative degradation under turnover conditions than the well-characterized
Clds associated with perchlorate respiration. However, wild-type K. pneumoniae has a significant growth advantage in the
presence of chlorate relative to a Δcld knockout
strain, specifically under nitrate-respiring conditions. This suggests
that a physiological function of KpCld may be detoxification
of endogenously produced chlorite.
Collapse
Affiliation(s)
- Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Promotion of Activity and Thermal Stability of Chloroperoxidase by Trace Amount of Metal Ions (M2+/M3+). Appl Biochem Biotechnol 2013; 172:2338-47. [DOI: 10.1007/s12010-013-0677-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
14
|
Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 2010; 87:871-97. [PMID: 20495915 DOI: 10.1007/s00253-010-2633-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 01/15/2023]
Abstract
Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the "classic" fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments.
Collapse
Affiliation(s)
- Martin Hofrichter
- Department of Environmental Biotechnology, International Graduate School of Zittau, Markt 23, 02763, Zittau, Germany.
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Lowell P Hager
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
| |
Collapse
|
16
|
Wagner C, Molitor IM, König GM. Critical view on the monochlorodimedone assay utilized to detect haloperoxidase activity. PHYTOCHEMISTRY 2008; 69:323-32. [PMID: 17889043 DOI: 10.1016/j.phytochem.2007.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/16/2007] [Accepted: 07/29/2007] [Indexed: 05/17/2023]
Abstract
The current study aimed to identify the halogenating enzymes involved in the biosynthesis of the ambigols A, B, C and tjipanazole D, isolated from the cyanobacterium Fischerella ambigua. Haloperoxidase (HPO) activity within F. ambigua was therefore assayed spectrophotometrically by using monochlorodimedone (MCD) during protein purification. This strategy revealed the isolation of a protein positive in the MCD-assay, but an involvement in halogenating processes could not be verified. N-terminal sequencing rather demonstrated homology to cytochrome c(6) from other cyanobacteria and green algae. From our findings it thus has to be concluded that the spectrophotometrical MCD-assay routinely used to detect HPO activity may yield false positive results, mainly since the assay focuses on the decline of the educt and not on the formation of the product. Our data indicate that the reaction of MCD with proteins of the cytochrome c- family leads to unspecific products.
Collapse
Affiliation(s)
- Claudia Wagner
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | | | | |
Collapse
|
17
|
Murali Manoj K. Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1325-39. [PMID: 16870515 DOI: 10.1016/j.bbapap.2006.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/29/2006] [Accepted: 05/30/2006] [Indexed: 11/21/2022]
Abstract
The chlorination mechanism of the fungal enzyme chloroperoxidase (CPO) has been debated for (1) active site chlorination and (2) diffusible species mediated chlorination. Based upon the conversion of approximately 35 different substrates belonging to different reactive groups, it was found that substrate dimensions and topography had no pronounced effect on rates of CPO chlorination reaction. Epoxidation of indene was dependent on its concentration where as chlorination was not. Also, effective conversion was seen in the chlorination mixture for substrates that could not be epoxidized or sulfoxidized. Some insoluble substrates and certain molecules that exceeded the active site dimensions were chlorinated at rates comparable to the rates required for CPO's more natural substrate, monochlorodimedone. By terminating the enzymatic reaction with an active site ligand (azide), the amount of diffusible species was correlated to CPO in the reaction mixture. The preferential utilization of a substrate, earlier attributed to the active site, is found to be due to the specificity afforded by the reaction environment. It was found that the reaction medium components of peroxide, chloride and hydronium ions affected the reaction rates through varying roles in the enzymatic and non-enzymatic process. Besides these experimental evidences, key mechanistic and kinetic arguments are presented to infer that the final chlorine transfer occurs outside the active site via a diffusible species.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Department of Biochemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign, Urbana, IL-61801, USA.
| |
Collapse
|
18
|
Hofrichter M, Ullrich R. Heme-thiolate haloperoxidases: versatile biocatalysts with biotechnological and environmental significance. Appl Microbiol Biotechnol 2006; 71:276-88. [PMID: 16628447 DOI: 10.1007/s00253-006-0417-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 11/24/2022]
Abstract
Heme-thiolate haloperoxidases are undoubtedly the most versatile biocatalysts of the hemeprotein family and share catalytic properties with at least three further classes of heme-containing oxidoreductases, namely, classic plant and fungal peroxidases, cytochrome P450 monooxygenases, and catalases. For a long time, only one enzyme of this type--the chloroperoxidase (CPO) of the ascomycete Caldariomyces fumago--has been known. The enzyme is commercially available as a fine chemical and catalyzes the unspecific chlorination, bromination, and iodation (but no fluorination) of a variety of electrophilic organic substrates via hypohalous acid as actual halogenating agent. In the absence of halide, CPO resembles cytochrome P450s and epoxidizes and hydroxylates activated substrates such as organic sulfides and olefins; aromatic rings, however, are not susceptible to CPO-catalyzed oxygen-transfer. Recently, a second fungal haloperoxidase of the heme-thiolate type has been discovered in the agaric mushroom Agrocybe aegerita. The UV-Vis adsorption spectrum of the isolated enzyme shows little similarity to that of CPO but is almost identical to a resting-state P450. The Agrocybe aegerita peroxidase (AaP) has strong brominating as well as weak chlorinating and iodating activities, and catalyzes both benzylic and aromatic hydroxylations (e.g., of toluene and naphthalene). AaP and related fungal peroxidases could become promising biocatalysts in biotechnological applications because they seemingly fill the gap between CPO and P450 enzymes and act as "self-sufficient" peroxygenases. From the environmental point of view, the existence of a halogenating mushroom enzyme is interesting because it could be linked to the multitude of halogenated compounds known from these organisms.
Collapse
Affiliation(s)
- Martin Hofrichter
- Unit of Environmental Biotechnology, International Graduate School of Zittau, Germany.
| | | |
Collapse
|