1
|
Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells. Emerg Top Life Sci 2021; 5:49-59. [PMID: 33856021 DOI: 10.1042/etls20200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Genes are expressed to proteins for a wide variety of fundamental biological processes at the cellular and organismal levels. However, a protein rarely functions alone, but rather acts through interactions with other proteins to maintain normal cellular and organismal functions. Therefore, it is important to analyze the protein-protein interactions to determine functional mechanisms of proteins, which can also guide to develop therapeutic targets for treatment of diseases caused by altered protein-protein interactions leading to cellular/organismal dysfunctions. There is a large number of methodologies to study protein interactions in vitro, in vivo and in silico, which led to the development of many protein interaction databases, and thus, have enriched our knowledge about protein-protein interactions and functions. However, many of these interactions were identified in vitro, but need to be verified/validated in living cells. Furthermore, it is unclear whether these interactions are direct or mediated via other proteins. Moreover, these interactions are representative of cell- and time-average, but not a single cell in real time. Therefore, it is crucial to detect direct protein-protein interactions in a single cell during biological processes in vivo, towards understanding the functional mechanisms of proteins in living cells. Importantly, a fluorescence resonance energy transfer (FRET)-based methodology has emerged as a powerful technique to decipher direct protein-protein interactions at a single cell resolution in living cells, which is briefly described in a limited available space in this mini-review.
Collapse
|
2
|
Sjögren B. The evolution of regulators of G protein signalling proteins as drug targets - 20 years in the making: IUPHAR Review 21. Br J Pharmacol 2017; 174:427-437. [PMID: 28098342 DOI: 10.1111/bph.13716] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/11/2016] [Accepted: 01/08/2017] [Indexed: 12/11/2022] Open
Abstract
Regulators of G protein signalling (RGS) proteins are celebrating the 20th anniversary of their discovery. The unveiling of this new family of negative regulators of G protein signalling in the mid-1990s solved a persistent conundrum in the G protein signalling field, in which the rate of deactivation of signalling cascades in vivo could not be replicated in exogenous systems. Since then, there has been tremendous advancement in the knowledge of RGS protein structure, function, regulation and their role as novel drug targets. RGS proteins play an important modulatory role through their GTPase-activating protein (GAP) activity at active, GTP-bound Gα subunits of heterotrimeric G proteins. They also possess many non-canonical functions not related to G protein signalling. Here, an update on the status of RGS proteins as drug targets is provided, highlighting advances that have led to the inclusion of RGS proteins in the IUPHAR/BPS Guide to PHARMACOLOGY database of drug targets.
Collapse
Affiliation(s)
- B Sjögren
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Goryashchenko AS, Khrenova MG, Bochkova AA, Ivashina TV, Vinokurov LM, Savitsky AP. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity. Int J Mol Sci 2015; 16:16642-54. [PMID: 26204836 PMCID: PMC4519970 DOI: 10.3390/ijms160716642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 12/01/2022] Open
Abstract
This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb(3+) and from sensitized Tb(3+) to acceptor--the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds), pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.
Collapse
Affiliation(s)
| | - Maria G Khrenova
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| | - Anna A Bochkova
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| | - Tatiana V Ivashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Leonid M Vinokurov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia.
| | - Alexander P Savitsky
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071 Moscow, Russia.
- M. V. Lomonosov Moscow State University, Department of Chemistry, 119991 Moscow, Russia.
| |
Collapse
|
4
|
McLoughlin D, Bertelli F, Williams C. The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS. Expert Opin Drug Discov 2013; 2:603-19. [PMID: 23488953 DOI: 10.1517/17460441.2.5.603] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
G-protein-coupled receptors represent one of the most important areas of research in the pharmaceutical industry, being one of the largest druggable gene families. Recognising this fact, manufacturers have developed a huge variety of homogeneous assay technologies that facilitate the quantification of receptor ligand binding events and their downstream signalling cascades. However, while early emphasis was placed on the most sensitive, high-throughput and cost-effective screening technologies to enable identification of the most lead matter for further development, in recent years emphasis has shifted to a focus on maximising the identification of compounds that are new and developing assays that are more biologically/pharmacologically relevant. Therefore, this review provides an overview of the binding and functional techniques available for high-throughput screening, with particular attention on how assay application and configuration can be maximised to ensure their successful identification of relevant chemical matter and thereby optimising project success.
Collapse
Affiliation(s)
- Dj McLoughlin
- HTS CoE, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ, UK +44(0)1304644616 ; +44(0)1304655592 ;
| | | | | |
Collapse
|
5
|
Zherdeva VV, Savitsky AP. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. BIOCHEMISTRY (MOSCOW) 2013; 77:1553-74. [DOI: 10.1134/s0006297912130111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Chuang HH, Chuang AY. RGS proteins maintain robustness of GPCR-GIRK coupling by selective stimulation of the G protein subunit Gαo. Sci Signal 2012; 5:ra15. [PMID: 22355188 DOI: 10.1126/scisignal.2002202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Termination of heterotrimeric guanine nucleotide-binding protein (G protein) signaling downstream of activated G protein-coupled receptors (GPCRs) is accelerated by regulator of G protein signaling (RGS) proteins, which act as guanosine triphosphatase (GTPase)-activating proteins (GAPs). Using a Xenopus oocyte expression system, we found that although RGS proteins had a negative effect of accelerating the kinetics of GPCR-coupled potassium ion (K+) channel (GIRK) deactivation, they also had positive effects of increasing the amplitudes and activation kinetics of neurotransmitter-evoked GIRK currents. The RGS box domain alone was sufficient to stimulate neurotransmitter-dependent activation of GIRK currents. Moreover, RGS4 mutants with compromised GAP activity augmented GPCR-GIRK coupling (as assessed by measurement of the GIRK current elicited by neurotransmitter). By accelerating G protein activation kinetics, RGS4 specifically stimulated Gα₀, which stimulated GPCR-GIRK coupling despite its GAP activity. Opposing actions of RGS proteins thus both stimulate and inhibit G proteins to modulate the amplitude and kinetics of neurotransmitter-induced GIRK currents, thereby distinguishing the responses to activation of different G protein isoforms.
Collapse
Affiliation(s)
- Huai-hu Chuang
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
7
|
Cooper TH, Bailey-Hill K, Leifert WR, McMurchie EJ, Asgari S, Glatz RV. Identification of an in vitro interaction between an insect immune suppressor protein (CrV2) and G alpha proteins. J Biol Chem 2011; 286:10466-75. [PMID: 21233205 DOI: 10.1074/jbc.m110.214726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The protein CrV2 is encoded by a polydnavirus integrated into the genome of the endoparasitoid Cotesia rubecula (Hymenoptera:Braconidae:Microgastrinae) and is expressed in host larvae with other gene products of the polydnavirus to allow successful development of the parasitoid. CrV2 expression has previously been associated with immune suppression, although the molecular basis for this was not known. Here, we have used time-resolved Förster resonance energy transfer (TR-FRET) to demonstrate high affinity binding of CrV2 to Gα subunits (but not the Gβγ dimer) of heterotrimeric G-proteins. Signals up to 5-fold above background were generated, and an apparent dissociation constant of 6.2 nm was calculated. Protease treatment abolished the TR-FRET signal, and the presence of unlabeled CrV2 or Gα proteins also reduced the TR-FRET signal. The activation state of the Gα subunit was altered with aluminum fluoride, and this decreased the affinity of the interaction with CrV2. It was also demonstrated that CrV2 preferentially bound to Drosophila Gα(o) compared with rat Gα(i1). In addition, three CrV2 homologs were detected in sequences derived from polydnaviruses from Cotesia plutellae and Cotesia congregata (including the immune-related early expressed transcript, EP2). These data suggest a potential mode-of-action of immune suppressors not previously reported, which in addition to furthering our understanding of insect immunity may have practical benefits such as facilitating development of novel controls for pest insect species.
Collapse
Affiliation(s)
- Tamara H Cooper
- South Australian Research and Development Institute, Entomology, Waite Road, Urrbrae, South Australia 5064, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Sjögren B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:315-47. [PMID: 21907914 DOI: 10.1016/b978-0-12-385952-5.00002-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulators of G protein signaling (RGS) proteins have emerged in the past two decades as novel drug targets in many areas of research. Their importance in regulating signaling via G protein-coupled receptors has become evident as numerous studies have been published on the structure and function of RGS proteins. A number of genetic models have also been developed, demonstrating the potential clinical importance of RGS proteins in various disease states, including central nervous system disorders, cardiovascular disease, diabetes, and several types of cancer. Apart from their classical mechanism of action as GTPase-activating proteins (GAPs), RGS proteins can also serve other noncanonical functions. This opens up a new approach to targeting RGS proteins in drug discovery as the view on the function of these proteins is constantly evolving. This chapter summarizes the latest development in RGS protein drug discovery with special emphasis on noncanonical functions and regulatory mechanisms of RGS protein expression. As more reports are being published on this group of proteins, it is becoming clear that modulation of GAP activity might not be the only way to therapeutically target RGS proteins.
Collapse
Affiliation(s)
- Benita Sjögren
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Blazer LL, Roman DL, Chung A, Larsen MJ, Greedy BM, Husbands SM, Neubig RR. Reversible, allosteric small-molecule inhibitors of regulator of G protein signaling proteins. Mol Pharmacol 2010; 78:524-33. [PMID: 20571077 PMCID: PMC2939488 DOI: 10.1124/mol.110.065128] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/15/2010] [Indexed: 12/20/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins are potent negative modulators of G protein signaling and have been proposed as potential targets for small-molecule inhibitor development. We report a high-throughput time-resolved fluorescence resonance energy transfer screen to identify inhibitors of RGS4 and describe the first reversible small-molecule inhibitors of an RGS protein. Two closely related compounds, typified by CCG-63802 [((2E)-2-(1,3-benzothiazol-2-yl)-3-[9-methyl-2-(3-methylphenoxy)-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl]prop-2-enenitrile)], inhibit the interaction between RGS4 and Galpha(o) with an IC(50) value in the low micromolar range. They show selectivity among RGS proteins with a potency order of RGS 4 > 19 = 16 > 8 >> 7. The compounds inhibit the GTPase accelerating protein activity of RGS4, and thermal stability studies demonstrate binding to the RGS but not to Galpha(o). On RGS4, they depend on an interaction with one or more cysteines in a pocket that has previously been identified as an allosteric site for RGS regulation by acidic phospholipids. Unlike previous small-molecule RGS inhibitors identified to date, these compounds retain substantial activity under reducing conditions and are fully reversible on the 10-min time scale. CCG-63802 and related analogs represent a useful step toward the development of chemical tools for the study of RGS physiology.
Collapse
Affiliation(s)
- Levi L Blazer
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:81-119. [DOI: 10.1016/s1877-1173(10)91004-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Bailey K, Bally M, Leifert W, Vörös J, McMurchie T. G-protein coupled receptor array technologies: site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics 2009; 9:2052-63. [PMID: 19337994 DOI: 10.1002/pmic.200800539] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a novel strategy to create a microarray of G-protein coupled receptors (GPCRs), an important group of membrane proteins both physiologically and pharmacologically. The H(1)-histamine receptor and the M(2)-muscarinic receptor were both used as model GPCRs in this study. The receptor proteins were embedded in liposomes created from the cellular membrane extracts of Spodoptera frugiperda (Sf9) insect cell culture line with its accompanying baculovirus protein insert used for overexpression of the receptors. Once captured onto a surface these liposomes provide a favourable lipidic environment for the integral membrane proteins. Site directed immobilisation of these liposomes was achieved by introduction of cholesterol-modified oligonucleotides (oligos). These oligo/cholesterol conjugates incorporate within the lipid bilayer and were captured by the complementary oligo strand exposed on the surface. Sequence specific immobilisation was demonstrated using a quartz crystal microbalance with dissipation (QCM-D). Confirmatory results were also obtained by monitoring fluorescent ligand binding to GPCRs captured on a spotted oligo microarray using Confocal Laser Scanning Microscopy and the Zepto-READER microarray imaging system. Sequence specific immobilisation of such biologically important membrane proteins could lead to the development of a heterogeneous self-sorting liposome array of GPCRs which would underpin a variety of future novel applications.
Collapse
Affiliation(s)
- Kelly Bailey
- CSIRO Molecular and Health Technologies, Adelaide, SA, Australia.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The [(35)S]GTPgammaS binding assay to measure G protein activation following agonist binding to G protein-coupled receptors (GPCRs) remains a powerful molecular technique to substantiate traditional pharmacological values of potency, efficacy, and affinity. The method described uses membrane preparations of the alpha(2A)-adrenergic receptor and purified G protein subunits expressed in Sf9 cells, reconstituted into a functional signaling system. This technology is generic and could be used with other GPCRs to demonstrate initial signaling events following receptor activation. Agonist-stimulated [(35)S]GTPgammaS binding is measured in a 96-well plate format using scintillation counting.
Collapse
|
13
|
Roda A, Guardigli M, Michelini E, Mirasoli M. Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 2008; 393:109-23. [DOI: 10.1007/s00216-008-2435-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 12/21/2022]
|
14
|
Nakamura K, Zawistowski JS, Hughes MA, Sexton JZ, Yeh LA, Johnson GL, Scott JE. Homogeneous time-resolved fluorescence resonance energy transfer assay for measurement of Phox/Bem1p (PB1) domain heterodimerization. ACTA ACUST UNITED AC 2008; 13:396-405. [PMID: 18480472 DOI: 10.1177/1087057108318281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Twenty human proteins encode Phox/Bem1p (PB1) domains, which are involved in forming protein heterodimers. MEKK2, MEKK3, and MEK5 are 3 serine-threonine protein kinases that have PB1 domains. MEKK2, MEKK3, and MEK5 are the MAP3Ks and the MAP2K in the ERK5 mitogen-activated protein kinase (MAPK) signaling module. ERK5 is a critical MAPK for both development of the vasculature and vascular homeostasis in the adult, but no other MAPK has been shown to be critical in vascular maintenance in the adult animal. MEKK2 and MEKK3 are the only MAP3Ks shown to physically interact with and activate the MEK5-ERK5 signaling module. Interaction of MEKK2 or MEKK3 with MEK5 is mediated by heterodimerization of the MEKK2 (or MEKK3) PB1 and MEK5 PB1 domains. The authors have developed a homogeneous, time-resolved fluorescence resonance energy transfer (TR-FRET) assay to monitor PB1-PB1 domain heterodimerization. The assay uses a europium-chelate conjugated GST-MEK5 PB1 domain chimera, biotinylated MEKK2 PB1 domain, and streptavidin-Cy5. Interaction of the MEKK2 and MEK5 PB1 domains gives a robust FRET signal (Z' factor = 0.93), which is completely abrogated by mutation of 2 acidic residues (64D65E-->AA) within the MEK5 PB1 domain that causes loss of stable PB1-PB1 domain interaction. This assay can be used to study the specificity of PB1-PB1 domain interactions and to screen for molecules that can regulate MEKK2/MEKK3-MEK5 interactions. Disruption of PB1 domain interactions represents a novel approach for selectively regulating the ERK5 signaling pathway independent of kinase active site-directed adenosine triphosphate competitive inhibitors.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Glatz RV, Leifert WR, Cooper TH, Bailey K, Barton CS, Martin AS, Aloia AL, Bucco O, Waniganayake L, Wei G, Raguse B, Wieczorek L, McMurchie EJ. Molecular Engineering of G Protein-Coupled Receptors and G Proteins for Cell-Free Biosensing. Aust J Chem 2007. [DOI: 10.1071/ch06435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to express and purify modified recombinant proteins, so they retain their biological function in a cell-free format, has provided a basis for development of molecular biosensors. Here we utilize recombinant G Protein-coupled receptors (GPCRs) and their G proteins for cell-free detection of various binding partners. Fusion peptides were used to improve surface-attachment and fluorescent-labelling capabilities. A novel homogeneous fluorescence resonance energy transfer (FRET)-based assay was developed to detect rearrangements in the G protein heterotrimer. By using this heterotrimeric ‘molecular switch’, we are developing a generic technology such that multiple GPCRs could be assayed for ligand-mediated activation while tethered to surfaces or in solution, with increased throughput compared to current assay platforms.
Collapse
|
16
|
Mathur S, Badertscher M, Scott M, Zenobi R. Critical evaluation of mass spectrometric measurement of dissociation constants: accuracy and cross-validation against surface plasmon resonance and circular dichroism for the calmodulin–melittin system. Phys Chem Chem Phys 2007; 9:6187-98. [DOI: 10.1039/b707946j] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Riven I, Iwanir S, Reuveny E. GIRK Channel Activation Involves a Local Rearrangement of a Preformed G Protein Channel Complex. Neuron 2006; 51:561-73. [PMID: 16950155 DOI: 10.1016/j.neuron.2006.08.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/19/2006] [Accepted: 08/09/2006] [Indexed: 11/15/2022]
Abstract
G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.
Collapse
Affiliation(s)
- Inbal Riven
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | |
Collapse
|