1
|
Zheng X, Gao S, Wu J, Hu X. A Fluorescent Aptasensor Based on Assembled G-Quadruplex and Thioflavin T for the Detection of Biomarker VEGF165. Front Bioeng Biotechnol 2021; 9:764123. [PMID: 34869275 PMCID: PMC8636943 DOI: 10.3389/fbioe.2021.764123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
VEGF165, a regulator of angiogenesis, has been widely used as a serum biomarker for a number of human diseases, including cancer, rheumatoid arthritis, bronchial asthma, and diabetic eye disease. The rapid, accurate, and convenient detection of VEGF165 is a crucial step in effective healthcare monitoring, disease diagnosis, and prognosis assessment. In this study, a fluorescent aptasensor based on an assembled G-quadruplex and the signal molecule ThT was developed for VEGF165 detection. First, G-rich DNA fragments were assembled at both ends of the anti-VEGF165 aptamer, and the B-DNA form was converted into a G-quadruplex structure aptamer (G4-Apt). Then, ThT was introduced, and the G-quadruplex significantly enhanced the fluorescence intensity of the bound ThT. When VEGF165 was present, the higher affinity of the aptamer to the target protein allowed the G4-Apt/VEGF165 complex to form and release ThT, which emitted only weak fluorescence in the free state. Therefore, the aptasensor exhibited a good linear detection window from 1.56 to 25 nM VEGF165, with a limit of detection of 0.138 nM. In addition, the aptasensor was applied to detect VEGF165 in clinical serum samples, showing good accuracy, reproducibility, and stability. These results indicate that our developed fluorescent aptasensor can potentially be a reliable, convenient, and cost-effective approach for the sensitive, specific, and rapid detection of the VEGF165 biomarker.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaobo Hu
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Wang L, Xu M, Hu H, Zhang L, Ye F, Jin J, Fang H, Chen J, Chen G, Broussy S, Vidal M, Lv Z, Liu WQ. A Cyclic Peptide Epitope of an Under-Explored VEGF-B Loop 1 Demonstrated In Vivo Anti-Angiogenic and Anti-Tumor Activities. Front Pharmacol 2021; 12:734544. [PMID: 34658874 PMCID: PMC8511632 DOI: 10.3389/fphar.2021.734544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Pathological angiogenesis is mainly initiated by the binding of abnormal expressed vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). Blocking the VEGF/VEGFR interaction is a clinically proven treatment in cancer. Our previous work by epitope scan had identified cyclic peptides, mimicking the loop 1 of VEGF-A, VEGF-B and placental growth factor (PlGF), inhibited effectively the VEGF/VEGFR interaction in ELISA. We described here the docking study of these peptides on VEGFR1 to identify their binding sites. The cellular anti-angiogenic activities were examined by inhibition of VEGF-A induced cell proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs). The ability of these peptides to inhibit MAPK/ERK1/2 signaling pathway was examined as well. On chick embryo chorioallantoic membrane (CAM) model, a cyclic peptide named B-cL1 with most potent in vitro activity showed important in vivo anti-angiogenic effect. Finally, B-cL1 inhibited VEGF induced human gastric cancer SGC-7901 cells proliferation. It showed anti-tumoral effect on SGC-7901 xenografted BALB/c nude mouse model. The cyclic peptides B-cL1 constitutes an anti-angiogenic peptide drug lead for the design of new and more potent VEGFR antagonists in the treatment of angiogenesis related diseases.
Collapse
Affiliation(s)
- Lei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haofeng Hu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lun Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fei Ye
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jia Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Jian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sylvain Broussy
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France
| | - Michel Vidal
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France.,Biologie du médicament, toxicologie, AP-HP, Hôpital Cochin, Paris, France
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- Université de Paris, CiTCoM-UMR 8038 CNRS, U 1268 INSERM, Paris, France
| |
Collapse
|
3
|
Faqihi F, Stoodley MA, McRobb LS. The Evolution of Safe and Effective Coaguligands for Vascular Targeting and Precision Thrombosis of Solid Tumors and Vascular Malformations. Biomedicines 2021; 9:biomedicines9070776. [PMID: 34356840 PMCID: PMC8301394 DOI: 10.3390/biomedicines9070776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
In cardiovascular and cerebrovascular biology, control of thrombosis and the coagulation cascade in ischemic stroke, myocardial infarction, and other coagulopathies is the focus of significant research around the world. Ischemic stroke remains one of the largest causes of death and disability in developed countries. Preventing thrombosis and protecting vessel patency is the primary goal. However, utilization of the body’s natural coagulation cascades as an approach for targeted destruction of abnormal, disease-associated vessels and tissues has been increasing over the last 30 years. This vascular targeting approach, often termed “vascular infarction”, describes the deliberate, targeted delivery of a thrombogenic effector to diseased blood vessels with the aim to induce localized activation of the coagulation cascade and stable thrombus formation, leading to vessel occlusion and ablation. As systemic delivery of pro-thrombotic agents may cause consternation amongst traditional stroke researchers, proponents of the approach must suitably establish both efficacy and safety to take this field forward. In this review, we describe the evolution of this field and, with a focus on thrombogenic effectors, summarize the current literature with respect to emerging trends in “coaguligand” development, in targeted tumor vessel destruction, and in expansion of the approach to the treatment of brain vascular malformations.
Collapse
|
4
|
Cui J, Kan L, Li Z, Yang L, Wang M, He L, Lou Y, Xue Y, Zhang Z. Porphyrin-based covalent organic framework as bioplatfrom for detection of vascular endothelial growth factor 165 through fluorescence resonance energy transfer. Talanta 2020; 228:122060. [PMID: 33773722 DOI: 10.1016/j.talanta.2020.122060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
A fluorescent aptasensor based on porphyrin-based covalent organic framework (p-COF) and carbon dots (CDs) was constructed for detecting vascular endothelial growth factor 165 (VEGF165) and for imaging of the breast cancer cell line Michigan cancer foundation-7 (MCF-7). CDs synthesized with strong photoluminescence at λ∼380 nm were used as donors to label the VEGF165-targeted aptamers (AptVEGF/CDs). Additionally, the p-COF nanostructure comprised rich functional groups of CN on the surface and π-stacking planar nanostructure, resulting in the CDs adsorption via weakly π-π stacking, hydrogen bond and the Van der Waals force. Thereby, the fluorescence resonance energy transfer (FRET) occurred due to the close distance between the p-COF network and CDs, leading to the quenching of the fluorescence feature of CDs and p-COF. In the presence of VEGF165, the G-quadruplex was formed via the specific binding between VEGF165 and aptamer. It impelled that the release of partial VEGF165-AptVEGF/CDs complex, affording the fluorescence recovery of the sensing system to some extent. Consequently, the proposed AptVEGF/CDs/p-COF fluorescence biosensor offered excellent analytical performances for the VEGF165 detection, displaying a detection limit of 20.9 fg mL-1 within a wide linear range of the VEGF165 concentration of 1.0 pg mL-1-100 ng mL-1. The developed fluorescence biosensor was also used to determine VEGF165-overexpressed in MCF-7 cancer cells. Thereby, the present work can greatly widen the application of COFs in the development of aptasensors and cancer diagnosis.
Collapse
Affiliation(s)
- Jing Cui
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Lun Kan
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Zhenzhen Li
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Longyu Yang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Minghua Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Linghao He
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Yafei Lou
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Yulin Xue
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Hong SH, Ku JM, Lim YS, Lee SY, Kim JH, Cheon C, Ko SG. Cucurbitacin D Overcomes Gefitinib Resistance by Blocking EGF Binding to EGFR and Inducing Cell Death in NSCLCs. Front Oncol 2020; 10:62. [PMID: 32133284 PMCID: PMC7041627 DOI: 10.3389/fonc.2020.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/14/2020] [Indexed: 01/04/2023] Open
Abstract
In this study, the mechanism of the anticancer effect through which cucurbitacin D (CuD) can overcome gefitinib resistance in NSCLC was investigated. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, and cell migration and growth were observed by wound healing and colony formation assays, respectively. Levels of EGFR family members, protein kinase B, extracellular signal-regulated kinase, poly(ADP-ribose) polymerase, and G2/M phase-related proteins were detected by Western blot analysis. Immunofluorescence analysis was used to detect the intracellular expression of p-EGFR. Induction of apoptosis and cell cycle arrest was measured by flow cytometry. Solid-phase binding assays were used to determine binding to the EGFR family. CuD inhibits the phosphorylation of EGFR in gefitinib-resistant NSCLC cells and induces cell death via cell cycle arrest and apoptosis. CuD treatment or EGFR knockdown also suppressed the growth of gefitinib-resistant NSCLC cells. In addition, CuD overcame resistance by blocking EGF binding to EGFR in gefitinib-resistant NSCLC cells. In conclusion, we demonstrate that CuD overcomes gefitinib resistance by reducing the activation of EGFR-mediated survival in NSCLC and by inhibiting the combination of EGF and EGFR.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ye Seul Lim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ji Hye Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
6
|
Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice. PLoS One 2020; 15:e0218494. [PMID: 31935212 PMCID: PMC6959593 DOI: 10.1371/journal.pone.0218494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023] Open
Abstract
Inhibiting vascular endothelial growth factor (VEGF) is a therapeutic option in diabetic microangiopathy. However, VEGF is needed at physiological concentrations to maintain glomerular integrity; complete VEGF blockade has deleterious effects on glomerular structure and function. Anti-VEGF therapy in diabetes raises the challenge of reducing VEGF-induced pathology without accelerating endothelial cell injury. Heparan sulfate (HS) act as a co-receptor for VEGF. Calcium dobesilate (CaD) is a small molecule with vasoprotective properties that has been used for the treatment of diabetic microangiopathy. Preliminary evidence suggests that CaD interferes with HS binding sites of fibroblast growth factor. We therefore tested the hypotheses that (1) CaD inhibits VEGF signaling in endothelial cells, (2) that this effect is mediated via interference between CaD and HS, and (3) that CaD ameliorates diabetic nephropathy in a streptozotocin-induced diabetic mouse model by VEGF inhibition. We found that CaD significantly inhibited VEGF165-induced endothelial cell migration, proliferation, and permeability. CaD significantly inhibited VEGF165-induced phosphorylation of VEGFR-2 and suppressed the activity of VEGFR-2 mediated signaling cascades. The effects of CaD in vitro were abrogated by heparin, suggesting the involvement of heparin-like domain in the interaction with CaD. In addition, VEGF121, an isoform which does not bind to heparin, was not inhibited by CaD. Using the proximity ligation approach, we detected inhibition of interaction in situ between HS and VEGF and between VEGF and VEGFR-2. Moreover, CaD reduced VEGF signaling in mice diabetic kidneys and ameliorated diabetic nephropathy and neuropathy, suggesting CaD as a VEGF inhibitor without the negative effects of complete VEGF blockade and therefore could be useful as a strategy in treating diabetic nephropathy.
Collapse
|
7
|
De Rosa L, Di Stasi R, Longhitano L, D'Andrea LD. Labeling of VEGFR1D2 through oxime ligation. Bioorg Chem 2019; 91:103160. [PMID: 31398600 DOI: 10.1016/j.bioorg.2019.103160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
We reported an useful protocol for the labeling of the second domain of the Vascular Endothelial Growth Factor Receptor 1 (VEGFR1D2), a small protein ligand able to bind VEGF, the main regulator of angiogenesis. We developed a bioconjugation strategy based on the use of oxime-ligation reaction conjugating an aldehyde derivative of the VEGFR1D2 to a molecular probe harboring an alkoxyamine functional group. We applied the synthetic protocol to prepare a biotinylated conjugate of VEGFR1D2 and we demonstrate that the bioconjugate retains its ability to specifically bind its natural ligand, VEGF, with high affinity. The biotinylated VEGFR1D2 could be useful to detect and quantify VEGF for diagnostic purposes as well as a tool for the screening of new molecules targeting VEGFRs for therapeutic applications. The labeling protocol is versatile and can be extended to different molecular probes, such as fluorophores, chelators or multimeric scaffolds, affording a biomedical platform for VEGF targeting.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Laura Longhitano
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luca Domenico D'Andrea
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy; Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Nizza 52, 10126 Torino, Italy.
| |
Collapse
|
8
|
Structural studies of the binding of an antagonistic cyclic peptide to the VEGFR1 domain 2. Eur J Med Chem 2019; 169:65-75. [DOI: 10.1016/j.ejmech.2019.02.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
|
9
|
Zanella S, Bocchinfuso G, De Zotti M, Arosio D, Marino F, Raniolo S, Pignataro L, Sacco G, Palleschi A, Siano AS, Piarulli U, Belvisi L, Formaggio F, Gennari C, Stella L. Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Front Chem 2019; 7:170. [PMID: 30984741 PMCID: PMC6449863 DOI: 10.3389/fchem.2019.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 01/25/2023] Open
Abstract
Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.
Collapse
Affiliation(s)
- Simone Zanella
- Department of Chemistry, University of Milan, Milan, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Marta De Zotti
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Daniela Arosio
- National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Stefano Raniolo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Luca Pignataro
- Department of Chemistry, University of Milan, Milan, Italy
| | - Giovanni Sacco
- Department of Chemistry, University of Milan, Milan, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Umberto Piarulli
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Fernando Formaggio
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Cesare Gennari
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
10
|
De Rosa L, Di Stasi R, D'Andrea LD. Pro-angiogenic peptides in biomedicine. Arch Biochem Biophys 2018; 660:72-86. [DOI: 10.1016/j.abb.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
11
|
Trapiella-Alfonso L, Broussy S, Liu WQ, Vidal M, Lecarpentier E, Tsatsaris V, Gagey-Eilstein N. Colorimetric immunoassays for the screening and specificity evaluation of molecules disturbing VEGFs/VEGFRs interactions. Anal Biochem 2018; 544:114-120. [DOI: 10.1016/j.ab.2017.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/21/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023]
|
12
|
Choi HS, Kim MK, Lee K, Lee KM, Choi YK, Shin YC, Cho SG, Ko SG. SH003 represses tumor angiogenesis by blocking VEGF binding to VEGFR2. Oncotarget 2018; 7:32969-79. [PMID: 27105528 PMCID: PMC5078067 DOI: 10.18632/oncotarget.8808] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Tumor angiogenesis is a key feature of cancer progression, because a tumor requires abundant oxygen and nutrition to grow. Here, we demonstrate that SH003, a mixed herbal extract containing Astragalus membranaceus (Am), Angelica gigas (Ag) and Trichosanthes Kirilowii Maximowicz (Tk), represses VEGF-induced tumor angiogenesis both in vitro and in vivo. SH003 inhibited VEGF-induced migration, invasion and tube formation in human umbilical vein endothelial cells (HUVEC) with no effect on the proliferation. SH003 reduced CD31-positive vessel numbers in tumor tissues and retarded tumor growth in our xenograft mouse tumor model, while SH003 did not affect pancreatic tumor cell viability. Consistently, SH003 inhibited VEGF-stimulated vascular permeability in ears and back skins. Moreover, SH003 inhibited VEGF-induced VEGFR2-dependent signaling by blocking VEGF binding to VEGFR2. Therefore, our data conclude that SH003 represses tumor angiogenesis by inhibiting VEGF-induced VEGFR2 activation, and suggest that SH003 may be useful for treating cancer.
Collapse
Affiliation(s)
- Hyeong Sim Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min Kyoung Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Kang Min Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju, Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Chungbuk, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis. Oncotarget 2017; 7:21775-85. [PMID: 26967562 PMCID: PMC5008322 DOI: 10.18632/oncotarget.7982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 02/16/2016] [Indexed: 01/11/2023] Open
Abstract
Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.
Collapse
|
14
|
Disrupting VEGF-VEGFR1 Interaction: De Novo Designed Linear Helical Peptides to Mimic the VEGF 13-25 Fragment. Molecules 2017; 22:molecules22111846. [PMID: 29143774 PMCID: PMC6150346 DOI: 10.3390/molecules22111846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022] Open
Abstract
The interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFR) has important implications in angiogenesis and cancer, which moved us to search for peptide derivatives able to block this protein–protein interaction. In a previous work we had described a collection of linear 13-mer peptides specially designed to adopt helical conformations (Ac-SSEEX5ARNX9AAX12N-NH2), as well as the evaluation of seven library components for the inhibition of the interaction of VEGF with its Receptor 1 (VEGFR1). This study led to the discovery of some new, quite potent inhibitors of this protein–protein system. The results we found prompted us to extend the study to other peptides of the library. We describe here the evaluation of a new selection of peptides from the initial library that allow us to identify new VEGF-VEGFR1 inhibitors. Among them, the peptide sequence containing F, W, and I residues at the 5, 9, and 12 positions, show a very significant nanomolar IC50 value, competing with VEGF for its receptor 1, VEGFR1 (Flt-1), which could represent a new tool within the therapeutic arsenal for cancer detection and therapy.
Collapse
|
15
|
Reille-Seroussi M, Gaucher JF, Cussac LA, Broutin I, Vidal M, Broussy S. VEGFR1 domain 2 covalent labeling with horseradish peroxidase: Development of a displacement assay on VEGF. Anal Biochem 2017; 530:107-112. [DOI: 10.1016/j.ab.2017.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 05/02/2017] [Indexed: 12/29/2022]
|
16
|
Wang L, Zhou L, Reille-Seroussi M, Gagey-Eilstein N, Broussy S, Zhang T, Ji L, Vidal M, Liu WQ. Identification of Peptidic Antagonists of Vascular Endothelial Growth Factor Receptor 1 by Scanning the Binding Epitopes of Its Ligands. J Med Chem 2017; 60:6598-6606. [DOI: 10.1021/acs.jmedchem.7b00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Wang
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Lingyu Zhou
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Marie Reille-Seroussi
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Sylvain Broussy
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| | - Tianyu Zhang
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- Shanghai Key Laboratory of Complex Prescription and The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Michel Vidal
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
- UF Pharmacocinétique
et Pharmacochimie, Hôpital Cochin, AP-HP, 27 Rue du Faubourg Saint Jacques, Paris 75014, France
| | - Wang-Qing Liu
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l’Observatoire, Paris 75006, France
| |
Collapse
|
17
|
Li J, Sun K, Chen Z, Shi J, Zhou D, Xie G. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens Bioelectron 2017; 89:964-969. [DOI: 10.1016/j.bios.2016.09.078] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
18
|
Gaucher JF, Reille-Seroussi M, Gagey-Eilstein N, Broussy S, Coric P, Seijo B, Lascombe MB, Gautier B, Liu WQ, Huguenot F, Inguimbert N, Bouaziz S, Vidal M, Broutin I. Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A. PLoS One 2016; 11:e0167755. [PMID: 27942001 PMCID: PMC5152890 DOI: 10.1371/journal.pone.0167755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is tightly regulated through the binding of vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). In this context, we showed that human VEGFR1 domain 2 crystallizes in the presence of Zn2+, Co2+ or Cu2+ as a dimer that forms via metal-ion interactions and interlocked hydrophobic surfaces. SAXS, NMR and size exclusion chromatography analyses confirm the formation of this dimer in solution in the presence of Co2+, Cd2+ or Cu2+. Since the metal-induced dimerization masks the VEGFs binding surface, we investigated the ability of metal ions to displace the VEGF-A binding to hVEGFR1: using a competition assay, we evidenced that the metals displaced the VEGF-A binding to hVEGFR1 extracellular domain binding at micromolar level.
Collapse
Affiliation(s)
- Jean-François Gaucher
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Marie Reille-Seroussi
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Sylvain Broussy
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Pascale Coric
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Bili Seijo
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Marie-Bernard Lascombe
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Benoit Gautier
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Wang-Quing Liu
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Florent Huguenot
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nicolas Inguimbert
- Centre de Recherche Insulaire et Observatoire de l’Environnement USR CNRS 3278 CRIOBE, Université de Perpignan Via Domitia, Perpignan, France
| | - Serge Bouaziz
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Michel Vidal
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- UF Pharmacocinétique et Pharmacochimie, hôpital Cochin, AP-HP, Paris, France
| | - Isabelle Broutin
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Zanella S, Mingozzi M, Dal Corso A, Fanelli R, Arosio D, Cosentino M, Schembri L, Marino F, De Zotti M, Formaggio F, Pignataro L, Belvisi L, Piarulli U, Gennari C. Synthesis, Characterization, and Biological Evaluation of a Dual-Action Ligand Targeting αvβ3 Integrin and VEGF Receptors. ChemistryOpen 2015; 4:633-41. [PMID: 26491644 PMCID: PMC4608532 DOI: 10.1002/open.201500062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/17/2022] Open
Abstract
A dual-action ligand targeting both integrin αVβ3 and vascular endothelial growth factor receptors (VEGFRs), was synthesized via conjugation of a cyclic peptidomimetic αVβ3 Arg-Gly-Asp (RGD) ligand with a decapentapeptide. The latter was obtained from a known VEGFR antagonist by acetylation at the Lys13 side chain. Functionalization of the precursor ligands was carried out in solution and in the solid phase, affording two fragments: an alkyne VEGFR ligand and the azide integrin αVβ3 ligand, which were conjugated by click chemistry. Circular dichroism studies confirmed that both the RGD and VEGFR ligand portions of the dual-action compound substantially adopt the biologically active conformation. In vitro binding assays on isolated integrin αVβ3 and VEGFR-1 showed that the dual-action conjugate retains a good level of affinity for both its target receptors, although with one order of magnitude (10/20 times) decrease in potency. The dual-action ligand strongly inhibited the VEGF-induced morphogenesis in Human Umbilical Vein Endothelial Cells (HUVECs). Remarkably, its efficiency in preventing the formation of new blood vessels was similar to that of the original individual ligands, despite the worse affinity towards integrin αVβ3 and VEGFR-1.
Collapse
Affiliation(s)
- Simone Zanella
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Michele Mingozzi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Roberto Fanelli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), National Research Council (CNR)Via C. Golgi 19, 20133, Milan, Italy
| | - Marco Cosentino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Laura Schembri
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, Università degli Studi dell'InsubriaVia Ottorino Rossi 9, 21100, Varese, Italy
| | - Marta De Zotti
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Fernando Formaggio
- Istituto di Chimica Biomolecolare, CNR, Unità di Padova, Dipartimento di Chimica, Università degli Studi di PadovaVia Marzolo 1, 35131, Padova, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'InsubriaVia Valleggio 11, 22100, Como, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di MilanoVia C. Golgi 19, 20133, Milan, Italy
| |
Collapse
|
20
|
Reille-Seroussi M, Gaucher JF, Desole C, Gagey-Eilstein N, Brachet F, Broutin I, Vidal M, Broussy S. Vascular Endothelial Growth Factor Peptide Ligands Explored by Competition Assay and Isothermal Titration Calorimetry. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | | | | | - Michel Vidal
- UF Pharmacocinétique
et Pharmacochimie, hôpital Cochin, AP-HP, 27 rue du Faubourg Saint Jacques, Paris 75014, France
| | | |
Collapse
|
21
|
Wang L, Gagey-Eilstein N, Broussy S, Reille-Seroussi M, Huguenot F, Vidal M, Liu WQ. Design and synthesis of C-terminal modified cyclic peptides as VEGFR1 antagonists. Molecules 2014; 19:15391-407. [PMID: 25264829 PMCID: PMC6270838 DOI: 10.3390/molecules191015391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 01/12/2023] Open
Abstract
Previously designed cyclic peptide antagonist c[YYDEGLEE]-NH2 disrupts the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). It represents a promising tool in the fight against cancer and age-related macular degeneration. We described in this paper the optimization of the lead peptide by C-terminal modification. A new strategy for the synthesis of cyclic peptides is developed, improving the cyclisation efficiency. At 100 µM, several new peptides with an aromatic group flexibly linked at C-terminal end showed significantly increased receptor binding affinities in competition ELISA test. The most active peptide carrying a coumarin group may be a useful tool in anti-angiogenic biological studies.
Collapse
Affiliation(s)
- Lei Wang
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Sylvain Broussy
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Marie Reille-Seroussi
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Florent Huguenot
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Michel Vidal
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| | - Wang-Qing Liu
- UMR 8638 CNRS, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'observatoire, Paris 75006, France.
| |
Collapse
|
22
|
Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Lett 2014; 349:120-7. [DOI: 10.1016/j.canlet.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/03/2014] [Accepted: 04/06/2014] [Indexed: 01/13/2023]
|
23
|
d'Audigier C, Gautier B, Yon A, Alili JM, Guérin CL, Evrard SM, Godier A, Haviari S, Reille-Serroussi M, Huguenot F, Dizier B, Inguimbert N, Borgel D, Bièche I, Boisson-Vidal C, Roncal C, Carmeliet P, Vidal M, Gaussem P, Smadja DM. Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential. Angiogenesis 2014; 17:603-16. [PMID: 24419917 DOI: 10.1007/s10456-013-9413-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/26/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVES We studied whether plasma levels of angiogenic factors VEGF and placental growth factor (PlGF) in coronary artery disease patients or undergoing cardiac surgery are modified, and whether those factors modulate endothelial progenitor's angiogenic potential. METHODS AND RESULTS A total of 143 patients' plasmas from two different studies were analyzed (30 coronary artery disease patients, 30 patients with stable angina, coupled with 30 age and sex-matched controls; 53 patients underwent cardiac surgery). Among factors screened, only PlGF was found significantly increased in these pathological populations. PlGF-1 and PlGF-2 were then tested on human endothelial-colony-forming cells (ECFCs). We found that PlGF-1 and PlGF-2 induce VEGFR1 phosphorylation and potentiate ECFCs tubulogenesis in vitro. ECFCs VEGFR1 was further inhibited using a specific small interfering RNA (siRNA) and the chemical compound 4321. We then observed that the VEGFR1-siRNA and the compound 4321 decrease ECFCs tubulogenesis potential in vitro. Finally, we tested the compound 4321 in the preclinical Matrigel(®)-plug model with C57Bl/6J mice as well as in the murine hindlimb ischemia model. We found that 4321 inhibited the plug vascularization, attested by the hemoglobin content and the VE-Cadherin expression level and that 4321 inhibited the post-ischemic revascularization. CONCLUSION PlGF plasma levels were found increased in cardiovascular patients. Disrupting PlGF/VEGFR1 pathway could modulate ECFC-induced tubulogenesis, the cell type responsible for newly formed vessels in vivo.
Collapse
|
24
|
García-Aranda MI, González-López S, Santiveri CM, Gagey-Eilstein N, Reille-Seroussi M, Martín-Martínez M, Inguimbert N, Vidal M, García-López MT, Jiménez MA, González-Muñiz R, Pérez de Vega MJ. Helical peptides from VEGF and Vammin hotspots for modulating the VEGF–VEGFR interaction. Org Biomol Chem 2013; 11:1896-905. [DOI: 10.1039/c3ob27312a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Gautier B, Miteva MA, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher JF, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix BO, Vidal M. Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening. ACTA ACUST UNITED AC 2012; 18:1631-9. [PMID: 22195565 DOI: 10.1016/j.chembiol.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/16/2011] [Accepted: 10/24/2011] [Indexed: 12/29/2022]
Abstract
Protein-protein interactions play a central role in medicine, and their modulation with small organic compounds remains an enormous challenge. Because it has been noted that the macromolecular complexes modulated to date have a relatively pronounced binding cavity at the interface, we decided to perform screening experiments over the vascular endothelial growth factor receptor (VEGFR), a validated target for antiangiogenic treatments with a very flat interface. We focused the study on the VEGFR-1 D2 domain, and 20 active compounds were identified. These small compounds contained a (3-carboxy-2-ureido)thiophen unit and had IC(50) values in the low micromolar range. The most potent compound inhibited the VEGF-induced VEGFR-1 transduction pathways. Our findings suggest that our best hit may be a promising scaffold to probe this macromolecular complex and for the development of treatments of VEGFR-1-dependent diseases.
Collapse
Affiliation(s)
- Benoit Gautier
- Université Paris Descartes, CNRS UMR 8601, UFR biomédicale, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen X, Lv H, Ye M, Wang S, Ni E, Zeng F, Cao C, Luo F, Yan J. Novel superparamagnetic iron oxide nanoparticles for tumor embolization application: preparation, characterization and double targeting. Int J Pharm 2012; 426:248-255. [PMID: 22310463 DOI: 10.1016/j.ijpharm.2012.01.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/14/2012] [Accepted: 01/19/2012] [Indexed: 11/15/2022]
Abstract
The goal of this study was to develop novel embolic nanoparticles for targeted tumor therapy with dual targeting: magnetic field-guided and peptide-directed targeting. The embolic nanoparticles SP5.2/tTF-OCMCs-SPIO-NPs were prepared by surface-modifying of superparamagnetic iron oxide nanoparticles (SPIO-NPs) with o-carboxymethylchitosans (OCMCs) and SP5.2/tTF (SP5.2: a peptide binding to VEGFR-1; tTF: truncated tissue factor) to improve their stability and to target over-expressing VEGFR-1 cells. The physicochemical characterization results showed that the OCMCs-SPIO-NPs have a spherical or ellipsoidal morphology with an average diameter of 10-20 nm. And they possess magnetism with a saturation magnetization of 66.1 emu/g, negligible coercivity and remanence at room temperature. In addition, the confocal microscopy, Prussian blue staining and FX activation analysis respectively demonstrated the peptide-directed targeting, magnetic field-guided targeted and blood coagulation activity of the SP5.2/tTF-OCMCs-SPIO-NPs. These properties separately belong to SP5.2, Fe(3)O(4) and tTF moieties of the SP5.2/tTF-OCMCs-SPIO-NPs. Thus these SP5.2/tTF-OCMCs-SPIO-NPs with double-targeting function should have a potential application in embolization therapy of tumor blood vessels.
Collapse
Affiliation(s)
- Xiaoli Chen
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Haiyan Lv
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Min Ye
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Shengyu Wang
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Erru Ni
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Fanwei Zeng
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Chang Cao
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China
| | - Fanghong Luo
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Jianghua Yan
- Cancer Research Center, Medical College, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| |
Collapse
|
27
|
Disulfide and amide-bridged cyclic peptide analogues of the VEGF81–91 fragment: Synthesis, conformational analysis and biological evaluation. Bioorg Med Chem 2011; 19:7526-33. [DOI: 10.1016/j.bmc.2011.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/11/2011] [Accepted: 10/12/2011] [Indexed: 01/17/2023]
|
28
|
García-Aranda MI, Marrero P, Gautier B, Martín-Martínez M, Inguimbert N, Vidal M, García-López MT, Jiménez MA, González-Muñiz R, Vega MJPD. Parallel solid-phase synthesis of a small library of linear and hydrocarbon-bridged analogues of VEGF81–91: Potential biological tools for studying the VEGF/VEGFR-1 interaction. Bioorg Med Chem 2011; 19:1978-86. [DOI: 10.1016/j.bmc.2011.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/24/2011] [Accepted: 01/27/2011] [Indexed: 11/26/2022]
|
29
|
Gautier B, Goncalves V, Diana D, Di Stasi R, Teillet F, Lenoir C, Huguenot F, Garbay C, Fattorusso R, D'Andrea LD, Vidal M, Inguimbert N. Biochemical and structural analysis of the binding determinants of a vascular endothelial growth factor receptor peptidic antagonist. J Med Chem 2010; 53:4428-40. [PMID: 20462213 DOI: 10.1021/jm1002167] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclic peptide antagonist c[YYDEGLEE]-NH(2), which disrupts the interaction between vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), represents a promising tool in the fight against cancer and age-related macular degeneration. Furthermore, coupled to a cyclen derivative, this ligand could be used as a medicinal imaging agent. Nevertheless, before generating such molecular probes, some preliminary studies need to be undertaken in order to define the more suitable positions for introduction of the cyclen macrocycle. Through an Ala-scan study on this peptide, we identified its binding motif, and an NMR study highlights its binding sites on the VEGFR-1D2 Ig-like domain. Guided by the structural relationship results deduced from the effect of the peptides on endothelial cells, new peptides were synthesized and grafted on beads. Used in a pull-down assay, these new peptides trap the VEGFRs, thus confirming that the identified amino acid positions are suitable for further derivatization.
Collapse
Affiliation(s)
- Benoit Gautier
- Université Paris Descartes, UFR Biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, INSERM U648, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goncalves V, Gautier B, Huguenot F, Leproux P, Garbay C, Vidal M, Inguimbert N. Total chemical synthesis of the D2 domain of human VEGF receptor 1. J Pept Sci 2009; 15:417-22. [PMID: 19387974 DOI: 10.1002/psc.1133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interaction of the vascular endothelial growth factor (VEGF) with its cellular receptors exerts a central role in the regulation of angiogenesis. Among these receptors, the VEGF receptor 1 may be implicated in pathological angiogenesis. Here, we report the first total chemical synthesis of the VEGF-binding domain of the VEGF receptor 1. Aggregation issues were overcome by the use of a low-substituted resin and the stepwise introduction of pseudoproline dipeptides and Dmb-glycines. The folding of the protein was achieved by air oxidation and its biological activity was verified on ELISA-based assays.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, Paris, F-75006, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N. Cyclic peptides as VEGF receptor antagonist. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:479-80. [DOI: 10.1007/978-0-387-73657-0_206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Goncalves V, Gautier B, Garbay C, Vidal M, Inguimbert N. Structure-based design of a bicyclic peptide antagonist of the vascular endothelial growth factor receptors. J Pept Sci 2008; 14:767-72. [PMID: 18044812 DOI: 10.1002/psc.965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dysregulated angiogenesis is implicated in several pathologies, including cancer and age-related macular degeneration. A potential antiangiogenic strategy consists in developing VEGF receptor ligands capable of preventing VEGF binding and the subsequent activation of these receptors. Herein, we describe the structure-based design of a VEGF-mimicking peptide, VG3F. This 25-mer peptide was doubly cyclized, on-resin, by formation of both a disulfide bridge and an intramolecular amide bond to constrain it to adopt a bioactive conformation. Tested on in vitro assays, VG3F was able to prevent VEGF binding to VEGF receptor 1 and inhibit both VEGF-induced signal transduction and cell migration.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, Paris, France
| | | | | | | | | |
Collapse
|
33
|
A fluorescence polarization assay for identifying ligands that bind to vascular endothelial growth factor. Anal Biochem 2008; 378:8-14. [PMID: 18413228 DOI: 10.1016/j.ab.2008.03.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/11/2008] [Accepted: 03/24/2008] [Indexed: 12/30/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a homodimeric proangiogenic protein that induces endothelial cell migration and proliferation primarily through interactions with its major receptors, VEGFR-1 and VEGFR-2. Inhibitors of one or both of these VEGF-receptor interactions could be beneficial as therapeutics for diseases caused by dysfunctional angiogenesis (e.g., cancer). Others have reported small peptides that bind to the VEGF dimer at surface regions that are recognized by the receptors. Here we report the development of a fluorescence polarization assay based on the binding to VEGF of a derivative of one of these peptides that has been labeled with BODIPY-tetramethylrhodamine (BODIPY(TMR)). This 384-well format assay is tolerant to dimethyl sulfoxide (DMSO, up to 4% [v/v]) and has a Z' factor of 0.76, making it useful for identifying molecules that associate with the receptor-binding surface of the VEGF dimer.
Collapse
|
34
|
Goncalves V, Gautier B, Coric P, Bouaziz S, Lenoir C, Garbay C, Vidal M, Inguimbert N. Rational Design, Structure, and Biological Evaluation of Cyclic Peptides Mimicking the Vascular Endothelial Growth Factor. J Med Chem 2007; 50:5135-46. [PMID: 17900101 DOI: 10.1021/jm0706970] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiogenesis is the development of a novel vascular network from a pre-existing structure. Blocking angiogenesis is an attractive strategy to inhibit tumor growth and metastasis formation. Based on structural and mutagenesis data, we have developed novel cyclic peptides that mimic, simultaneously, two regions of the VEGF crucial for the interaction with the VEGF receptors. The peptides, displaying the best affinity for VEGF receptor 1 on a competition assay, inhibited endothelial cell transduction pathway, migration, and capillary-like tubes formation. The specificity of these peptides for VEGF receptors was demonstrated by microscopy using a fluorescent peptide derivative. The resolution of the structure of some cyclic peptides by NMR and molecular modeling has allowed the identification of various factors accounting for their inhibitory activity. Taken together, these results validate the selection of these two regions as targets to develop molecules able to disturb the development of cancer and angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 rue des Saints Pères, Paris, F-75006, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Goncalves V, Gautier B, Regazzetti A, Coric P, Bouaziz S, Garbay C, Vidal M, Inguimbert N. On-resin cyclization of peptide ligands of the Vascular Endothelial Growth Factor Receptor 1 by copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition. Bioorg Med Chem Lett 2007; 17:5590-4. [PMID: 17826090 DOI: 10.1016/j.bmcl.2007.07.087] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 10/22/2022]
Abstract
Cyclic peptides were obtained, on-resin, by the copper (I) catalysed 1,3-dipolar cycloaddition of azides and alkynes. The reaction led exclusively to the formation of the expected cyclomonomeric products which acted as ligands of the Vascular Endothelial Growth Factor receptor 1.
Collapse
Affiliation(s)
- Victor Goncalves
- Université Paris Descartes, UFR biomédicale, Laboratoire de Pharmacochimie Moléculaire et Cellulaire, 45 rue des saints Pères, F-75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|