1
|
Ogneva IV, Zhdankina YS, Gogichaeva KK, Malkov AA, Biryukov NS. The Motility of Mouse Spermatozoa Changes Differentially After 30-Minute Exposure Under Simulating Weightlessness and Hypergravity. Int J Mol Sci 2024; 25:13561. [PMID: 39769324 PMCID: PMC11678010 DOI: 10.3390/ijms252413561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Research into the mechanisms by which gravity influences spermatozoa has implications for maintaining the species in deep space exploration and may provide new approaches to reproductive technologies on Earth. Changes in the speed of mouse spermatozoa after 30 min exposure to simulated weightlessness (by 3D-clinostat) and 2 g hypergravity (by centrifugation) were studied using inhibitory analysis. Simulated microgravity after 30 min led to an increase in the speed of spermatozoa and against the background of an increase in the relative calcium content in the cytoplasm. This effect was prevented by the introduction of 6-(dimethylamino) purine, wortmannin, and calyculin A. Hypergravity led to a decrease in the speed of spermatozoa movement, which was prevented by sodium orthovanadate and calyculin A. At the same time, under microgravity conditions, there was a redistribution of proteins forming microfilament bundles between the membrane and cytoplasmic compartments and under hypergravity conditions-proteins forming networks. The obtained results indicate that even a short exposure of spermatozoa to altered gravity leads to the launch of mechanotransduction pathways in them and a change in motility.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
- Yu.A. Gagarin Research and Test Cosmonaut Training Center, 141160 Star City, Moscow Region, Russia
| | - Yulia S. Zhdankina
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Ksenia K. Gogichaeva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
| | - Artyom A. Malkov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| | - Nikolay S. Biryukov
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia; (Y.S.Z.); (K.K.G.); (A.A.M.); (N.S.B.)
- Medical and Biological Physics Department, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
2
|
Cervone DT, Moreno-Justicia R, Quesada JP, Deshmukh AS. Mass spectrometry-based proteomics approaches to interrogate skeletal muscle adaptations to exercise. Scand J Med Sci Sports 2024; 34:e14334. [PMID: 36973869 DOI: 10.1111/sms.14334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
Acute exercise and chronic exercise training elicit beneficial whole-body changes in physiology that ultimately depend on profound alterations to the dynamics of tissue-specific proteins. Since the work accomplished during exercise owes predominantly to skeletal muscle, it has received the majority of interest from exercise scientists that attempt to unravel adaptive mechanisms accounting for salutary metabolic effects and performance improvements that arise from training. Contemporary scientists are also beginning to use mass spectrometry-based proteomics, which is emerging as a powerful approach to interrogate the muscle protein signature in a more comprehensive manner. Collectively, these technologies facilitate the analysis of skeletal muscle protein dynamics from several viewpoints, including changes to intracellular proteins (expression proteomics), secreted proteins (secretomics), post-translational modifications as well as fiber-, cell-, and organelle-specific changes. This review aims to highlight recent literature that has leveraged new workflows and advances in mass spectrometry-based proteomics to further our understanding of training-related changes in skeletal muscle. We call attention to untapped areas in skeletal muscle proteomics research relating to exercise training and metabolism, as well as basic points of contention when applying mass spectrometry-based analyses, particularly in the study of human biology. We further encourage researchers to couple the hypothesis-generating and descriptive nature of omics data with functional analyses that propel our understanding of the complex adaptive responses in skeletal muscle that occur with acute and chronic exercise.
Collapse
Affiliation(s)
- Daniel T Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Roger Moreno-Justicia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Júlia Prats Quesada
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Ogneva IV. The Mechanoreception in Drosophila melanogaster Oocyte under Modeling Micro- and Hypergravity. Cells 2023; 12:1819. [PMID: 37508484 PMCID: PMC10377865 DOI: 10.3390/cells12141819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The hypothesis about the role of the cortical cytoskeleton as the primary mechanosensor was tested. Drosophila melanogaster oocytes were exposed to simulated microgravity (by 3D clinorotation in random directions with 4 rotations per minute-sµg group) and hypergravity at the 2 g level (by centrifugal force from one axis rotation-hg group) for 30, 90, and 210 min without and with cytochalasin B, colchicine, acrylamide, and calyculin A. Cell stiffness was measured by atomic force microscopy, protein content in the membrane and cytoplasmic fractions by Western blotting, and cellular respiration by polarography. The obtained results indicate that the stiffness of the cortical cytoskeleton of Drosophila melanogaster oocytes decreases in simulated micro- (after 90 min) and hypergravity (after 30 min), possibly due to intermediate filaments. The cell stiffness recovered after 210 min in the hg group, but intact microtubules were required for this. Already after 30 min of exposure to sµg, the cross-sectional area of oocytes decreased, which indicates deformation, and the singed protein, which organizes microfilaments into longitudinal bundles, diffused from the cortical cytoskeleton into the cytoplasm. Under hg, after 30 min, the cross-sectional area of the oocytes increased, and the proteins that organize filament networks, alpha-actinin and spectrin, diffused from the cortical cytoskeleton.
Collapse
Affiliation(s)
- Irina V Ogneva
- Cell Biophysics Laboratory, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, 76a, Khoroshevskoyoe Shosse, 123007 Moscow, Russia
- Medical and Biological Physics Department, I. M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia
| |
Collapse
|
5
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Yang HW, Oh S, Chung DM, Seo M, Park SJ, Jeon YJ, Byun K, Ryu B. Ishophloroglucin A, Isolated from Ishige okamurae, Alleviates Dexamethasone-Induced Muscle Atrophy through Muscle Protein Metabolism In Vivo. Mar Drugs 2022; 20:280. [PMID: 35621931 PMCID: PMC9147101 DOI: 10.3390/md20050280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
The in vitro capacity of Ishige okamurae extract (IO) to improve impaired muscle function has been previously examined. However, the mechanism underlying IO-mediated muscle protein metabolism and the role of its component, Ishophloroglucin A (IPA), in mice with dexamethasone (Dexa)-induced muscle atrophy remains unknown. In the present study, we evaluated the effect of IO and IPA supplementation on Dexa-induced muscle atrophy by assessing muscle protein metabolism in gastrocnemius and soleus muscles of mice. IO and IPA supplementation improved the Dexa-induced decrease in muscle weight and width, leading to enhanced grip strength. In addition, IO and IPA supplementation regulated impaired protein synthesis (PI3K and Akt) or degradation (muscle-specific ubiquitin ligase muscle RING finger and atrogin-1) by modulating mRNA levels in gastrocnemius and soleus muscles. Additionally, IO and IPA upregulated mRNA levels associated with muscle growth activation (transient receptor potential vanilloid type 4 and adenosine A1 receptor) or inhibition (myostatin and sirtuin 1) in gastrocnemius and soleus muscle tissues of Dexa-induced mice. Collectively, these results suggest that IO and IO-derived IPA can regulate muscle growth through muscle protein metabolism in Dexa-induced muscle atrophy.
Collapse
Affiliation(s)
- Hye-Won Yang
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
| | - Dong-Min Chung
- Shinwoo Co., Ltd., Jinju 52839, Korea; (D.-M.C.); (M.S.); (S.J.P.)
| | - Minyoung Seo
- Shinwoo Co., Ltd., Jinju 52839, Korea; (D.-M.C.); (M.S.); (S.J.P.)
| | - Shin Jae Park
- Shinwoo Co., Ltd., Jinju 52839, Korea; (D.-M.C.); (M.S.); (S.J.P.)
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea;
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Korea
| | - BoMi Ryu
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea; (H.-W.Y.); (Y.-J.J.)
| |
Collapse
|
8
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
9
|
Stotland AB, Spivia W, Orosco A, Andres AM, Gottlieb RA, Van Eyk JE, Parker SJ. MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins. J Mol Cell Cardiol 2020; 142:1-13. [PMID: 32234390 PMCID: PMC7347090 DOI: 10.1016/j.yjmcc.2020.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Mitochondria are the major source of cellular energy (ATP), as well as critical mediators of widespread functions such as cellular redox balance, apoptosis, and metabolic flux. The organelles play an especially important role in the maintenance of cardiac homeostasis; their inability to generate ATP following impairment due to ischemic damage has been directly linked to organ failure. Methods to quantify mitochondrial content are limited to low throughput immunoassays, measurement of mitochondrial DNA, or relative quantification by untargeted mass spectrometry. Here, we present a high throughput, reproducible and quantitative mass spectrometry multiple reaction monitoring based assay of 37 proteins critical to central carbon chain metabolism and overall mitochondrial function termed 'MitoPlex'. We coupled this protein multiplex with a parallel analysis of the central carbon chain metabolites (219 metabolite assay) extracted in tandem from the same sample, be it cells or tissue. In tests of its biological applicability in cells and tissues, "MitoPlex plus metabolites" indicated profound effects of HMG-CoA Reductase inhibition (e.g., statin treatment) on mitochondria of i) differentiating C2C12 skeletal myoblasts, as well as a clear opposite trend of statins to promote mitochondrial protein expression and metabolism in heart and liver, while suppressing mitochondrial protein and ii) aspects of metabolism in the skeletal muscle obtained from C57Bl6 mice. Our results not only reveal new insights into the metabolic effect of statins in skeletal muscle, but present a new high throughput, reliable MS-based tool to study mitochondrial dynamics in both cell culture and in vivo models.
Collapse
Affiliation(s)
- Aleksandr B Stotland
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Weston Spivia
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Amanda Orosco
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Allen M Andres
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Roberta A Gottlieb
- Molecular Cardiobiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Sarah J Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America.
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of fatty acid binding proteins in muscular dystrophy. Expert Rev Proteomics 2020; 17:137-148. [PMID: 32067530 DOI: 10.1080/14789450.2020.1732214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Duchenne muscular dystrophy is a neuromuscular disorder, which is caused by abnormalities in the DMD gene that encodes the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle wasting, dystrophinopathy also affects non-skeletal muscle tissues, including cells in the cardio-respiratory system, the central nervous system, the liver and the kidney.Areas covered: This review summarizes the proteomic characterization of a key class of lipid chaperones, the large family of fatty acid binding proteins, and their potential role in muscular dystrophy. Recent proteomic surveys using animal models and patient specimens are reviewed. Pathobiochemical changes in specific proteoforms of fatty acid binding protein in the multi-system pathology of dystrophinopathy are discussed.Expert opinion: The mass spectrometric identification of distinct changes in fatty acid binding proteins in muscle, heart, liver, kidney and serum demonstrates that considerable alterations occur in key steps of metabolite transport and fat metabolism in muscular dystrophy. These new findings might be helpful to further develop a comprehensive biomarker signature of metabolic changes in X-linked muscular dystrophy, which should improve (i) our understanding of complex pathobiochemical changes due to dystrophin deficiency, (ii) the identification of novel therapeutic targets, and (iii) the design of differential diagnostic, prognostic and therapy-monitoring approaches.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J Proteome Res 2020; 19:446-454. [PMID: 31647247 PMCID: PMC7487979 DOI: 10.1021/acs.jproteome.9b00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterogeneity in skeletal muscle contraction time, peak power output, and resistance to fatigue, among others, is necessary to accommodate the wide range of functional demands imposed on the body. Underlying this functional heterogeneity are a myriad of differences in the myofilament protein isoform expression and post-translational modifications; yet, characterizing this heterogeneity remains challenging. Herein, we have utilized top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics to characterize myofilament proteoform heterogeneity in seven rat skeletal muscle tissues including vastus lateralis, vastus medialis, vastus intermedius, rectus femoris, soleus, gastrocnemius, and plantaris. Top-down proteomics revealed that myofilament proteoforms varied greatly across the seven different rat skeletal muscle tissues. Subsequently, we quantified and characterized myofilament proteoforms using online LC-MS. We have comprehensively characterized the fast and slow skeletal troponin I isoforms, which demonstrates the ability of top-down MS to decipher isoforms with high sequence homology. Taken together, we have shown that top-down proteomics can be used as a robust and high-throughput method to characterize the molecular heterogeneity of myofilament proteoforms from various skeletal muscle tissues.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
12
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
13
|
Ogneva IV, Loktev SS, Sychev VN. Cytoskeleton structure and total methylation of mouse cardiac and lung tissue during space flight. PLoS One 2018; 13:e0192643. [PMID: 29768411 PMCID: PMC5955502 DOI: 10.1371/journal.pone.0192643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
The purpose of this work was to evaluate the protein and mRNA expression levels of multiple cytoskeletal proteins in the cardiac and lung tissue of mice that were euthanized onboard the United States Orbital Segment of the International Space Station 37 days after the start of the SpaceX-4 mission (September 2014, USA). The results showed no changes in the cytoskeletal protein content in the cardiac and lung tissue of the mice, but there were significant changes in the mRNA expression levels of the associated genes, which may be due to an increase in total genome methylation. The mRNA expression levels of DNA methylases, the cytosine demethylases Tet1 and Tet3, histone acetylase and histone deacetylase did not change, and the mRNA expression level of cytosine demethylase Tet2 was significantly decreased.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Sergey S. Loktev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir N. Sychev
- Cell Biophysics Lab, State Scientific Center of the Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Barbé C, Bray F, Gueugneau M, Devassine S, Lause P, Tokarski C, Rolando C, Thissen JP. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy. J Proteome Res 2017; 16:3477-3490. [PMID: 28810121 DOI: 10.1021/acs.jproteome.7b00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.
Collapse
Affiliation(s)
- Caroline Barbé
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Fabrice Bray
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Marine Gueugneau
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Stéphanie Devassine
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Pascale Lause
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| | - Caroline Tokarski
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), CNRS, USR 3290, Université de Lille; Biochimie Structurale & Fonctionnelle des Assemblages Biomoléculaires, CNRS, FR 3688, FRABIO, Université de Lille and Institut Eugène-Michel Chevreul, CNRS, FR 2638, Université de Lille, 59000 Lille, France
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain , 1200 Brussels, Belgium
| |
Collapse
|
15
|
Murphy S, Ohlendieck K. Mass spectrometric identification of dystrophin, the protein product of the Duchenne muscular dystrophy gene, in distinct muscle surface membranes. Int J Mol Med 2017; 40:1078-1088. [PMID: 28765879 PMCID: PMC5593493 DOI: 10.3892/ijmm.2017.3082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Supramolecular membrane complexes of low abundance are difficult to study by routine bioanalytical techniques. The plasmalemmal complex consisting of sarcoglycans, dystroglycans, dystrobrevins and syntrophins, which is closely associated with the membrane cytoskeletal protein dystrophin, represents such a high‑molecular‑mass protein assembly in skeletal muscles. The almost complete loss of the dystrophin isoform Dp427‑M and concomitant reduction in the dystrophin‑associated glycoprotein complex is the underlying cause of the highly progressive neuromuscular disorder named Duchenne muscular dystrophy. This gives the detailed characterization of the dystrophin complex considerable pathophysiological importance. In order to carry out a comprehensive mass spectrometric identification of the dystrophin‑glycoprotein complex, in this study, we used extensive subcellular fractionation and enrichment procedures prior to subproteomic analysis. Mass spectrometry identified high levels of full‑length dystrophin isoform Dp427‑M, α/β‑dystroglycans, α/β/γ/δ‑sarcoglycans, α1/β1/β2‑syntrophins and α/β‑dystrobrevins in highly purified sarcolemma vesicles. By contrast, lower levels were detected in transverse tubules and no components of the dystrophin complex were identified in triads. For comparative purposes, the presence of organellar marker proteins was studied in crude surface membrane preparations vs. enriched fractions from the sarcolemma, transverse tubules and triad junctions using gradient gel electrophoresis and on‑membrane digestion. This involved the subproteomic assessment of various ion‑regulatory proteins and excitation‑contraction coupling components. The comparative profiling of skeletal muscle fractions established a relatively restricted subcellular localization of the dystrophin‑glycoprotein complex in the muscle fibre periphery by proteomic means and clearly demonstrated the absence of dystrophin from triad junctions by sensitive mass spectrometric analysis.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| |
Collapse
|
16
|
Padrão AI, Ferreira R, Amado F, Vitorino R, Duarte JA. Uncovering the exercise-related proteome signature in skeletal muscle. Proteomics 2016; 16:816-30. [PMID: 26632760 DOI: 10.1002/pmic.201500382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/13/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Abstract
Exercise training has been recommended as a nonpharmacological strategy for the prevention and attenuation of skeletal muscle atrophy in distinct pathophysiological conditions. Despite the well-established phenotypic alterations, the molecular mechanisms underlying exercise-induced skeletal muscle remodeling are poorly characterized. Proteomics based on mass spectrometry have been successfully applied for the characterization of skeletal muscle proteome, representing a pivotal approach for the wide characterization of the molecular networks that lead to skeletal muscle remodeling. Nevertheless, few studies were performed to characterize the exercise-induced proteome remodeling of skeletal muscle, with only six research papers focused on the cross-talk between exercise and pathophysiological conditions. In order to add new insights on the impact of distinct exercise programs on skeletal muscle proteome, molecular network analysis was performed with bioinformatics tools. This analysis highlighted an exercise-related proteome signature characterized by the up-regulation of the capacity for ATP generation, oxygen delivery, antioxidant capacity and regulation of mitochondrial protein synthesis. Chronic endurance training up-regulates the tricarboxylic acid cycle and oxidative phosphorylation system, whereas the release of calcium ion into cytosol and amino acid metabolism are the biological processes up-regulated by a single bout of exercise. Other issues as exercise intensity, load, mode and regimen as well as muscle type also influence the exercise-induced proteome signature. The comprehensive analysis of the molecular networks modulated by exercise training in health and disease, taking in consideration all these variables, might not only support the therapeutic effect of exercise but also highlight novel targets for the development of enhanced pharmacological strategies.
Collapse
Affiliation(s)
- Ana Isabel Padrão
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CIAFEL, Faculty of Sports, University of Porto, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Francisco Amado
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences and Institute for Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | |
Collapse
|
17
|
Ogneva IV, Belyakin SN, Sarantseva SV. The Development Of Drosophila Melanogaster under Different Duration Space Flight and Subsequent Adaptation to Earth Gravity. PLoS One 2016; 11:e0166885. [PMID: 27861601 PMCID: PMC5115863 DOI: 10.1371/journal.pone.0166885] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/05/2016] [Indexed: 12/20/2022] Open
Abstract
In prospective human exploration of outer space, the need to preserve a species over several generations under changed gravity conditions may arise. This paper demonstrates our results in the creation of the third generation of fruit fly Drosophila melanogaster (third-stage larvae) during the 44.5-day space flight (Foton-M4 satellite (2014, Russia)), then the fourth generation on Earth and the fifth generation again in conditions of the 12-day space flight (2014, in the Russian Segment of the ISS). The species preserves fertility despite a number of changes in the level of expression and content of cytoskeletal proteins, which are the key components of the cleavage spindle and the contractile ring of cells. The results of transcriptome screening and space analysis of cytoskeletal proteins show that the exposure to weightless conditions leads to the increased transcription of metabolic genes, cuticle components and the decreased transcription of genes involved in morphogenesis, cell differentiation, cytoskeletal organization and genes associated with the plasma membrane. "Subsequent" exposure to the microgravity for 12 days resulted in an even more significant increase/decrease in the transcription of the same genes. On the contrary, the transition from the microgravity conditions to the gravity of Earth leads to the increased transcription of genes whose products are involved in the morphogenesis, cytoskeletal organization, motility of cells and transcription regulation, and to the decreased transcription of cuticle genes and proteolytic processes.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Cell Biophysics Group, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | | | - Svetlana V. Sarantseva
- B. P. Konstantinov Petersburg Nuclear Physics Institute National Research Centre "Kurchatov Institute", Gatchina, Russia
| |
Collapse
|
18
|
Murphy S, Dowling P, Ohlendieck K. Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis. Proteomes 2016; 4:proteomes4030027. [PMID: 28248237 PMCID: PMC5217355 DOI: 10.3390/proteomes4030027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
The pioneering work by Patrick H. O’Farrell established two-dimensional gel electrophoresis as one of the most important high-resolution protein separation techniques of modern biochemistry (Journal of Biological Chemistry1975, 250, 4007–4021). The application of two-dimensional gel electrophoresis has played a key role in the systematic identification and detailed characterization of the protein constituents of skeletal muscles. Protein changes during myogenesis, muscle maturation, fibre type specification, physiological muscle adaptations and natural muscle aging were studied in depth by the original O’Farrell method or slightly modified gel electrophoretic techniques. Over the last 40 years, the combined usage of isoelectric focusing in the first dimension and sodium dodecyl sulfate polyacrylamide slab gel electrophoresis in the second dimension has been successfully employed in several hundred published studies on gel-based skeletal muscle biochemistry. This review focuses on normal and physiologically challenged skeletal muscle tissues and outlines key findings from mass spectrometry-based muscle proteomics, which was instrumental in the identification of several thousand individual protein isoforms following gel electrophoretic separation. These muscle-associated protein species belong to the diverse group of regulatory and contractile proteins of the acto-myosin apparatus that forms the sarcomere, cytoskeletal proteins, metabolic enzymes and transporters, signaling proteins, ion-handling proteins, molecular chaperones and extracellular matrix proteins.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
19
|
Ogneva IV, Biryukov NS. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse. PLoS One 2016; 11:e0153650. [PMID: 27073851 PMCID: PMC4830545 DOI: 10.1371/journal.pone.0153650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/07/2016] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels of Tmod1 and Svil decreased by 2- and 5-fold, respectively. However, gravitational disuse did not result in changes in the mRNA content of Arpc3, Tmod1, Svil or Lcp1. Anti-orthostatic suspension for 6 hours resulted in a decrease in the mRNA content of alpha-actinin-4 (Actn4) and alpha-actinin-1 (Actn1) in group «HS» compared with that of group «C» by 25% and 30%, respectively, as well as a decrease and increase in the ACTN4 protein content in the membrane and cytoplasmic fractions, respectively. Lecithin injection resulted in an increase in the Actn1 and Actn4 mRNA content in group «C+L» by 1.5-fold and more than 2-fold, respectively, compared with the levels in group «C». Moreover, in group «HS+L», the mRNA content did not change in these genes compared with the levels in group «C+L», and the ACTN4 protein content in the membrane and cytoplasmic fractions also remained unchanged. Thus, lecithin prevented the reduction of Actn1 and Actn4 mRNA and the migration of ACTN4 from the cortical cytoskeleton to the cytoplasm.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - Nikolay S. Biryukov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow region, Russia
| |
Collapse
|
20
|
Murphy S, Henry M, Meleady P, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy. BIOLOGY 2015; 4:397-423. [PMID: 26067837 PMCID: PMC4498307 DOI: 10.3390/biology4020397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022]
Abstract
In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
21
|
Ogneva IV, Gnyubkin V, Laroche N, Maximova MV, Larina IM, Vico L. Structure of the cortical cytoskeleton in fibers of postural muscles and cardiomyocytes of mice after 30-day 2-g centrifugation. J Appl Physiol (1985) 2014; 118:613-23. [PMID: 25539936 DOI: 10.1152/japplphysiol.00812.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered external mechanical loading during spaceflights causes negative effects on muscular and cardiovascular systems. The aim of the study was estimation of the cortical cytoskeleton statement of the skeletal muscle cells and cardiomyocytes. The state of the cortical cytoskeleton in C57BL6J mice soleus, tibialis anterior muscle fibers, and left ventricle cardiomyocytes was investigated after 30-day 2-g centrifugation ("2-g" group) and within 12 h after its completion ("2-g + 12-h" group). We used atomic force microscopy for estimating cell's transverse stiffness, Western blotting for measuring protein content, and RT-PCR for estimating their expression level. The transverse stiffness significantly decreased in cardiomyocytes (by 16%) and increased in skeletal muscles fibers (by 35% for soleus and by 29% for tibialis anterior muscle fibers) in animals of the 2-g group (compared with the control group). For cardiomyocytes, we found that, in the 2-g + 12-h group, α-actinin-1 content decreased in the membranous fraction (by 27%) and increased in cytoplasmic fraction (by 28%) of proteins (compared with the levels in the 2-g group). But for skeletal muscle fibers, similar changes were noted for α-actinin-4, but not for α-actinin-1. In conclusion, we showed that the different isoforms of α-actinins dissociate from cortical cytoskeleton under increased/decreased of mechanical load.
Collapse
Affiliation(s)
- Irina V Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; I. M. Sechenov First Moscow State Medical University, Moscow, Russia;
| | - V Gnyubkin
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| | - N Laroche
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| | - M V Maximova
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - I M Larina
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L Vico
- INSERM U1059 Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, St. Etienne, France; and
| |
Collapse
|
22
|
Ogneva IV, Biryukov NS, Leinsoo TA, Larina IM. Possible role of non-muscle alpha-actinins in muscle cell mechanosensitivity. PLoS One 2014; 9:e96395. [PMID: 24780915 PMCID: PMC4004558 DOI: 10.1371/journal.pone.0096395] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/06/2014] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. RESULTS In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6-12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18-24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus muscle fibers.
Collapse
Affiliation(s)
- Irina V. Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| | - Nikolay S. Biryukov
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Toomas A. Leinsoo
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Irina M. Larina
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
Ogneva IV, Maximova MV, Larina IM. Structure of cortical cytoskeleton in fibers of mouse muscle cells after being exposed to a 30-day space flight on board the BION-M1 biosatellite. J Appl Physiol (1985) 2014; 116:1315-23. [PMID: 24674857 DOI: 10.1152/japplphysiol.00134.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers.
Collapse
Affiliation(s)
- I V Ogneva
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, Moscow, Russia; and
| | - M V Maximova
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology (State University), Moscow, Russia
| | - I M Larina
- Department of Molecular and Cell Biomedicine, State Scientific Center of Russian Federation, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
24
|
Liu Y, Li M, Ma J, Zhang J, Zhou C, Wang T, Gao X, Li X. Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles. BMC Mol Biol 2013; 14:7. [PMID: 23419046 PMCID: PMC3599761 DOI: 10.1186/1471-2199-14-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/15/2013] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a type of non-coding small RNA ~22 nucleotides in length that regulate the expression of protein coding genes at the post-transcriptional level. Glycolytic and oxidative myofibers, the two main types of skeletal muscles, play important roles in metabolic health as well as in meat quality and production in the pig industry. Previous expression profile studies of different skeletal muscle types have focused on these aspects of mRNA and proteins; nonetheless, an explanation of the miRNA transcriptome differences between these two distinct muscles types is long overdue. Results Herein, we present a comprehensive analysis of miRNA expression profiling between the porcine longissimus doris muscle (LDM) and psoas major muscle (PMM) using a deep sequencing approach. We generated a total of 16.62 M (LDM) and 18.46 M (PMM) counts, which produced 15.22 M and 17.52 M mappable sequences, respectively, and identified 114 conserved miRNAs and 89 novel miRNA*s. Of 668 unique miRNAs, 349 (52.25%) were co-expressed, of which 173 showed significant differences (P < 0.01) between the two muscle types. Muscle-specific miR-1-3p showed high expression levels in both libraries (LDM, 32.01%; PMM, 20.15%), and miRNAs that potentially affect metabolic pathways (such as the miR-133 and -23) showed significant differences between the two libraries, indicating that the two skeletal muscle types shared mainly muscle-specific miRNAs but expressed at distinct levels according to their metabolic needs. In addition, an analysis of the Gene Ontology (GO) terms and KEGG pathway associated with the predicted target genes of the differentially expressed miRNAs revealed that the target protein coding genes of highly expressed miRNAs are mainly involved in skeletal muscle structural development, regeneration, cell cycle progression, and the regulation of cell motility. Conclusion Our study indicates that miRNAs play essential roles in the phenotypic variations observed in different muscle fiber types.
Collapse
Affiliation(s)
- Yingkai Liu
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hypoxia-induced changes in the zebrafish (Danio rerio) skeletal muscle proteome. J Proteomics 2013; 78:477-85. [DOI: 10.1016/j.jprot.2012.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/03/2012] [Accepted: 10/20/2012] [Indexed: 12/23/2022]
|
26
|
Structure and functional characteristics of rat's left ventricle cardiomyocytes under antiorthostatic suspension of various duration and subsequent reloading. J Biomed Biotechnol 2012; 2012:659869. [PMID: 23093854 PMCID: PMC3470902 DOI: 10.1155/2012/659869] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 11/17/2022] Open
Abstract
The goal of the research was to identify the structural and functional characteristics of the rat's left ventricle under antiorthostatic suspension within 1, 3, 7 and 14 days, and subsequent 3 and 7-day reloading after a 14-day suspension. The transversal stiffness of the cardiomyocyte has been determined by the atomic force microscopy, cell respiration—by polarography and proteins content—by Western blotting. Stiffness of the cortical cytoskeleton increases as soon as one day after the suspension and increases up to the 14th day, and starts decreasing during reloading, reaching the control level after 7 days. The stiffness of the contractile apparatus and the intensity of cell respiration also increases. The content of non-muscle isoforms of actin in the cytoplasmic fraction of proteins does not change during the whole experiment, as does not the beta-actin content in the membrane fraction. The content of gamma-actin in the membrane fraction correlates with the change in the transversal stiffness of the cortical cytoskeleton. Increased content of alpha-actinin-1 and alpha-actinin-4 in the membrane fraction of proteins during the suspension is consistent with increased gamma-actin content there. The opposite direction of change of alpha-actinin-1 and alpha-actinin-4 content suggests their involvement into the signal pathways.
Collapse
|
27
|
Sharma N, Medikayala S, Defour A, Rayavarapu S, Brown KJ, Hathout Y, Jaiswal JK. Use of quantitative membrane proteomics identifies a novel role of mitochondria in healing injured muscles. J Biol Chem 2012; 287:30455-67. [PMID: 22778268 DOI: 10.1074/jbc.m112.354415] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscles are proficient at healing from a variety of injuries. Healing occurs in two phases, early and late phase. Early phase involves healing the injured sarcolemma and restricting the spread of damage to the injured myofiber. Late phase of healing occurs a few days postinjury and involves interaction of injured myofibers with regenerative and inflammatory cells. Of the two phases, cellular and molecular processes involved in the early phase of healing are poorly understood. We have implemented an improved sarcolemmal proteomics approach together with in vivo labeling of proteins with modified amino acids in mice to study acute changes in the sarcolemmal proteome in early phase of myofiber injury. We find that a notable early phase response to muscle injury is an increased association of mitochondria with the injured sarcolemma. Real-time imaging of live myofibers during injury demonstrated that the increased association of mitochondria with the injured sarcolemma involves translocation of mitochondria to the site of injury, a response that is lacking in cultured myoblasts. Inhibiting mitochondrial function at the time of injury inhibited healing of the injured myofibers. This identifies a novel role of mitochondria in the early phase of healing injured myofibers.
Collapse
Affiliation(s)
- Nimisha Sharma
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Transversal stiffness and beta-actin and alpha-actinin-4 content of the M. soleus fibers in the conditions of a 3-day reloading after 14-day gravitational unloading. J Biomed Biotechnol 2011; 2011:393405. [PMID: 21941432 PMCID: PMC3177293 DOI: 10.1155/2011/393405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 11/29/2022] Open
Abstract
The aim of the work was to analyze the structural changes in different parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy in a three-day reloading after a 14-day gravity disuse, which was carried out by hind-limbs suspension. The object of the study was the soleus muscle of the Wistar rat. It was shown that after 14 days of disuse, there was a reduction of transversal stiffness of all points of the sarcolemma and contractile apparatus. Readaptation for 3 days leads to complete recovery of the values of the transversal stiffness of the sarcolemma and to partial value recovery of the contractile apparatus. The changes in transversal stiffness of sarcolemma correlate with beta-actin and alpha-actinin-4 in membrane protein fractions.
Collapse
|
29
|
Rocha H, Ferreira R, Carvalho J, Vitorino R, Santa C, Lopes L, Gregersen N, Vilarinho L, Amado F. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency. J Proteomics 2011; 75:221-8. [PMID: 21596162 DOI: 10.1016/j.jprot.2011.04.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/14/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis.
Collapse
Affiliation(s)
- H Rocha
- I&D unit, Genetics Department, Medical Genetics Center Jacinto Magalhães of National Institute of Health Ricardo Jorge, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Andres AM, Ratliff EP, Sachithanantham S, Hui ST. Diminished AMPK signaling response to fasting in thioredoxin-interacting protein knockout mice. FEBS Lett 2011; 585:1223-30. [PMID: 21439280 DOI: 10.1016/j.febslet.2011.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/07/2011] [Accepted: 03/18/2011] [Indexed: 01/11/2023]
Abstract
Thioredoxin-interacting protein (Txnip) knockout (TKO) mice exhibit impaired response to fasting. Herein, we showed that activation of adenine monophosphate-activated protein kinase and cellular AMP levels were diminished in the heart and soleus muscle but not in gastrocnemius muscle of fasting TKO mice. Similarly, glycogen content in fasted TKO mice was increased in oxidative muscles but was not different in glycolytic muscles. These data suggest Txnip deficiency has a higher impact on oxidative muscle than glycolytic muscles and provide new insights into the metabolic role of Txnip.
Collapse
Affiliation(s)
- Allen M Andres
- Department of Biology, BioScience Center, San Diego State University, San Diego, CA 92182, USA
| | | | | | | |
Collapse
|
31
|
Glancy B, Balaban RS. Protein composition and function of red and white skeletal muscle mitochondria. Am J Physiol Cell Physiol 2011; 300:C1280-90. [PMID: 21289287 DOI: 10.1152/ajpcell.00496.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Red and white muscles are faced with very different energetic demands. However, it is unclear whether relative mitochondrial protein expression is different between muscle types. Mitochondria from red and white porcine skeletal muscle were isolated with a Percoll gradient. Differences in protein composition were determined using blue native (BN)-PAGE, two-dimensional differential in gel electrophoresis (2D DIGE), optical spectroscopy, and isobaric tag for relative and absolute quantitation (iTRAQ). Complex IV and V activities were compared using BN-PAGE in-gel activity assays, and maximal mitochondrial respiration rates were assessed using pyruvate (P) + malate (M), glutamate (G) + M, and palmitoyl-carnitine (PC) + M. Without the Percoll step, major cytosolic protein contamination was noted for white mitochondria. Upon removal of contamination, very few protein differences were observed between red and white mitochondria. BN-PAGE showed no differences in the subunit composition of Complexes I-V or the activities of Complexes IV and V. iTRAQ analysis detected 358 mitochondrial proteins, 69 statistically different. Physiological significance may be lower: at a 25% difference, 48 proteins were detected; at 50%, 14 proteins were detected; and 3 proteins were detected at a 100%. Thus any changes could be argued to be physiologically modest. One area of difference was fat metabolism where four β-oxidation enzymes were ∼25% higher in red mitochondria. This was correlated with a 40% higher rate of PC+M oxidation in red mitochondria compared with white mitochondria with no differences in P+M and G+M oxidation. These data suggest that metabolic demand differences between red and white muscle fibers are primarily matched by the number of mitochondria and not by significant alterations in the mitochondria themselves.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute/NIH, 10 Center Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
32
|
Ohlendieck K. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 2011; 1:6. [PMID: 21798084 PMCID: PMC3143904 DOI: 10.1186/2044-5040-1-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/01/2011] [Indexed: 01/08/2023] Open
Abstract
Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
33
|
Ferreira R, Vitorino R, Alves RMP, Appell HJ, Powers SK, Duarte JA, Amado F. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 2010; 10:3142-54. [PMID: 20665633 DOI: 10.1002/pmic.201000173] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is a highly specialized tissue that contains two distinct mitochondria subpopulations, the subsarcolemmal (SS) and the intermyofibrillar (IMF) mitochondria. Although it is established that these mitochondrial subpopulations differ functionally in several ways, limited information exists about the proteomic differences underlying these functional differences. Therefore, the objective of this study was to biochemically characterize the SS and IMF mitochondria isolated from rat red gastrocnemius skeletal muscle. We separated the two mitochondrial subpopulations from skeletal muscle using a refined method that provides an excellent division of these unique mitochondrial subpopulations. Using proteomics of mitochondria and its subfractions (intermembrane space, matrix and inner membrane), a total of 325 distinct proteins were identified, most of which belong to the functional clusters of oxidative phosphorylation, metabolism and signal transduction. Although more gel spots were observed in SS mitochondria, 38 of the identified proteins were differentially expressed between the SS and IMF subpopulations. Compared to the SS mitochondrial, IMF mitochondria expressed a higher level of proteins associated with oxidative phosphorylation. This observation, coupled with the finding of a higher respiratory chain complex activity in IMF mitochondria, suggests a specialization of IMF mitochondria toward energy production for contractile activity.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | |
Collapse
|
34
|
Ohlendieck K. Proteomics of skeletal muscle glycolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2089-101. [DOI: 10.1016/j.bbapap.2010.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
|
35
|
Lemos MFL, Soares AMVM, Correia AC, Esteves AC. Proteins in ecotoxicology - how, why and why not? Proteomics 2010; 10:873-87. [PMID: 19953548 DOI: 10.1002/pmic.200900470] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The growing interest in the application of proteomic technologies to solve toxicology issues and its relevance in ecotoxicology research has resulted in the emergence of "ecotoxicoproteomics". There is a general consensus that ecotoxicoproteomics is a powerful tool to spot early molecular events involved in toxicant responses, which are responsible for the adverse effects observed at higher levels of biological organization, thus contributing to elucidate the mode of action of stressors and to identify specific biomarkers. Ultimately, early-warning indicators can then be developed and deployed in "in situ" bioassays and in environmental risk assessment. The number of field experiments or laboratory trials using ecologically relevant test-species and involving proteomics has been, until recently, insufficient to allow a critical analysis of the real benefits of the application of this approach to ecotoxicology. This article intends to present an overview on the applications of proteomics in the context of ecotoxicology, focusing mainly on the prospective research to be done in invertebrates. Although these represent around 95% of all animal species and in spite of the key structural and functional roles they play in ecosystems, proteomic research in invertebrates is still in an incipient stage. We will review applications of ecotoxicoproteomics by evaluating the technical methods employed, the organisms and the contexts studied, the advances achieved until now and lastly the limitations yet to overcome will be discussed.
Collapse
Affiliation(s)
- Marco F L Lemos
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
36
|
Ohlendieck K. Proteomics of skeletal muscle differentiation, neuromuscular disorders and fiber aging. Expert Rev Proteomics 2010; 7:283-96. [PMID: 20377394 DOI: 10.1586/epr.10.2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skeletal muscle fibers are the most abundant cellular structure in the human body. Altered neuromuscular activity, traumatic injury or genetic abnormalities have profound effects on muscle integrity, tissue mass, fiber type distribution, metabolic integration and contractile function. The recent application of mass spectrometry-based proteomics has decisively advanced our molecular understanding of numerous physiological adaptations in healthy muscle and pathophysiological mechanisms associated with major muscle diseases. Skeletal muscle proteomics promises to play a major role in the establishment of a disease-specific biomarker signature for the major classes of neuromuscular disorders. New muscle markers will be crucial for the development of improved diagnostics, the monitoring of disease progression, evaluation of drug action and the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
37
|
Proteolysis activation and proteome alterations in murine skeletal muscle submitted to 1 week of hindlimb suspension. Eur J Appl Physiol 2009; 107:553-63. [DOI: 10.1007/s00421-009-1151-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2009] [Indexed: 12/16/2022]
|
38
|
Differential expression of sarcoplasmic and myofibrillar proteins of rat soleus muscle during denervation atrophy. Biosci Biotechnol Biochem 2009; 73:1748-56. [PMID: 19661702 DOI: 10.1271/bbb.90085] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Denervation is known to induce skeletal muscle atrophy and fiber-type transitions, the molecular mechanisms of which are poorly understood. To investigate the effect of denervation on skeletal muscle, proteomic analysis was performed to compare denervated soleus muscle with normal soleus muscle. The muscles were fractionated to myofibrillar and sarcoplasmic fractions, which were analysed using two-dimensional gel electrophoresis (2-DE), followed by MALDI-TOF-MS. At least 30 differentially regulated proteins were identified in the sarcoplasmic fractions of normal and denervated soleus muscles. This group included metabolic enzymes, signaling molecules, chaperones, and contractile proteins. We also found two proteins, APOBEC-2 (RNA-editing enzyme) and Gamma-synuclein (breast cancer related protein), which have not been recognized as denervation-induced proteins to date. Our results might prove to be beneficial in elucidating the molecular mechanisms of denervation-induced muscle atrophy.
Collapse
|
39
|
Doran P, Donoghue P, O'Connell K, Gannon J, Ohlendieck K. Proteomics of skeletal muscle aging. Proteomics 2009; 9:989-1003. [DOI: 10.1002/pmic.200800365] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Raddatz K, Albrecht D, Hochgräfe F, Hecker M, Gotthardt M. A proteome map of murine heart and skeletal muscle. Proteomics 2008; 8:1885-97. [PMID: 18398877 DOI: 10.1002/pmic.200700902] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The balance of hypertrophy and atrophy is critical for the adaptation of cardiac and skeletal muscle mass to the demands of the environment and when deregulated can cause disease. Here we have used a proteomics approach to generate protein reference maps for the mouse heart and skeletal muscle, which provide a molecular basis for future functional and pathophysiological studies. The reference map provides information on molecular mass, pI, and literature data on function and localization, to facilitate the identification of proteins based on their migration in 2-D gels. In total, we have identified 351 cardiac and 284 skeletal muscle protein spots, representing 249 and 214 different proteins, respectively. In addition, we have visualized the protein pattern of mouse heart and skeletal muscle at defined conditions comparing knockout (KO) animals deficient in the sarcomeric protein titin (a genetic atrophy model) and control littermates. We found 20 proteins that were differently expressed linking titin's kinase region to the heat-shock- and proteasomal stress response. Taken together, the established reference maps should provide a suitable tool to relate protein expression and PTM to cardiovascular and skeletal muscle disease using the mouse as an animal model.
Collapse
Affiliation(s)
- Katy Raddatz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|