1
|
Kovar P, Richardson PL, Korepanova A, Afanador GA, Stojkovic V, Li T, Schrimpf MR, Ng TI, Degoey DA, Gopalakrishnan SM, Chen J. Development of a sensitive high-throughput enzymatic assay capable of measuring sub-nanomolar inhibitors of SARS-CoV2 Mpro. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100179. [PMID: 39151824 DOI: 10.1016/j.slasd.2024.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is essential for viral replication because it is responsible for the processing of most of the non-structural proteins encoded by the virus. Inhibition of Mpro prevents viral replication and therefore constitutes an attractive antiviral strategy. We set out to develop a high-throughput Mpro enzymatic activity assay using fluorescently labeled peptide substrates. A library of fluorogenic substrates of various lengths, sequences and dye/quencher positions was prepared and tested against full length SARS-CoV-2 Mpro enzyme for optimal activity. The addition of buffers containing strongly hydrated kosmotropic anion salts, such as citrate, from the Hofmeister series significantly boosted the enzyme activity and enhanced the assay detection limit, enabling the ranking of sub-nanomolar inhibitors without relying on the low-throughput Morrison equation method. By comparing cooperativity in citrate or non-citrate buffer while titrating the Mpro enzyme concentration, we found full positive cooperativity of Mpro with citrate buffer at less than one nanomolar (nM), but at a much higher enzyme concentration (∼320 nM) with non-citrate buffer. In addition, using a tight binding Mpro inhibitor, we confirmed there was only one active catalytical site in each Mpro monomer. Since cooperativity requires at least two binding sites, we hypothesized that citrate facilitates dimerization of Mpro at sub-nanomolar concentration as one of the mechanisms enhances Mpro catalytic efficiency. This assay has been used in high-throughput screening and structure activity relationship (SAR) studies to support medicinal chemistry efforts. IC50 values determined in this assay correlates well with EC50 values generated by a SARS-CoV-2 antiviral assay after adjusted for cell penetration.
Collapse
Affiliation(s)
- Peter Kovar
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Paul L Richardson
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Alla Korepanova
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Gustavo A Afanador
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Vladimir Stojkovic
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Tao Li
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Michael R Schrimpf
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - Teresa I Ng
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | - David A Degoey
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA
| | | | - Jun Chen
- SMTPT, AbbVie Discovery, AbbVie, 1 N Waukegan Rd., North Chicago, IL 60065, USA.
| |
Collapse
|
2
|
Ng TI, Tripathi R, Reisch T, Lu L, Middleton T, Hopkins TA, Pithawalla R, Irvin M, Dekhtyar T, Krishnan P, Schnell G, Beyer J, McDaniel KF, Ma J, Wang G, Jiang LJ, Or YS, Kempf D, Pilot-Matias T, Collins C. In Vitro Antiviral Activity and Resistance Profile of the Next-Generation Hepatitis C Virus NS3/4A Protease Inhibitor Glecaprevir. Antimicrob Agents Chemother 2018; 62:e01620-17. [PMID: 29084747 PMCID: PMC5740381 DOI: 10.1128/aac.01620-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Glecaprevir (formerly ABT-493) is a novel hepatitis C virus (HCV) NS3/4A protease inhibitor (PI) with pangenotypic activity. It inhibited the enzymatic activity of purified NS3/4A proteases from HCV genotypes 1 to 6 in vitro (half-maximal [50%] inhibitory concentration = 3.5 to 11.3 nM) and the replication of stable HCV subgenomic replicons containing proteases from genotypes 1 to 6 (50% effective concentration [EC50] = 0.21 to 4.6 nM). Glecaprevir had a median EC50 of 0.30 nM (range, 0.05 to 3.8 nM) for HCV replicons containing proteases from 40 samples from patients infected with HCV genotypes 1 to 5. Importantly, glecaprevir was active against the protease from genotype 3, the most-difficult-to-treat HCV genotype, in both enzymatic and replicon assays demonstrating comparable activity against the other HCV genotypes. In drug-resistant colony selection studies, glecaprevir generally selected substitutions at NS3 amino acid position A156 in replicons containing proteases from genotypes 1a, 1b, 2a, 2b, 3a, and 4a and substitutions at position D/Q168 in replicons containing proteases from genotypes 3a, 5a, and 6a. Although the substitutions A156T and A156V in NS3 of genotype 1 reduced susceptibility to glecaprevir, replicons with these substitutions demonstrated a low replication efficiency in vitro Glecaprevir is active against HCV with most of the common NS3 amino acid substitutions that are associated with reduced susceptibility to other currently approved HCV PIs, including those at positions 155 and 168. Combination of glecaprevir with HCV inhibitors with other mechanisms of action resulted in additive or synergistic antiviral activity. In summary, glecaprevir is a next-generation HCV PI with potent pangenotypic activity and a high barrier to the development of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jill Beyer
- AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Jun Ma
- Enanta Pharmaceuticals Inc., Watertown, Massachusetts, USA
| | - Guoqiang Wang
- Enanta Pharmaceuticals Inc., Watertown, Massachusetts, USA
| | - Li-Juan Jiang
- Enanta Pharmaceuticals Inc., Watertown, Massachusetts, USA
| | - Yat Sun Or
- Enanta Pharmaceuticals Inc., Watertown, Massachusetts, USA
| | - Dale Kempf
- AbbVie, Inc., North Chicago, Illinois, USA
| | | | | |
Collapse
|
3
|
Jensen JL, Jacobsen J, Moss ML, Rasmussen F, Qvist KB, Larsen S, van den Brink JM. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay. J Dairy Sci 2015; 98:2853-60. [PMID: 25726113 DOI: 10.3168/jds.2014-8672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
Abstract
Enzymatic coagulation of bovine milk can be divided in 2 steps: an enzymatic step, in which the Phe105-Met106 bond of the milk protein bovine κ-casein is cleaved, and an aggregation step. The aspartic peptidases bovine and camel chymosin (EC 3.4.23.4) are typically used to catalyze the enzymatic step. The most commonly used method to study chymosin activity is the relative milk-clotting activity test that measures the end point of the enzymatic and aggregation step. This method showed that camel chymosin has a 2-fold higher milk-clotting activity toward bovine milk than bovine chymosin. To enable a study of the enzymatic step independent of the aggregation step, a fluorescence resonance energy transfer assay has been developed using a peptide substrate derived from the 98-108 sequence of bovine κ-casein. This assay and Michaelis-Menten kinetics were employed to determine the enzymatic activity of camel and bovine chymosin under milk clotting-like conditions (pH 6.65, ionic strength 80 mM). The results obtained show that the catalytic efficiency of camel chymosin is 3-fold higher than bovine chymosin. The substrate affinity and catalytic activity of bovine and camel chymosin increase at lower pH (6.00 and 5.50). The glycosylation of bovine and camel chymosin did not affect binding of the fluorescence resonance energy transfer substrate, but doubly glycosylated camel chymosin seems to have slightly higher catalytic efficiency. In the characterization of the enzymes, the developed assay is easier and faster to use than the traditionally used relative milk-clotting activity test method.
Collapse
Affiliation(s)
- Jesper Langholm Jensen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark; Chr. Hansen a/s, Bøge allé 10-12, DK-2970 Hørsholm, Denmark
| | - Jonas Jacobsen
- Chr. Hansen a/s, Bøge allé 10-12, DK-2970 Hørsholm, Denmark
| | | | | | | | - Sine Larsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
4
|
Paulson MS. Generation and quantitation of infectious hepatitis C virus derived from cell culture (HCVcc). CURRENT PROTOCOLS IN PHARMACOLOGY 2011; Chapter 13:Unit 13B.4. [PMID: 21935897 DOI: 10.1002/0471141755.ph13b04s51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development of robust genotype 1b and genotype 1a hepatitis C virus (HCV) replicon systems has enabled the convenient in vitro study of part of the virus life cycle. This unit describes detailed protocols for generating and measuring infectious HCV, or cell-culture-derived infectious HCV (HCVcc). The HCVcc infectious system has two essential components: (1) cells that are permissive to de novo infection and allow effective replication of the full virus life cycle; and (2) a virus genome that has robust and efficient replication in tissue culture. The assays in this unit are based on protocols designed for Huh-7-derived cell lines that allow robust replication of HCV and are permissive to infection. These protocols are important for the implementation of drug discovery efforts relative to the entire infectious virus life cycle.
Collapse
|
5
|
Optimization of the multiple enzymatic activities of the hepatitis C virus NS3 protein. Anal Biochem 2009; 394:138-40. [DOI: 10.1016/j.ab.2009.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/18/2022]
|
6
|
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening. Antimicrob Agents Chemother 2009; 53:4311-9. [PMID: 19620334 DOI: 10.1128/aac.00495-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A major obstacle in the treatment of chronic hepatitis C virus (HCV) infection has been the lack of effective, well-tolerated therapeutics. Notably, the recent development of the HCV cell culture infection system now allows not only for the study of the entire viral life cycle, but also for the screening of inhibitors against all aspects of HCV infection. However, in order to screen libraries of potential antiviral compounds, it is necessary to develop a highly reproducible, accurate assay for HCV infection adaptable for high-throughput screening (HTS) automation. Using an internally quenched 5-FAM/QXL 520 fluorescence resonance energy transfer (FRET) substrate containing the HCV NS3 peptide cleavage sequence, we report the development of a simple, mix-and-measure, homogenous, cell-based HCV infection assay amendable for HTS. This assay makes use of synchronized, nondividing human hepatoma-derived Huh7 cells, which support more-reproducible long-term HCV infection and can be readily scaled down to a 96-well-plate format. We demonstrate that this stable cell culture method eliminates common problems associated with standard cell-based HTS, such as cell culture variability, poor reproducibility, and low signal intensity. Importantly, this HCV FRET assay not only can identify inhibitors that act throughout the viral life cycle as effectively as more-standard HCV assays, such as real-time quantitative PCR and Western blot analysis, but also exhibits a high degree of accuracy with limited signal variation (i.e., Z' > or = 0.6), providing the basis for a robust HTS campaign for screening compound libraries and identifying novel HCV antivirals.
Collapse
|
7
|
Fluorescence resonance energy transfer-based assay for characterization of hepatitis C virus NS3-4A protease activity in live cells. Antimicrob Agents Chemother 2008; 53:728-34. [PMID: 19064890 DOI: 10.1128/aac.01029-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The NS3/4A protease from hepatitis C virus (HCV) plays a key role in viral replication. We report a system for monitoring the activity of this enzyme in single living mammalian cells. We constructed a fluorescence resonance energy transfer (FRET) probe that consists of an enhanced cyan fluorescent protein-citrine fusion, with a cleavage site for HCV NS3/4A protease embedded within the linker between them. Expression of the biosensor in mammalian cells resulted in a FRET signal, and cotransfection with the NS3/4A expression vector produced a significant reduction in FRET, indicating that the cleavage site was processed. Western blot and spectrofluorimetry analysis confirmed the physical cleavage of the fusion probe by the NS3/4A protease. As the level of FRET decay was a function of the protease activity, the system allowed testing of NS3/4A protease variants with different catalytic efficiencies. This FRET probe could be adapted for high-throughput screening of new HCV NS3/4 protease inhibitors.
Collapse
|