1
|
Nishiyama K, Maeki M, Ishida A, Tani H, Hisamoto H, Tokeshi M. Simple Approach for Fluorescence Signal Amplification Utilizing a Poly(vinyl alcohol)-Based Polymer Structure in a Microchannel. ACS OMEGA 2021; 6:8340-8345. [PMID: 33817494 PMCID: PMC8015073 DOI: 10.1021/acsomega.1c00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Analytical methods with fluorescence detection are in widespread use for detecting low abundance analytes. Here, we report a simple method for fluorescence signal amplification utilizing a structure of an azide-unit pendant water-soluble photopolymer (AWP) in a microchannel. The AWP is a poly(vinyl alcohol)-based photocross-linkable polymer, which is often used in biosensors. We determined that the wall-like structure of the AWP (AWP-wall) constructed in a microchannel functioned as an amplifier of a fluorescence signal. When a solution of fluorescent molecules was introduced into the microchannel having the AWP-wall, the fluorescent molecules accumulated inside the AWP-wall by diffusion. Consequently, the fluorescence intensity inside the AWP-wall increased locally. Among the fluorescent molecules considered in this paper, 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) (DDAO) showed the highest efficiency of fluorescence signal amplification. We prepared a calibration curve for DDAO using the fluorescence intensity inside the AWP-wall, and the sensitivity was 5-fold that for the microchannel without the AWP-wall. This method realizes the improved sensitivity of fluorescence detection easily because the fluorescence signal was amplified only by injecting the solution into the microchannel having the AWP-wall. Furthermore, since this method is not limited to only the use of microchannel, we expect it to be applicable in various fields.
Collapse
Affiliation(s)
- Keine Nishiyama
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Masatoshi Maeki
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiko Ishida
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirofumi Tani
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hideaki Hisamoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Osaka, Sakai 599-8531, Japan
| | - Manabu Tokeshi
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
- Innovative
Research Centre for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Institute
of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
2
|
Adewoye AB, Tampakis D, Follenzi A, Stolzing A. Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology 2020; 21:773-786. [PMID: 32776262 PMCID: PMC7541365 DOI: 10.1007/s10522-020-09893-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
It has been over half a century since cellular senescence was first noted and characterized, and yet no consensus senescent marker has been reliably established. This challenge is compounded by the complexity and heterogenic phenotypes of senescent cells. This necessitates the use of multiple biomarkers to confidently characterise senescent cells. Despite cytochemical staining of senescence associated-beta-galactosidase being a single marker approach, as well as being time and labour-intensive, it remains the most popular detection method. We have developed an alternative flow cytometry-based method that simultaneously quantifies multiple senescence markers at a single-cell resolution. In this study, we applied this assay to the quantification of both replicative and induced senescent primary cells. Using this assay, we were able to quantify the activity level of SA β-galactosidase, the expression level of p16INK4a and γH2AX in these cell populations. Our results show this flow cytometric approach to be sensitive, robust, and consistent in discriminating senescent cells in different cell senescence models. A strong positive correlation between these commonly- used senescence markers was demonstrated. The method described in this paper can easily be scaled up to accommodate high-throughput screening of senescent cells in applications such as therapeutic cell preparation, and in therapy-induced senescence following cancer treatment.
Collapse
Affiliation(s)
- Adeolu Badi Adewoye
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dimitris Tampakis
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK.,Division of Cancer Studies, King's College London, London, UK
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro,", 28100, Novara, Italy
| | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
3
|
Wu L, Wimmer N, Davies GJ, Ferro V. Structural insights into heparanase activity using a fluorogenic heparan sulfate disaccharide. Chem Commun (Camb) 2020; 56:13780-13783. [DOI: 10.1039/d0cc05932c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Crystal structures with human heparanase provide the first ever observation of a substrate in an activated 1S3 conformation.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry
- University of York
- York
- UK
| | - Norbert Wimmer
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | | | - Vito Ferro
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| |
Collapse
|
4
|
Padayachee ER, Adeola HA, Van Wyk JC, Nsole Biteghe FA, Chetty S, Khumalo NP, Barth S. Applications of SNAP-tag technology in skin cancer therapy. Health Sci Rep 2019; 2:e103. [PMID: 30809593 PMCID: PMC6375544 DOI: 10.1002/hsr2.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer treatment in the 21st century has seen immense advances in optical imaging and immunotherapy. Significant progress has been made in the bioengineering and production of immunoconjugates to achieve the goal of specifically targeting tumors. DISCUSSION In the 21st century, antibody drug conjugates (ADCs) have been the focus of immunotherapeutic strategies in cancer. ADCs combine the unique targeting of monoclonal antibodies (mAbs) with the cancer killing ability of cytotoxic drugs. However, due to random conjugation methods of drug to antibody, ADCs are associated with poor antigen specificity and low cytotoxicity, resulting in a drug to antibody ratio (DAR) >1. This means that the cytotoxic drugs in ADCs are conjugated randomly to antibodies, by cysteine or lysine residues. This generates heterogeneous ADC populations with 0 to 8 drugs per an antibody, each with distinct pharmacokinetic, efficacy, and toxicity properties. Additionally, heterogeneity is created not only by different antibody to ligand ratios but also by different sites of conjugation. Hence, much effort has been made to find and establish antibody conjugation strategies that enable us to better control stoichiometry and site-specificity. This includes utilizing protein self-labeling tags as fusion partners to the original protein. Site-specific conjugation is a significant characteristic of these engineered proteins. SNAP-tag is one such engineered self-labeling protein tag shown to have promising potential in cancer treatment. The SNAP-tag is fused to an antibody of choice and covalently reacts specifically in a 1:1 ratio with benzylguanine (BG) substrates, eg, fluorophores or photosensitizers, to target skin cancer. This makes SNAP-tag a versatile technique in optical imaging and photoimmunotherapy of skin cancer. CONCLUSION SNAP-tag technology has the potential to contribute greatly to a broad range of molecular oncological applications because it combines efficacious tumor targeting, minimized local and systemic toxicity, and noninvasive assessment of diagnostic/prognostic molecular biomarkers of cancer.
Collapse
Affiliation(s)
- Eden Rebecca Padayachee
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Henry Ademola Adeola
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Jennifer Catherine Van Wyk
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Fleury Augustine Nsole Biteghe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Shivan Chetty
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla Patience Khumalo
- The Hair and Skin Research Lab, Division of Dermatology, Department of Medicine, Faculty of Health SciencesUniversity of Cape Town and Groote Schuur HospitalCape TownSouth Africa
| | - Stefan Barth
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
5
|
Wiens MD, Campbell RE. Surveying the landscape of optogenetic methods for detection of protein-protein interactions. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1415. [PMID: 29334187 PMCID: PMC5902417 DOI: 10.1002/wsbm.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
Abstract
Mapping the protein-protein interaction (PPi) landscape is of critical importance to furthering our understanding how cells and organisms function. Optogenetic methods, that is, approaches that utilize genetically encoded fluorophores or fluorogenic enzyme reactions, uniquely enable the visualization of biochemical phenomena in live cells with high spatial and temporal accuracy. Applying optogenetic methods to the detection of PPis requires the engineering of protein-based systems in which an optical signal undergoes a substantial change when the two proteins of interest interact. In recent years, researchers have developed a number of creative and effective optogenetic methods that achieve this goal, and used them to further elaborate our map of the PPi landscape. In this review, we provide an introduction to the general principles of optogenetic PPi detection, and then provide a number of representative examples of how these principles have been applied. We have organized this review by categorizing methods based on whether the signal generated is reversible or irreversible in nature, and whether the signal is localized or nonlocalized at the subcellular site of the PPi. We discuss these techniques giving both their benefits and drawbacks to enable rational choices about their potential use. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Matthew D. Wiens
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada
| |
Collapse
|
6
|
Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J Mater Chem B 2017; 5:1971-1979. [PMID: 32263951 DOI: 10.1039/c6tb03361j] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of highly sensitive assays for glycosidases is of critical significance to understand their functions, facilely detect associated diseases and screen potential new drugs. In this work, we develop a universal assay strategy for glycosidase enzymes and inhibitor screening based on functional carbon quantum dots through a combined host-guest recognition and specific static quenching-induced signal transduction mechanism. This detection strategy is established in terms of the following facts: (1) β-cyclodextrin as a perfect host can selectively associate with p-nitrophenol due to its hydrophobic character and right size match of the cavity, which renders specific binding between β-cyclodextrin and p-nitrophenol via a host-guest recognition. (2) The formation of an inclusion complex between β-cyclodextrin modified carbon quantum dots (β-CD-CQDs) and p-nitrophenol results in fluorescence quenching with a high quenching efficiency due to the static quenching mechanism. Glycoconjugates of p-nitrophenol as the substrates could be rapidly hydrolyzed to corresponding glycose and p-nitrophenol in the presence of specific glycosidase, and the resulting p-nitrophenol induces the following host-guest interaction and static quenching leading to a change in the fluorescence signal. The activity of different glycosidase enzymes could be evaluated in the same way as long as the glycosyl unit of glycosylated substrates was changed. Here we take β-galactosidase as an example to demonstrate the applicability of the proposed detection strategy because it can act as a molecular target for primary ovarian cancers. A highly sensitive assay for β-galactosidase activity in terms of linear correlation of the fluorescence change with the β-galactosidase level was established with a low detection limit of 0.6 U L-1. Its function of inhibitor screening was also assessed by using d-galactal as the inhibitor for β-galactosidase, and the positive results indicated its feasibility to screen potential inhibitors. It is also illustrated that the nanoprobe possesses excellent biocompatibility, and can sensitively monitor the intracellular β-galactosidase level in ovarian cancer cells. This work provides a general detection method for glycosidase activity, demonstrates its applicability of monitoring the enzyme level in living cells, and broadens fluorogenic probes in fluorescence-guided diagnostics.
Collapse
Affiliation(s)
- Cong Tang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | |
Collapse
|
7
|
Besson V, Kyryachenko S, Janich P, Benitah SA, Marazzi G, Sassoon D. Expression Analysis of the Stem Cell Marker Pw1/Peg3 Reveals a CD34 Negative Progenitor Population in the Hair Follicle. Stem Cells 2016; 35:1015-1027. [PMID: 27862634 DOI: 10.1002/stem.2540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/10/2016] [Accepted: 10/16/2016] [Indexed: 12/30/2022]
Abstract
Pw1/Peg3 is a parentally imprinted gene expressed in adult stem cells in every tissue thus far examined including the stem cells of the hair follicle. Using a Pw1/Peg3 reporter mouse, we carried out a detailed dissection of the stem cells in the bulge, which is a major stem cell compartment of the hair follicle in mammalian skin. We observed that PW1/Peg3 expression initiates upon placode formation during fetal development, coincident with the establishment of the bulge stem cells. In the adult, we observed that PW1/Peg3 expression is found in both CD34+ and CD34- populations of bulge stem cells. We demonstrate that both populations can give rise to new hair follicles, reconstitute their niche, and self-renew. These results demonstrate that PW1/Peg3 is a reliable marker of the full population of follicle stem cells and reveal a novel CD34- bulge stem-cell population. Stem Cells 2017;35:1015-1027.
Collapse
Affiliation(s)
- Vanessa Besson
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), UMRS 1166 INSERM, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Sergiy Kyryachenko
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), UMRS 1166 INSERM, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Peggy Janich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador A Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), UMRS 1166 INSERM, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), UMRS 1166 INSERM, University of Pierre and Marie Curie Paris VI, Paris, France
| |
Collapse
|
8
|
Affiliation(s)
- Amy C Flor
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- Ludwig Center for Metastasis Research, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Burke HM, Gunnlaugsson T, Scanlan EM. Recent advances in the development of synthetic chemical probes for glycosidase enzymes. Chem Commun (Camb) 2015; 51:10576-88. [PMID: 26051717 DOI: 10.1039/c5cc02793d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of synthetic glycoconjugates as chemical probes for the detection of glycosidase enzymes has resulted in the development of a range of useful chemical tools with applications in glycobiology, biotechnology, medical and industrial research. Critical to the function of these probes is the preparation of substrates containing a glycosidic linkage that when activated by a specific enzyme or group of enzymes, irreversibly releases a reporter molecule that can be detected. Starting from the earliest examples of colourimetric probes, increasingly sensitive and sophisticated substrates have been reported. In this review we present an overview of the recent advances in this field, covering an array of strategies including chromogenic and fluorogenic substrates, lanthanide complexes, gels and nanoparticles. The applications of these substrates for the detection of various glycosidases and the scope and limitations for each approach are discussed.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | | | | |
Collapse
|
10
|
Manibalan K, Mani V, Huang CH, Huang ST, Chang PC. A new electrochemical substrate for rapid and sensitive in vivo monitoring of β-galactosidase gene expressions. Analyst 2015; 140:6040-6. [DOI: 10.1039/c5an01036e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical assay platform based on 4-MPGal for the monitoring of β-galactosidase expressions.
Collapse
Affiliation(s)
- Kesavan Manibalan
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Republic of China
| | - Veerappan Mani
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Republic of China
| | - Chih-Hung Huang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Republic of China
- Institute of Biochemical and Biomedical Engineering
| | - Sheng-Tung Huang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Republic of China
- Institute of Biochemical and Biomedical Engineering
| | - Pu-Chieh Chang
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 10608
- Republic of China
- Institute of Biochemical and Biomedical Engineering
| |
Collapse
|
11
|
Převorovský M. pREPORT: a multi-readout transcription reporter vector for fission yeast. Yeast 2014; 32:327-34. [PMID: 25395321 DOI: 10.1002/yea.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
Transcription factors are prominent regulators of gene expression that execute responses to various intracellular and extracellular stimuli. Recombinant transcription reporter systems can be conveniently used to study the DNA binding preferences and regulatory activity of a transcription factor under a range of conditions. Several reporter genes have been used to study transcription regulation in the fission yeast Schizosaccharomyces pombe. Each of these reporters has distinct advantages, such as high sensitivity or ease of use, and limitations, such as prohibitive costs or use of hazardous substances. To combine the strengths and mitigate the weaknesses of individual reporter genes, we have created pREPORT, a flexible multi-readout transcription reporter vector for fission yeast that employs an enhanced GFP-lacZ fusion and a customizable minimal promoter. With pREPORT, gene expression driven by the transcription factor of interest can be quantified in a number of ways, both in live cells and in vitro, using a single reporter construct.
Collapse
Affiliation(s)
- Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
A rapid and sensitive fluorimetric β-galactosidase assay for coliform detection using chlorophenol red-β-d-galactopyranoside. Anal Bioanal Chem 2014; 406:5395-403. [DOI: 10.1007/s00216-014-7935-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
13
|
Li J, Ren S, Han S, Li N. A yeast bioassay for direct measurement of thyroid hormone disrupting effects in water without sample extraction, concentration, or sterilization. CHEMOSPHERE 2014; 100:139-45. [PMID: 24355165 DOI: 10.1016/j.chemosphere.2013.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/16/2013] [Accepted: 11/22/2013] [Indexed: 05/16/2023]
Abstract
The present study introduces an improved yeast bioassay for rapid yet sensitive evaluation of thyroid hormone disruption at the level of thyroid receptor (TR) in environmental water samples. This assay does not require water sample preparation and thus requires very little hands-on time. Based on different β-galactosidase substrates, two modified bioassays, a colorimetric bioassay and a chemiluminescent bioassay, were developed. The compounds tested included the known thyroid hormone 3,3',5-triiodo-l-thyronine (T3), the specific TR antagonist amiodarone hydrochloride (AH) and phthalate esters (PAEs), which potentially disrupt thyroid hormone signaling. The EC50 values for T3 were similar to those previously obtained using a 96-well plate bioassay. TR antagonism by AH was studied in the presence of 2.5 × 10(-7)M T3, and the concentration producing 20% of the maximum effect (RIC20) for AH was 3.1 × 10(-7)M and 7.8 × 10(-9)M for the colorimetric bioassay and chemiluminescent bioassay, respectively. None of the tested PAEs induced β-galactosidase expression, but diethylhexyl phthalate, benzyl butyl phthalate and dibutyl phthalate demonstrated TR antagonism. Furthermore, water samples collected from Guanting reservoir in Beijing were evaluated. Although TR agonism was not observed, antagonism was detected in all water samples and is expressed as AH equivalents. The toxicology equivalent quantity values obtained by the chemiluminescent bioassay ranged from 21.2 ± 1.6 to 313.9 ± 28.8 μg L(-1) AH, and similar values were obtained for the colorimetric bioassay. The present study shows that the modified yeast bioassay can be used as a valuable tool for quantification of thyroid hormone disrupting effects in environmental water samples.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Shujuan Ren
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaolun Han
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Li
- Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Abstract
Interactions among neighboring cells underpin many physiological processes ranging from early development to immune responses. When these interactions do not function properly, numerous pathologies, including infection and cancer, can result. Molecular imaging technologies, especially optical imaging, are uniquely suited to illuminate complex cellular interactions within the context of living tissues in the body. However, no tools yet exist that allow the detection of microscopic events, such as two cells coming into close proximity, on a global, whole-animal scale. We report here a broadly applicable, longitudinal strategy for probing interactions among cells in living subjects. This approach relies on the generation of bioluminescent light when two distinct cell populations come into close proximity, with the intensity of the optical signal correlating with relative cellular location. We demonstrate the ability of this reporter strategy to gauge cell-cell proximity in culture models in vitro and then evaluate this approach for imaging tumor-immune cell interactions using a murine breast cancer model. In these studies, our imaging strategy enabled the facile visualization of features that are otherwise difficult to observe with conventional imaging techniques, including detection of micrometastatic lesions and potential sites of tumor immunosurveillance. This proximity reporter will facilitate probing of numerous types of cell-cell interactions and will stimulate the development of similar techniques to detect rare events and pathological processes in live animals.
Collapse
|
15
|
Li W, Zhao X, Zou S, Ma Y, Zhang K, Zhang M. Scanning assay of β-galactosidase activity. APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812060075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Gong H, Cradduck M, Cheung L, Olive DM. Development of a near-infrared fluorescence ELISA method using tyramide signal amplification. Anal Biochem 2012; 426:27-9. [PMID: 22490466 DOI: 10.1016/j.ab.2012.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
In this study, we applied tyramide signal amplification (TSA) to fluorescence enzyme-linked immunosorbent assay (ELISA) employing horseradish peroxidase (HRP) as the detection enzyme. When used with a human epidermal growth factor ELISA kit, the TSA method led to a >100-fold increase in fluorescence signal intensity in comparison to an unamplified method. It also showed wider dynamic range and better sensitivity compared to a conventional method using tetramethylbenzidine as the HRP substrate.
Collapse
|
17
|
Gong H, Kovar JL, Baker B, Zhang A, Cheung L, Draney DR, Corrêa IR, Xu MQ, Olive DM. Near-infrared fluorescence imaging of mammalian cells and xenograft tumors with SNAP-tag. PLoS One 2012; 7:e34003. [PMID: 22479502 PMCID: PMC3316518 DOI: 10.1371/journal.pone.0034003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in the near-infrared (NIR) spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAP(f) is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG) substrate, leading to covalent attachment of the fluorescent dye to the SNAP(f). This property makes SNAP(f) a valuable tool for fluorescence imaging. The NIR fluorescent substrate BG-800, a conjugate between BG and IRDye 800CW, was synthesized and characterized in this study. HEK293, MDA-MB-231 and SK-OV-3 cells stably expressing SNAP(f)-Beta-2 adrenergic receptor (SNAP(f)-ADRβ2) fusion protein were created. The ADRβ2 portion of the protein directs the localization of the protein to the cell membrane. The expression of SNAP(f)-ADRβ2 in the stable cell lines was confirmed by the reaction between BG-800 substrate and cell lysates. Microscopic examination confirmed that SNAP(f)-ADRβ2 was localized on the cell membrane. The signal intensity of the labeled cells was dependent on the BG-800 concentration. In vivo imaging study showed that BG-800 could be used to visualize xenograph tumors expressing SNAP(f)-ADRβ2. However, the background signal was relatively high, which may be a reflection of non-specific accumulation of BG-800 in the skin. To address the background issue, quenched substrates that only fluoresce upon reaction with SNAP-tag were synthesized and characterized. Although the fluorescence was successfully quenched, in vivo imaging with the quenched substrate CBG-800-PEG-QC1 failed to visualize the SNAP(f)-ADRβ2 expressing tumor, possibly due to the reduced reaction rate. Further improvement is needed to apply this system for in vivo imaging.
Collapse
Affiliation(s)
- Haibiao Gong
- LI-COR Biosciences, Lincoln, Nebraska, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alkaline phosphatase assay using a near-infrared fluorescent substrate merocyanine 700 phosphate. Talanta 2011; 84:941-6. [DOI: 10.1016/j.talanta.2011.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/24/2022]
|
19
|
Napp J, Mathejczyk JE, Alves F. Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatr Radiol 2011; 41:161-75. [PMID: 21221568 PMCID: PMC3032188 DOI: 10.1007/s00247-010-1907-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/20/2010] [Accepted: 10/10/2010] [Indexed: 12/30/2022]
Abstract
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue.
Collapse
Affiliation(s)
- Joanna Napp
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Julia E. Mathejczyk
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
20
|
In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 2010; 12:139-49. [PMID: 20126472 DOI: 10.1593/neo.91446] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/02/2009] [Accepted: 12/07/2009] [Indexed: 12/27/2022] Open
Abstract
Overexpression of epidermal growth factor receptor (EGFR) is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff) with a near-infrared (NIR) dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800) in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2)-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors.
Collapse
|
21
|
Broome AM, Bhavsar N, Ramamurthy G, Newton G, Basilion JP. Expanding the utility of beta-galactosidase complementation: piece by piece. Mol Pharm 2010; 7:60-74. [PMID: 19899815 PMCID: PMC2835542 DOI: 10.1021/mp900188e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to image and quantify multiple biomarkers in disease necessitates the development of split reporter fragment platforms. We have divided the beta-galactosidase enzyme into unique, independent polypeptides that are able to reassemble and complement enzymatic activity in bacteria and in mammalian cells. We created two sets of complementing pairs that individually have no enzymatic activity. However, when brought into close geometric proximity, the complementing pairs associated resulting in detectable enzymatic activity. We then constructed a stable ligand complex composed of reporter fragment, linker, and targeting moiety. The targeting moiety, in this case a ligand, allowed cell surface receptor targeting in vitro. Further, we were able to simultaneously visualize two cell surface receptors implicated in cancer development, epidermal growth factor receptor and transferrin receptor, using complementing pairs of the ligand-reporter fragment complex.
Collapse
Affiliation(s)
- Ann-Marie Broome
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Dermatology, Case Western Reserve University
| | - Nihir Bhavsar
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gopal Ramamurthy
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| | - Gail Newton
- Department of Pathology at Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - James P. Basilion
- Department of Biomedical Engineering, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
- Department of Radiology, Case Center for Imaging Research and National Foundation for Cancer Research Center for Molecular Imaging, Case Western Reserve University
| |
Collapse
|
22
|
Auld D, Simeonov A, Thomas C. Literature Search and Review. Assay Drug Dev Technol 2009. [DOI: 10.1089/adt.2009.9995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Doug Auld
- National Institutes of Health, Bethesda, Maryland
| | | | - Craig Thomas
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|