1
|
Larson NR, Bou-Assaf GM, Laue TM, Berkowitz SA. Using absorbance detection for hs-SV-AUC characterization of adeno-associated virus. Anal Biochem 2024; 694:115617. [PMID: 39019206 DOI: 10.1016/j.ab.2024.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Data are presented demonstrating that absorbance detection can be used during high-speed sedimentation velocity analytical ultracentrifugation (hs-SV-AUC) experiments to characterize the size distribution of adeno-associated virus (AAV) drug products accurately. Advantages and limitations of being able to use this detector in this specific type of SV-AUC experiment are discussed.
Collapse
Affiliation(s)
- Nicholas R Larson
- Analytical Development, Biogen, 225 Binney St, Cambridge, MA, 02142, USA
| | - George M Bou-Assaf
- Analytical Development, Biogen, 225 Binney St, Cambridge, MA, 02142, USA
| | - Thomas M Laue
- Carpenter Professor Emeritus, University of New Hampshire, 10 Kelsey Road, Lee, NH, 03861, USA
| | | |
Collapse
|
2
|
Qin X, Yu Q, Li X, Jiang W, Shi X, Hou W, Zhang D, Cai Z, Bi H, Fan W, Ding Y, Yang Y, Dong B, Chen L, Huo D, Wang C, Zhou Y, Pei D, Ye M, Liang C. Methodological Validation of Sedimentation Velocity Analytical Ultracentrifugation Method for Adeno-Associated Virus and Collaborative Calibration of System Suitability Substance. Hum Gene Ther 2024; 35:401-411. [PMID: 38717948 DOI: 10.1089/hum.2023.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Currently, adeno-associated virus (AAV) is one of the primary gene delivery vectors in gene therapy, facilitating long-term in vivo gene expression. Despite being imperative, it is incredibly challenging to precisely assess AAV particle distribution according to the sedimentation coefficient and identify impurities related to capsid structures. This study performed the systematic methodological validation of quantifying the AAV empty and full capsid ratio. This includes specificity, accuracy, precision, linearity, and parameter variables involving the sedimentation velocity analytical ultracentrifugation (SV-AUC) method. Specifically, SV-AUC differentiated among the empty, partial, full, and high sedimentation coefficient substance (HSCS) AAV particles while evaluating their sedimentation heterogeneity. The intermediate precision analysis of HE (high percentage of empty capsid) and HF (high percentage of full capsid) samples revealed that the specific species percentage, such as empty or full, was more significant than 50%. Moreover, the relative standard deviation (RSD) could be within 5%. Even for empty or partially less than 15%, the RSD could be within 10%. The accuracy recovery rates of empty capsid were between 103.9% and 108.7% across three different mixtures. When the measured percentage of specific species was more significant than 14%, the recovery rate was between 77.9% and 106.6%. Linearity analysis revealed an excellent linear correlation between the empty, partial, and full in the HE samples. The AAV samples with as low as 7.4 × 1011 cp/mL AAV could be accurately quantified with SV-AUC. The parameter variable analyses revealed that variations in cell alignment significantly affected the overall results. Still, the detection wavelength of 235 nm slightly influenced the empty, partial, and full percentages. Minor detection wavelength changes showed no impact on the sedimentation coefficient of these species. However, the temperature affected the measured sedimentation coefficient. These results validated the SV-AUC method to quantify AAV. This study provides solutions to AAV empty and full capsid ratio quantification challenges and the subsequent basis for calibrating the AAV empty capsid system suitability substance. Because of the AAV structure and potential variability complexity in detection, we jointly calibrated empty capsid system suitability substance with three laboratories to accurately detect the quantitative AAV empty and full capsid ratio. The empty capsid system suitability substance could be used as an external reference to measure the performance of the instrument. The results could be compared with multiple QC (quality control) laboratories based on the AAV vector and calibration accuracy. This is crucial for AUC to be used for QC release and promote gene therapy research worldwide.
Collapse
Affiliation(s)
- Xi Qin
- National Institutes for Food and Drug Control, Beijing, China
| | - Qikun Yu
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Xiang Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Wei Jiang
- Belief BioMed Inc., Shanghai, Republic of China
| | - Xinchang Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Wenxiu Hou
- Belief BioMed Inc., Shanghai, Republic of China
| | - Da Zhang
- Skyline Therapeutics (Shanghai) Co., Ltd., Shanghai, Republic of China
| | | | - Hua Bi
- National Institutes for Food and Drug Control, Beijing, China
| | - Wenhong Fan
- National Institutes for Food and Drug Control, Beijing, China
| | - Youxue Ding
- National Institutes for Food and Drug Control, Beijing, China
| | - Yichen Yang
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Biao Dong
- Sichuan Real & Best Biotech Co., Ltd., Chengdu, Republic of China
| | - Long Chen
- Wuhan Neurophth Biotechnology Limited Company, Wuhan, Republic of China
| | - Dehua Huo
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Cong Wang
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Yong Zhou
- National Institutes for Food and Drug Control, Beijing, China
| | - Dening Pei
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Ye
- Beckman Coulter, Inc., Shanghai, Republic of China
| | - Chenggang Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
3
|
Farzam F, Dabirmanesh B. Experimental techniques for detecting and evaluating the amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:183-227. [PMID: 38811081 DOI: 10.1016/bs.pmbts.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Amyloid fibrils are insoluble proteins with intricate β-sheet structures associated with various human diseases, including Parkinson's, Alzheimer's, and prion diseases. Proteins can form aggregates when their structure is misfolded, resulting in highly organized amyloid fibrils or amorphous aggregates. The formation of protein aggregates is a promising research field for mitigating diseases and the pharmaceutical and food industries. It is important to monitor and minimize the appearance of aggregates in these protein products. Several methods exist to assess protein aggregation, that includes from basic investigations to advanced biophysical techniques. Physicochemical parameters such as molecular weight, conformation, structure, and dimension are examined to study aggregation. There is an urgent need to develop methods for the detection of protein aggregation and amyloid fibril formation both in vitro and in vivo. This chapter focuses on a comprehensive discussion of the methods used to characterize and evaluate aggregates and amyloid fibrils.
Collapse
Affiliation(s)
- Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Liu J, Mao F, Chen J, Lu S, Qi Y, Sun Y, Fang L, Yeung ML, Liu C, Yu G, Li G, Liu X, Yao Y, Huang P, Hao D, Liu Z, Ding Y, Liu H, Yang F, Chen P, Sa R, Sheng Y, Tian X, Peng R, Li X, Luo J, Cheng Y, Zheng Y, Lin Y, Song R, Jin R, Huang B, Choe H, Farzan M, Yuen KY, Tan W, Peng X, Sui J, Li W. An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants. Nat Commun 2023; 14:5191. [PMID: 37626079 PMCID: PMC10457309 DOI: 10.1038/s41467-023-40933-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Many of the currently available COVID-19 vaccines and therapeutics are not effective against newly emerged SARS-CoV-2 variants. Here, we developed the metallo-enzyme domain of angiotensin converting enzyme 2 (ACE2)-the cellular receptor of SARS-CoV-2-into an IgM-like inhalable molecule (HH-120). HH-120 binds to the SARS-CoV-2 Spike (S) protein with high avidity and confers potent and broad-spectrum neutralization activity against all known SARS-CoV-2 variants of concern. HH-120 was developed as an inhaled formulation that achieves appropriate aerodynamic properties for rodent and monkey respiratory system delivery, and we found that early administration of HH-120 by aerosol inhalation significantly reduced viral loads and lung pathology scores in male golden Syrian hamsters infected by the SARS-CoV-2 ancestral strain (GDPCC-nCoV27) and the Delta variant. Our study presents a meaningful advancement in the inhalation delivery of large biologics like HH-120 (molecular weight (MW) ~ 1000 kDa) and demonstrates that HH-120 can serve as an efficacious, safe, and convenient agent against SARS-CoV-2 variants. Finally, given the known role of ACE2 in viral reception, it is conceivable that HH-120 has the potential to be efficacious against additional emergent coronaviruses.
Collapse
Affiliation(s)
- Juan Liu
- National Institute of Biological Sciences, Beijing, China
- Huahui Health Ltd, Beijing, China
| | | | | | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | | | - Yinyan Sun
- National Institute of Biological Sciences, Beijing, China
| | - Linqiang Fang
- National Institute of Biological Sciences, Beijing, China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | | | | | | | - Ximing Liu
- National Institute of Biological Sciences, Beijing, China
| | | | | | | | | | - Yu Ding
- Huahui Health Ltd, Beijing, China
| | | | | | - Pan Chen
- Huahui Health Ltd, Beijing, China
| | - Rigai Sa
- Huahui Health Ltd, Beijing, China
| | - Yao Sheng
- National Institute of Biological Sciences, Beijing, China
| | - Xinxin Tian
- National Institute of Biological Sciences, Beijing, China
| | - Ran Peng
- Huahui Health Ltd, Beijing, China
| | - Xue Li
- Huahui Health Ltd, Beijing, China
| | | | | | | | | | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Baoying Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hyeryun Choe
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Michael Farzan
- Department of Immunology and Microbiology, Scripps Research, Jupiter, FL, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Bepperling A, Best J. Comparison of three AUC techniques for the determination of the loading status and capsid titer of AAVs. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:401-413. [PMID: 37245172 DOI: 10.1007/s00249-023-01661-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Due to the rise of adeno-associated viruses (AAVs) as gene therapy delivery vectors, boundary sedimentation velocity analytical ultracentrifugation (boundary SV-AUC) has been developed into a widely used quality control assay even for release analytics. It can be considered as the "gold standard" for the determination of the loading status of empty, partially filled, and full capsids especially when conducted in multiwavelength (MWL) mode. It can be considered to provide the most accurate determination of the loading status, and it also provides information on the capsid titer, aggregates, and potential contaminants such as free DNA. MWL boundary SV-AUC can be regarded as a multi-attribute (MAM) method for the characterization of AAVs. One major drawback of the method is the high sample consumption both in terms of concentration and volume. Here, we compare two alternative AUC techniques, band SV-AUC and analytical CsCl density gradient sedimentation equilibrium AUC (CsCl SE-AUC) with the boundary SV-AUC and the MWL-SV-AUC experiment. Our data show a high consistency of the determined full/empty ratios between these techniques if the appropriate wavelengths and extinction coefficients are used.
Collapse
Affiliation(s)
| | - Janine Best
- Novartis TRD, Keltenring 1+3, 82041, Oberhaching, Germany
| |
Collapse
|
6
|
Bepperling A, Richter G. Determination of mRNA copy number in degradable lipid nanoparticles via density contrast analytical ultracentrifugation. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:393-400. [PMID: 37289289 PMCID: PMC10248324 DOI: 10.1007/s00249-023-01663-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Lipid nanoparticles as delivery system for mRNA have recently attracted attention to a broader audience as COVID-19 mRNA vaccines. Their low immunogenicity and capability to deliver a variety of nucleic acids renders them an interesting and complementary alternative to gene therapy vectors like AAVs. An important quality attribute of LNPs is the copy number of the encapsulated cargo molecule. This work describes how density and molecular weight distributions obtained by density contrast sedimentation velocity can be used to calculate the mRNA copy number of a degradable lipid nanoparticle formulation. The determined average copy number of 5 mRNA molecules per LNP is consistent with the previous studies using other biophysical techniques, such as single particle imaging microscopy and multi-laser cylindrical illumination confocal spectroscopy (CICS).
Collapse
Affiliation(s)
| | - Gesa Richter
- Novartis TRD, Keltenring 1+3, 82041, Oberhaching, Germany
| |
Collapse
|
7
|
Bou-Assaf GM, Budyak IL, Brenowitz M, Day ES, Hayes D, Hill J, Majumdar R, Ringhieri P, Schuck P, Lin JC. Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation. J Pharm Sci 2022; 111:2121-2133. [PMID: 34986360 DOI: 10.1016/j.xphs.2021.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022]
Abstract
Analytical ultracentrifugation (AUC) is a critical analytical tool supporting the development and manufacture of protein therapeutics. AUC is routinely used as an assay orthogonal to size exclusion chromatography for aggregate quantitation. This article distills the experimental and analysis procedures used by the authors for sedimentation velocity AUC into a series of best-practices considerations. The goal of this distillation is to help harmonize aggregate quantitation approaches across the biopharmaceutical industry. We review key considerations for sample and instrument suitability, experimental design, and data analysis best practices and conversely, highlight potential pitfalls to accurate aggregate analysis. Our goal is to provide experienced users benchmarks against which they can standardize their analyses and to provide guidance for new AUC analysts that will aid them to become proficient in this fundamental technique.
Collapse
Affiliation(s)
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Eric S Day
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080
| | - David Hayes
- IntlSoSci, 23 Washington St., Gorham, NH 03581
| | - John Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Ranajoy Majumdar
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paola Ringhieri
- Analytical Development Biotech Department, Merck Serono S.p.a, Guidonia, RM, Italy; an affiliate of Merck KGaA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Bethesda, MD 20892
| | - Jasper C Lin
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
8
|
Zhao H, Nguyen A, To SC, Schuck P. Calibrating analytical ultracentrifuges. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:353-362. [PMID: 33398460 PMCID: PMC8192337 DOI: 10.1007/s00249-020-01485-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/28/2022]
Abstract
Analytical ultracentrifugation (AUC) is based on the concept of recording and analyzing macroscopic macromolecular redistribution that results from a centrifugal force acting on the mass of suspended macromolecules in solution. Since AUC rests on first principles, it can provide an absolute measurement of macromolecular mass, sedimentation and diffusion coefficients, and many other quantities, provided that the solvent density and viscosity are known, and provided that the instrument is properly calibrated. Unfortunately, a large benchmark study revealed that many instruments exhibit very significant systematic errors. This includes the magnification of the optical detection system used to determine migration distance, the measurement of sedimentation time, and the measurement of the solution temperature governing viscosity. We have previously developed reference materials, tools, and protocols to detect and correct for systematic measurement errors in the AUC by comparison with independently calibrated standards. This 'external calibration' resulted in greatly improved precision and consistency of parameters across laboratories. Here we detail the steps required for calibration of the different data dimensions in the AUC. We demonstrate the calibration of three different instruments with absorbance and interference optical detection, and use measurements of the sedimentation coefficient of NISTmAb monomer as a test of consistency. Whereas the measured uncorrected sedimentation coefficients span a wide range from 6.22 to 6.61 S, proper calibration resulted in a tenfold reduced standard deviation of sedimentation coefficients. The calibrated relative standard deviation and mean error of 0.2% and 0.07%, respectively, is comparable with statistical errors and side-by-side repeatability in a single instrument.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Samuel C To
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Gimpel AL, Katsikis G, Sha S, Maloney AJ, Hong MS, Nguyen TNT, Wolfrum J, Springs SL, Sinskey AJ, Manalis SR, Barone PW, Braatz RD. Analytical methods for process and product characterization of recombinant adeno-associated virus-based gene therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:740-754. [PMID: 33738328 PMCID: PMC7940698 DOI: 10.1016/j.omtm.2021.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The optimization of upstream and downstream processes for production of recombinant adeno-associated virus (rAAV) with consistent quality depends on the ability to rapidly characterize critical quality attributes (CQAs). In the context of rAAV production, the virus titer, capsid content, and aggregation are identified as potential CQAs, affecting the potency, purity, and safety of rAAV-mediated gene therapy products. Analytical methods to measure these attributes commonly suffer from long turnaround times or low throughput for process development, although rapid, high-throughput methods are beginning to be developed and commercialized. These methods are not yet well established in academic or industrial practice, and supportive data are scarce. Here, we review both established and upcoming analytical methods for the quantification of rAAV quality attributes. In assessing each method, we highlight the progress toward rapid, at-line characterization of rAAV. Furthermore, we identify that a key challenge for transitioning from traditional to newer methods is the scarcity of academic and industrial experience with the latter. This literature review serves as a guide for the selection of analytical methods targeting quality attributes for rapid, high-throughput process characterization during process development of rAAV-mediated gene therapies.
Collapse
Affiliation(s)
- Andreas L Gimpel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sha Sha
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew John Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Moo Sun Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tam N T Nguyen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jacqueline Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Doyle BL, Rauk AP, Weiss WF, Budyak IL. Quantitation of soluble aggregates by sedimentation velocity analytical ultracentrifugation using an optical alignment system - Aspects of method validation. Anal Biochem 2020; 605:113837. [PMID: 32702436 DOI: 10.1016/j.ab.2020.113837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/27/2022]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) is routinely used for quantitation of soluble aggregates as an orthogonal technique to size-exclusion chromatography (SEC). SV-AUC presents many advantages over the SEC, yet lower precision of aggregate quantitation by SV-AUC often complicates comparison between aggregate values generated by these techniques and subsequent decision making. In an earlier report, we described the development of an optical alignment (OA) system and evaluated the intermediate precision of aggregate quantitation offered by the OA. Here, we determine the limit of detection (LOD) and limit of quantitation (LOQ) which can be achieved with the OA. For a common setup using three cells, the improvement lent by the OA system is almost 2.5-fold compared to the earlier reported limits. In addition, we estimate the contribution of the fitting variability and compare options to further increase the precision of aggregate quantitation by SV-AUC.
Collapse
Affiliation(s)
- Brandon L Doyle
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Adam P Rauk
- Global Statistical Sciences, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - William F Weiss
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| |
Collapse
|
11
|
Gabrielson JP, Kendrick BS, Young JA. Universal Qualification of Analytical Procedures for Characterization and Control of Biologics. J Pharm Sci 2020; 109:2413-2425. [PMID: 32470347 DOI: 10.1016/j.xphs.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
A diverse set of analytical tools is required to characterize the complex structural properties of biopharmaceutical products and to ensure their quality, stability, safety, and efficacy. It is generally necessary to demonstrate that such tools are capable of measuring one or more intended attribute(s) of the product with a desired degree of precision, accuracy, linearity, specificity and sensitivity. Here we present a general framework upon which experiments may be designed to establish analytical procedure performance, predicated on the hypothesis that many analytical procedures have universal performance characteristics - that is, the validity of the measured result is a function of the measurement system and data characteristics and is not a function of the specific analyte being measured. Using simulated data, we demonstrate that the generalized approach improves the scientific validity of resulting descriptions of procedure performance by reducing the incidence of false failures and missed faults during future use of the procedure. Broad adoption of these principles will facilitate an improved understanding of procedure performance characteristics while requiring fewer human resources for procedure qualification studies.
Collapse
Affiliation(s)
- John P Gabrielson
- KBI Biopharma, Inc., 1450 Infinite Drive, Louisville, Colorado 80027.
| | - Brent S Kendrick
- KBI Biopharma, Inc., 1450 Infinite Drive, Louisville, Colorado 80027
| | - Jared A Young
- KBI Biopharma, Inc., 1450 Infinite Drive, Louisville, Colorado 80027
| |
Collapse
|
12
|
Siddiqi MK, Malik S, Majid N, Alam P, Khan RH. Cytotoxic species in amyloid-associated diseases: Oligomers or mature fibrils. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:333-369. [PMID: 31928731 DOI: 10.1016/bs.apcsb.2019.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid diseases especially, Alzheimer's disease (AD), is characterized by an imbalance between the production and clearance of amyloid-β (Aβ) species. Amyloidogenic proteins or peptides can transform structurally from monomers into β-stranded fibrils via multiple oligomeric states. Among various amyloid species, structured oligomers are proposed to be more toxic than fibrils; however, the identification of amyloid oligomers has been challenging due to their heterogeneous and metastable nature. Multiple techniques have recently helped in better understanding of oligomer's assembly details and structural properties. Moreover, some progress on elucidating the mechanisms of oligomer-triggered toxicity has been made. Based on the collection of current findings, there is growing consensus that control of toxic amyloid oligomers could be a valid approach to regulate amyloid-associated toxicity, which could advance development of new diagnostics and therapeutics for amyloid-related diseases. In this review, we have described the recent scenario of amyloid diseases with a great deal of information about the recent understanding of oligomers' assembly, structural properties, and toxicity. Also comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates.
Collapse
Affiliation(s)
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
13
|
Abstract
Amyloid diseases are of major concern all over the world due to a number of factors including: (i) aging population, (ii) increasing life span and (iii) lack of effective pharmacotherapy options. The past decade has seen intense research in discovering disease-modifying multi-targeting small molecules as therapeutic options. In recent years, targeting the amyloid cascade has emerged as an attractive strategy to discover novel neurotherapeutics. Formation of amyloid species, with different degrees of solubility and neurotoxicity is associated with the gradual decline in cognition leading to dementia/cell dysfunction. Here, in this chapter, we have described the recent scenario of amyloid diseases with a great deal of information about the structural features of oligomers, protofibrils and fibrils. Also, comprehensive details have been provided to differentiate the degree of toxicity associated with prefibrillar aggregates. Moreover, a review of the technologies that aid characterisation of oligomer, protofibrils and fibrils as well as various inhibition strategies to overcome protein fibrillation are also discussed.
Collapse
Affiliation(s)
| | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, U.P., India.
| |
Collapse
|
14
|
Measuring macromolecular size distributions and interactions at high concentrations by sedimentation velocity. Nat Commun 2018; 9:4415. [PMID: 30356043 PMCID: PMC6200768 DOI: 10.1038/s41467-018-06902-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
In concentrated macromolecular solutions, weak physical interactions control the solution behavior including particle size distribution, aggregation, liquid-liquid phase separation, or crystallization. This is central to many fields ranging from colloid chemistry to cell biology and pharmaceutical protein engineering. Unfortunately, it is very difficult to determine macromolecular assembly states and polydispersity at high concentrations in solution, since all motion is coupled through long-range hydrodynamic, electrostatic, steric, and other interactions, and scattering techniques report on the solution structure when average interparticle distances are comparable to macromolecular dimensions. Here we present a sedimentation velocity technique that, for the first time, can resolve macromolecular size distributions at high concentrations, by simultaneously accounting for average mutual hydrodynamic and thermodynamic interactions. It offers high resolution and sensitivity of protein solutions up to 50 mg/ml, extending studies of macromolecular solution state closer to the concentration range of therapeutic formulations, serum, or intracellular conditions. Many aspects of concentrated macromolecular solutions, such as encountered in cytosol or in pharmaceutical formulations, are dependent on particle size distributions and weak intermolecular interactions. Here, the authors exploit hydrodynamic separation in the centrifugal field to measure both.
Collapse
|
15
|
Channell G, Dinu V, Adams GG, Harding SE. A simple cell-alignment protocol for sedimentation velocity analytical ultracentrifugation to complement mechanical and optical alignment procedures. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:809-813. [PMID: 30159596 PMCID: PMC6182614 DOI: 10.1007/s00249-018-1328-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Abstract
In establishing the sources of data variability within sedimentation velocity analysis in the analytical ultracentrifuge and their relative importance, recent studies have demonstrated that alignment of the sample cells to the centre of rotation is the most significant contributing factor to overall variability, particularly for the characterisation of low levels of protein aggregation. Accurate mechanical and optical alignment tools have been recently designed. In this study, we (1) confirm the effect of misalignment observed by others on the estimated amounts of bovine serum albumin (BSA) monomer and dimer, and the sedimentation coefficient value for the BSA dimer; and (2) demonstrate the high performance of a mechanical alignment tool and the usefulness of a simple and complementary enhanced manual alignment protocol which should be useful for situations where these tools are not available.
Collapse
Affiliation(s)
- Guy Channell
- National Centre for Macromolecular Hydrodynamics, The University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, The University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gary G Adams
- National Centre for Macromolecular Hydrodynamics, The University of Nottingham, Sutton Bonington, LE12 5RD, UK.,Queens Medical Centre, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, The University of Nottingham, Sutton Bonington, LE12 5RD, UK. .,Universitetet i Oslo, Postboks 6762, St. Olavs Plass, 0130, Oslo, Norway.
| |
Collapse
|
16
|
Zhang J, Woods C, He F, Han M, Treuheit MJ, Volkin DB. Structural Changes and Aggregation Mechanisms of Two Different Dimers of an IgG2 Monoclonal Antibody. Biochemistry 2018; 57:5466-5479. [DOI: 10.1021/acs.biochem.8b00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhang
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Christopher Woods
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| | - Feng He
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Mei Han
- Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, California 94080, United States
| | - Michael J. Treuheit
- Process Development, Amgen Inc., Thousand Oaks, California 91320, United States
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66049, United States
| |
Collapse
|
17
|
Healey JF, Parker ET, Lollar P. Identification of aggregates in therapeutic formulations of recombinant full-length factor VIII products by sedimentation velocity analytical ultracentrifugation. J Thromb Haemost 2018; 16:303-315. [PMID: 29197156 PMCID: PMC5809250 DOI: 10.1111/jth.13917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 01/27/2023]
Abstract
Essentials Factor VIII inhibitors are the most serious complication in patients with hemophilia A. Aggregates in biopharmaceutical products are an immunogenic risk factor. Aggregates were identified in recombinant full-length factor VIII products. Aggregates in recombinant factor VIII products are identified by analytical ultracentrifugation. SUMMARY Background The development of inhibitory anti-factor VIII antibodies is the most serious complication in the management of patients with hemophilia A. Studies have suggested that recombinant full-length FVIII is more immunogenic than plasma-derived FVIII, and that, among recombinant FVIII products, Kogenate is more immunogenic than Advate. Aggregates in biopharmaceutical products are considered a risk factor for the development of anti-drug antibodies. Objective To evaluate recombinant full-length FVIII products for the presence of aggregates. Methods Advate, Helixate and Kogenate were reconstituted to their therapeutic formulations, and subjected to sedimentation velocity (SV) analytical ultracentrifugation (AUC). Additionally, Advate and Kogenate were concentrated and subjected to buffer exchange by ultrafiltration to remove viscous cosolvents for the purpose of measuring s20,w values and molecular weights. Results The major component of all three products was a population of ~7.5 S heterodimers with a weight-average molecular weight of ~230 kDa. Helixate and Kogenate contained aggregates ranging from 12 S to at least 100 S, representing ≈ 20% of the protein mass. Aggregates greater than 12 S represented < 3% of the protein mass in Advate. An approximately 10.5 S aggregate, possibly representing a dimer of heterodimers, was identified in buffer-exchanged Advate and Kogenate. SV AUC analysis of a plasma-derived FVIII product was confounded by the presence of von Willebrand factor in molar excess over FVIII. Conclusions Aggregate formation has been identified in recombinant full-length FVIII products, and is more extensive in Helixate and Kogenate than in Advate. SV AUC is an important method for characterizing FVIII products.
Collapse
Affiliation(s)
- J. F. Healey
- Department of PediatricsAflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaEmory UniversityAtlantaGAUSA
| | - E. T. Parker
- Department of PediatricsAflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaEmory UniversityAtlantaGAUSA
| | - P. Lollar
- Department of PediatricsAflac Cancer and Blood Disorders CenterChildren's Healthcare of AtlantaEmory UniversityAtlantaGAUSA
| |
Collapse
|
18
|
Uchiyama S, Noda M, Krayukhina E. Sedimentation velocity analytical ultracentrifugation for characterization of therapeutic antibodies. Biophys Rev 2017; 10:259-269. [PMID: 29243091 DOI: 10.1007/s12551-017-0374-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/23/2017] [Indexed: 01/18/2023] Open
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) coupled with direct computational fitting of the observed concentration profiles (sedimentating boundary) have been developed and widely used for the characterization of macromolecules and nanoparticles in solution. In particular, size distribution analysis by SV-AUC has become a reliable and essential approach for the characterization of biopharmaceuticals including therapeutic antibodies. In this review, we describe the importance and advantages of SV-AUC for studying biopharmaceuticals, with an emphasis on strategies for sample preparation, data acquisition, and data analysis. Recent discoveries enabled by AUC with a fluorescence detection system and potential future applications are also discussed.
Collapse
Affiliation(s)
- Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.,U-Medico Inc., Osaka, Japan
| | - Elena Krayukhina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka, Japan.,U-Medico Inc., Osaka, Japan
| |
Collapse
|
19
|
Doyle BL, Budyak IL, Rauk AP, Weiss WF. An optical alignment system improves precision of soluble aggregate quantitation by sedimentation velocity analytical ultracentrifugation. Anal Biochem 2017; 531:16-19. [PMID: 28529050 DOI: 10.1016/j.ab.2017.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
Appropriate characterization of soluble aggregates is an important aspect of biologics development and manufacturing, and sedimentation velocity analytical ultracentrifugation (SV-AUC) is often used an orthogonal technique to size-exclusion chromatography (SEC) for this purpose. Precise quantification of low levels of soluble aggregates by SV-AUC can be adversely impacted by improper cell alignment. This report describes the development of an optical system capable of quantifying cell alignment that affords a substantial improvement compared to historical approaches.
Collapse
Affiliation(s)
- Brandon L Doyle
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ivan L Budyak
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Adam P Rauk
- Global Statistical Sciences, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - William F Weiss
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
20
|
Wafer L, Kloczewiak M, Luo Y. Quantifying Trace Amounts of Aggregates in Biopharmaceuticals Using Analytical Ultracentrifugation Sedimentation Velocity: Bayesian Analyses and F Statistics. AAPS JOURNAL 2016; 18:849-60. [DOI: 10.1208/s12248-016-9925-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022]
|
21
|
Zhao H, Ghirlando R, Alfonso C, Arisaka F, Attali I, Bain DL, Bakhtina MM, Becker DF, Bedwell GJ, Bekdemir A, Besong TMD, Birck C, Brautigam CA, Brennerman W, Byron O, Bzowska A, Chaires JB, Chaton CT, Cölfen H, Connaghan KD, Crowley KA, Curth U, Daviter T, Dean WL, Díez AI, Ebel C, Eckert DM, Eisele LE, Eisenstein E, England P, Escalante C, Fagan JA, Fairman R, Finn RM, Fischle W, de la Torre JG, Gor J, Gustafsson H, Hall D, Harding SE, Cifre JGH, Herr AB, Howell EE, Isaac RS, Jao SC, Jose D, Kim SJ, Kokona B, Kornblatt JA, Kosek D, Krayukhina E, Krzizike D, Kusznir EA, Kwon H, Larson A, Laue TM, Le Roy A, Leech AP, Lilie H, Luger K, Luque-Ortega JR, Ma J, May CA, Maynard EL, Modrak-Wojcik A, Mok YF, Mücke N, Nagel-Steger L, Narlikar GJ, Noda M, Nourse A, Obsil T, Park CK, Park JK, Pawelek PD, Perdue EE, Perkins SJ, Perugini MA, Peterson CL, Peverelli MG, Piszczek G, Prag G, Prevelige PE, Raynal BDE, Rezabkova L, Richter K, Ringel AE, Rosenberg R, Rowe AJ, Rufer AC, Scott DJ, Seravalli JG, Solovyova AS, Song R, Staunton D, Stoddard C, Stott K, Strauss HM, Streicher WW, Sumida JP, Swygert SG, Szczepanowski RH, Tessmer I, Toth RT, Tripathy A, Uchiyama S, Uebel SFW, Unzai S, Gruber AV, von Hippel PH, Wandrey C, Wang SH, Weitzel SE, Wielgus-Kutrowska B, Wolberger C, Wolff M, Wright E, Wu YS, Wubben JM, Schuck P. A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS One 2015; 10:e0126420. [PMID: 25997164 PMCID: PMC4440767 DOI: 10.1371/journal.pone.0126420] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Carlos Alfonso
- Analytical Ultracentrifugacion and Light Scattering Facility, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Fumio Arisaka
- Life Science Research Center, Nihon University, College of Bioresource Science, Fujisawa, 252–0880, Japan
| | - Ilan Attali
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - David L. Bain
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, 80045, United States of America
| | - Marina M. Bakhtina
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Donald F. Becker
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Gregory J. Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Ahmet Bekdemir
- Supramolecular Nanomaterials and Interfaces Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tabot M. D. Besong
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | | | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, United States of America
| | - William Brennerman
- Beckman Coulter, Inc., Life Science Division, Indianapolis, Indiana, 46268, United States of America
| | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, G37TT, United Kingdom
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Jonathan B. Chaires
- JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Catherine T. Chaton
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, United States of America
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Keith D. Connaghan
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, 80045, United States of America
| | - Kimberly A. Crowley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tina Daviter
- Institute of Structural and Molecular Biology Biophysics Centre, Birkbeck, University of London and University College London, London, WC1E 7HX, United Kingdom
| | - William L. Dean
- JG Brown Cancer Center, University of Louisville, Louisville, Kentucky, 40202, United States of America
| | - Ana I. Díez
- Department of Physical Chemistry, University of Murcia, Murcia, 30071, Spain
| | - Christine Ebel
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Debra M. Eckert
- Protein Interactions Core, Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, 84112, United States of America
| | - Leslie E. Eisele
- Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
| | - Edward Eisenstein
- Institute for Bioscience and Biotechnology Research, Fischell Department of Bioengineering, University of Maryland, Rockville, Maryland, 20850, United States of America
| | - Patrick England
- Institut Pasteur, Centre of Biophysics of Macromolecules and Their Interactions, Paris, 75724, France
| | - Carlos Escalante
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, 23220, United States of America
| | - Jeffrey A. Fagan
- Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States of America
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041, United States of America
| | - Ron M. Finn
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Jayesh Gor
- Department of Structural and Molecular Biology, Darwin Building, University College London, London, WC1E 6BT, United Kingdom
| | | | - Damien Hall
- Research School of Chemistry, Section on Biological Chemistry, The Australian National University, Acton, ACT 0200, Australia
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | | | - Andrew B. Herr
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, United States of America
| | - Elizabeth E. Howell
- Biochemistry, Cell and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, 37996–0840, United States of America
| | - Richard S. Isaac
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Shu-Chuan Jao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Biophysics Core Facility, Scientific Instrument Center, Academia Sinica, Taipei, 115, Taiwan
| | - Davis Jose
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Soon-Jong Kim
- Department of Chemistry, Mokpo National University, Muan, 534–729, Korea
| | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, Pennsylvania, 19041, United States of America
| | - Jack A. Kornblatt
- Enzyme Research Group, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Dalibor Kosek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Elena Krayukhina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Daniel Krzizike
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Eric A. Kusznir
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, 4070, Switzerland
| | - Hyewon Kwon
- Analytical Biopharmacy Core, University of Washington, Seattle, Washington, 98195, United States of America
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Thomas M. Laue
- Department of Biochemistry, University of New Hampshire, Durham, New Hampshire, 03824, United States of America
| | - Aline Le Roy
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Andrew P. Leech
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Karolin Luger
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Juan R. Luque-Ortega
- Analytical Ultracentrifugacion and Light Scattering Facility, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Jia Ma
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Carrie A. May
- Department of Biochemistry, University of New Hampshire, Durham, New Hampshire, 03824, United States of America
| | - Ernest L. Maynard
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20814, United States of America
| | - Anna Modrak-Wojcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Instute of Molecular Science and Biotechnology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, 69120, Germany
| | | | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Amanda Nourse
- Molecular Interaction Analysis Shared Resource, St. Jude Children’s Research Hospital, Memphis, Tennessee, 38105, United States of America
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague, 12843, Czech Republic
| | - Chad K. Park
- Analytical Biophysics & Materials Characterization, Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Jin-Ku Park
- Central Instrument Center, Mokpo National University, Muan, 534–729, Korea
| | - Peter D. Pawelek
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Erby E. Perdue
- Beckman Coulter, Inc., Life Science Division, Indianapolis, Indiana, 46268, United States of America
| | - Stephen J. Perkins
- Department of Structural and Molecular Biology, Darwin Building, University College London, London, WC1E 6BT, United Kingdom
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Craig L. Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Martin G. Peverelli
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Grzegorz Piszczek
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Gali Prag
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Peter E. Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Bertrand D. E. Raynal
- Institut Pasteur, Centre of Biophysics of Macromolecules and Their Interactions, Paris, 75724, France
| | - Lenka Rezabkova
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Klaus Richter
- Department of Chemistry and Center for Integrated Protein Science, Technische Universität München, 85748, Garching, Germany
| | - Alison E. Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Rose Rosenberg
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Arthur J. Rowe
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, LE12 5RD, United Kingdom
| | - Arne C. Rufer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-LaRoche Ltd., Basel, 4070, Switzerland
| | - David J. Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Javier G. Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Alexandra S. Solovyova
- Proteome and Protein Analysis, University of Newcastle, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Renjie Song
- Wadsworth Center, New York State Department of Health, Albany, New York, 12208, United States of America
| | - David Staunton
- Molecular Biophysics Suite, Department of Biochemistry, Oxford, Oxon, OX1 3QU, United Kingdom
| | - Caitlin Stoddard
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, 94158, United States of America
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, 94158, United States of America
| | - Katherine Stott
- Biochemistry Department, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | | | - Werner W. Streicher
- Protein Function and Interactions, Novo Nordisk Foundation Center for Protein Research, Copenhagen, 2200, Denmark
| | - John P. Sumida
- Analytical Biopharmacy Core, University of Washington, Seattle, Washington, 98195, United States of America
| | - Sarah G. Swygert
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, 01605, United States of America
| | - Roman H. Szczepanowski
- Core Facility, International Institute of Molecular and Cell Biology, Warsaw, 02–109, Poland
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080, Würzburg, Germany
| | - Ronald T. Toth
- Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas, 66047, United States of America
| | - Ashutosh Tripathy
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565–0871, Japan
| | - Stephan F. W. Uebel
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Satoru Unzai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230–0045, Japan
| | - Anna Vitlin Gruber
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Peter H. von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Christine Wandrey
- Laboratoire de Médecine Régénérative et de Pharmacobiologie, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Szu-Huan Wang
- Biophysics Core Facility, Scientific Instrument Center, Academia Sinica, Taipei, 115, Taiwan
| | - Steven E. Weitzel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, 02–089, Poland
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, United States of America
| | - Martin Wolff
- ICS-6, Structural Biochemistry, Research Center Juelich, 52428, Juelich, Germany
| | - Edward Wright
- Biochemistry, Cell and Molecular Biology Department, University of Tennessee, Knoxville, Tennessee, 37996–0840, United States of America
| | - Yu-Sung Wu
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, United States of America
| | - Jacinta M. Wubben
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
- * E-mail:
| |
Collapse
|
22
|
Schilling K, Krause F. Analysis of antibody aggregate content at extremely high concentrations using sedimentation velocity with a novel interference optics. PLoS One 2015; 10:e0120820. [PMID: 25803582 PMCID: PMC4372433 DOI: 10.1371/journal.pone.0120820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/06/2015] [Indexed: 02/02/2023] Open
Abstract
Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum content of soluble aggregates in the original formulations of two antibodies. Limitations of the procedure are discussed.
Collapse
Affiliation(s)
| | - Frank Krause
- Nanolytics Gesellschaft für Kolloidanalytik, Potsdam, Germany
- * E-mail:
| |
Collapse
|
23
|
Gokarn Y, Agarwal S, Arthur K, Bepperling A, Day ES, Filoti D, Greene DG, Hayes D, Kroe-Barrett R, Laue T, Lin J, McGarry B, Razinkov V, Singh S, Taing R, Venkataramani S, Weiss W, Yang D, Zarraga IE. Biophysical Techniques for Characterizing the Higher Order Structure and Interactions of Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yatin Gokarn
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Sanjeev Agarwal
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Kelly Arthur
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Alexander Bepperling
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Eric S. Day
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Dana Filoti
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Daniel G. Greene
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - David Hayes
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Rachel Kroe-Barrett
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Thomas Laue
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jasper Lin
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Brian McGarry
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Vladimir Razinkov
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Sanjaya Singh
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Rosalynn Taing
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Sathyadevi Venkataramani
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - William Weiss
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Danlin Yang
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Isidro E. Zarraga
- Institute of Chemical Technology, Mumbai, India
- Amgen Inc., Thousand Oaks, California 91320, United States
- Hexal AG, Oberhaching, Germany
- Genentech, South San Francisco, California 94080, United States
- University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
24
|
Arthur KK, Kendrick BS, Gabrielson JP. Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC. Methods Enzymol 2015; 562:477-500. [DOI: 10.1016/bs.mie.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Gómez de la Cuesta R, Goodacre R, Ashton L. Monitoring antibody aggregation in early drug development using Raman spectroscopy and perturbation-correlation moving windows. Anal Chem 2014; 86:11133-40. [PMID: 25329604 DOI: 10.1021/ac5038329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrate the sensitivity of two-dimensional perturbation-correlation moving windows (PCMW) to characterize conformational transitions in antibodies. An understanding of how physiochemical properties affect protein stability and instigate aggregation is essential for the engineering of antibodies. In order to establish the potential of PCMW as a technique for early identification of aggregation mechanisms during antibody development, five antibodies with varying propensity to aggregate were compared. Raman spectra were acquired, using a 532 nm excitation wavelength as the protein samples were heated from 56 to 78 °C and analyzed with PCMW. Initial principal component analysis confirmed a trend between the observed spectral variations and increasing temperature for all five samples. Analysis using PCMW revealed that when spectral variations were directly related to temperature, distinct differences in conformational changes could be determined between samples related to protein stability, providing a greater understanding of the aggregation mechanisms of problematic antibody variants.
Collapse
|
26
|
Yang J, Wang X, Fuh G, Yu L, Wakshull E, Khosraviani M, Day ES, Demeule B, Liu J, Shire SJ, Ferrara N, Yadav S. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm 2014; 11:3421-30. [PMID: 25162961 DOI: 10.1021/mp500160v] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objectives of this study were to evaluate the relative binding and potencies of three inhibitors of vascular endothelial growth factor A (VEGF), used to treat neovascular age-related macular degeneration, and assess their relevance in the context of clinical outcome. Ranibizumab is a 48 kDa antigen binding fragment, which lacks a fragment crystallizable (Fc) region and is rapidly cleared from systemic circulation. Aflibercept, a 110 kDa fusion protein, and bevacizumab, a 150 kDa monoclonal antibody, each contain an Fc region. Binding affinities were determined using Biacore analysis. Competitive binding by sedimentation velocity analytical ultracentrifugation (SV-AUC) was used to support the binding affinities determined by Biacore of ranibizumab and aflibercept to VEGF. A bovine retinal microvascular endothelial cell (BREC) proliferation assay was used to measure potency. Biacore measurements were format dependent, especially for aflibercept, suggesting that biologically relevant, true affinities of recombinant VEGF (rhVEGF) and its inhibitors are yet to be determined. Despite this assay format dependency, ranibizumab appeared to be a very tight VEGF binder in all three formats. The results are also very comparable to those reported previously.1-3 At equivalent molar ratios, ranibizumab was able to displace aflibercept from preformed aflibercept/VEGF complexes in solution as assessed by SV-AUC, whereas aflibercept was not able to significantly displace ranibizumab from preformed ranibizumab/VEGF complexes. Ranibizumab, aflibercept, and bevacizumab showed dose-dependent inhibition of BREC proliferation induced by 6 ng/mL VEGF, with average IC50 values of 0.088 ± 0.032, 0.090 ± 0.009, and 0.500 ± 0.091 nM, respectively. Similar results were obtained with 3 ng/mL VEGF. In summary Biacore studies and SV-AUC solution studies show that aflibercept does not bind with higher affinity than ranibizumab to VEGF as recently reported,4 and both inhibitors appeared to be equipotent with respect to their ability to inhibit VEGF function.
Collapse
Affiliation(s)
- Jihong Yang
- Genentech, Inc. , 1 DNA Way, MS 56-2A, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Carvalho FAO, Carvalho JWP, Alves FR, Tabak M. pH effect upon HbGp oligomeric stability: characterization of the dissociated species by AUC and DLS studies. Int J Biol Macromol 2013; 59:333-41. [DOI: 10.1016/j.ijbiomac.2013.04.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
28
|
Pedersen JT, Heegaard NHH. Analysis of Protein Aggregation in Neurodegenerative Disease. Anal Chem 2013; 85:4215-27. [DOI: 10.1021/ac400023c] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeppe T. Pedersen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen
Ø, Denmark
| | - Niels H. H. Heegaard
- Analytical Protein Chemistry, Department of Clinical Biochemistry, Immunology & Genetics, Statens Serum Institut, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
29
|
Krayukhina E, Uchiyama S, Nojima K, Okada Y, Hamaguchi I, Fukui K. Aggregation analysis of pharmaceutical human immunoglobulin preparations using size-exclusion chromatography and analytical ultracentrifugation sedimentation velocity. J Biosci Bioeng 2013; 115:104-10. [DOI: 10.1016/j.jbiosc.2012.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/27/2012] [Accepted: 07/31/2012] [Indexed: 10/28/2022]
|
30
|
Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of Therapeutic Antibodies and Related Products. Anal Chem 2012; 85:715-36. [DOI: 10.1021/ac3032355] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Daniel Ayoub
- Centre d’Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164 Saint-Julien-en-Genevois,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| | - Sarah Sanglier-Cianférani
- Laboratoire de Spectrométrie
de Masse BioOrganique (LSMBO), Université de Strasbourg, IPHC, 25 rue Becquerel 67087, Strasbourg, France and CNRS, UMR7178, 67037 Strasbourg, France
| |
Collapse
|
31
|
Berkowitz SA, Engen JR, Mazzeo JR, Jones GB. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nat Rev Drug Discov 2012; 11:527-40. [PMID: 22743980 DOI: 10.1038/nrd3746] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biologics such as monoclonal antibodies are much more complex than small-molecule drugs, which raises challenging questions for the development and regulatory evaluation of follow-on versions of such biopharmaceutical products (also known as biosimilars) and their clinical use once patent protection for the pioneering biologic has expired. With the recent introduction of regulatory pathways for follow-on versions of complex biologics, the role of analytical technologies in comparing biosimilars with the corresponding reference product is attracting substantial interest in establishing the development requirements for biosimilars. Here, we discuss the current state of the art in analytical technologies to assess three characteristics of protein biopharmaceuticals that regulatory authorities have identified as being important in development strategies for biosimilars: post-translational modifications, three-dimensional structures and protein aggregation.
Collapse
Affiliation(s)
- Steven A Berkowitz
- Analytical Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
32
|
Krayukhina E, Uchiyama S, Fukui K. Effects of rotational speed on the hydrodynamic properties of pharmaceutical antibodies measured by analytical ultracentrifugation sedimentation velocity. Eur J Pharm Sci 2012; 47:367-74. [PMID: 22728396 DOI: 10.1016/j.ejps.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Analytical ultracentrifugation sedimentation velocity (AUC-SV) has recently become one of the most important tools for the measurement of hydrodynamic properties of proteins. Although a number of studies using AUC-SV as applied to pharmaceutical antibodies have been conducted, the effect of rotational speed on molecular properties has not been systematically examined. The present study aimed to elucidate the influence of rotational speed on the hydrodynamic parameters of pharmaceutical antibodies. A monoclonal and a polyclonal antibody were studied by using AUC-SV at 5 different rotor speeds, and the acquired data were analyzed either by using the computer programs SEDFIT or UltraScan. The frictional ratio of the studied antibodies decreased at high rotor speeds, resulting in underestimation of molecular weight. The frictional ratio value of the monoclonal antibody measured at the low rotor speed was consistent with that of human immunoglobulin G1 computed from its three-dimensional structure. The best agreement between the measured molecular weight and the value calculated from the antibody sequence was achieved at the lower rotor speed. Similar to the results obtained using antibodies, AUC-SV analysis of human serum albumin revealed that the frictional ratio and apparent molecular weight behave in a speed-dependent manner. We deduced that the findings were mainly attributable to the hydrostatic pressure in the analytical ultracentrifuge. The current study implies that rotor speed should be carefully considered in antibody studies using AUC-SV.
Collapse
Affiliation(s)
- Elena Krayukhina
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | | | | |
Collapse
|
33
|
Gabrielson JP, Arthur KK. Measuring low levels of protein aggregation by sedimentation velocity. Methods 2011; 54:83-91. [DOI: 10.1016/j.ymeth.2010.12.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022] Open
|
34
|
Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:41-61. [DOI: 10.1016/b978-0-12-386483-3.00004-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Pavišić R, Dodig I, Horvatić A, Mijić L, Sedić M, Linarić MR, Sovulj IG, Preočanin T, Krajačić MB, Cindrić M. Differences between reversible (self-association) and irreversible aggregation of rHuG-CSF in carbohydrate and polyol formulations. Eur J Pharm Biopharm 2010; 76:357-65. [DOI: 10.1016/j.ejpb.2010.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 09/06/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
36
|
den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 2010; 28:920-33. [PMID: 20972611 PMCID: PMC3063870 DOI: 10.1007/s11095-010-0297-1] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/28/2010] [Indexed: 10/29/2022]
Abstract
Within the European Immunogenicity Platform (EIP) ( http://www.e-i-p.eu ), the Protein Characterization Subcommittee (EIP-PCS) has been established to discuss and exchange experience of protein characterization in relation to unwanted immunogenicity. In this commentary, we, as representatives of EIP-PCS, review the current state of methods for analysis of protein aggregates. Moreover, we elaborate on why these methods should be used during product development and make recommendations to the biotech community with regard to strategies for their application during the development of protein therapeutics.
Collapse
|