1
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Mukherjee D, Ahmed IA, Gai F. Site-Specific Interrogation of Protein Structure and Stability. Methods Mol Biol 2022; 2376:65-87. [PMID: 34845603 DOI: 10.1007/978-1-0716-1716-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To execute their function or activity, proteins need to possess variability in local electrostatic environment, solvent accessibility, structure, and stability. However, assessing any protein property in a site-specific manner is not easy since native spectroscopic signals often lack the needed specificity. One strategy that overcomes this limitation is to use unnatural amino acids that exhibit distinct spectroscopic features. In this chapter, we describe several such unnatural amino acids (UAAs) and their respective applications in site-specific interrogation of protein structure and stability using standard biophysical methods, including circular dichroism (CD), infrared (IR), and fluorescence spectroscopies.
Collapse
Affiliation(s)
| | - Ismail A Ahmed
- Department of Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Ali A, Kumar R, Khan A, Khan AU. Interaction of LysM BON family protein domain with carbapenems: A putative mechanism of carbapenem resistance. Int J Biol Macromol 2020; 160:212-223. [PMID: 32464197 DOI: 10.1016/j.ijbiomac.2020.05.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
Carbapenem resistance in Gram-negative pathogens has become a global concern for health workers worldwide. In one of our earlier studies, a Klebsiella pneumoniae-carbapenemase-2 producing strain was induced with meropenem to explore differentially expressed proteins under induced and uninduced conditions. There is, LysM domain BON family protein, was found over 12-fold expressed under the induced state. A hypothesis was proposed that LysM domain protein might have an affinity towards carbapenem antibiotics making them unavailable to bind with their target. Hence, we initiated a study to understand the binding mode of carbapenem with LysM domain protein. MICs of imipenem and meropenem against LysM clone were increased by several folds as compared to NP-6 clinical strain as well as DH5 α (PET-28a KPC-2) clone. This study further revealed a strong binding of both antibiotics to LysM domain protein. Molecular simulation studies of LysM domain protein with meropenem and imipenem for 80 ns has also showed stable structure. We concluded that overexpressed LysM domain under induced condition interacted with carbapenems, leading to enhanced resistance as proved by high MIC values. Hence, the study proved the proposed hypothesis that the LysM domain plays a significant role in the putative mechanism of antibiotics resistance.
Collapse
Affiliation(s)
- Abid Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Arbab Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India
| | - Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, UP, India; Faculty of Science and Marine Environment, University Malysia Terengganu, Kuala Terengganu, Malaysia.
| |
Collapse
|
4
|
Abstract
Most biological molecules are intrinsically non- or weakly-fluorescent, hence requiring labeling with an external fluorophore(s) to be studied via fluorescence-based techniques. However, such labeling could perturb the native property of the system in question. One effective strategy to minimize such undesirable perturbation is to use fluorophores that are simple analogs of natural amino acids. In this chapter, we describe the synthesis and spectroscopic utility of two indole-based fluorophores, 4-cynaotryprophan (4CN-Trp) and 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS), with a focus on 4CN-Trp. This unnatural amino acid, which is only slightly larger than its natural counterpart, tryptophan (Trp), exhibits unique photophysical properties, making it a versatile fluorophore in biological spectroscopic and imaging applications. Through several specific examples, we highlight its broad utility in the study of various biological problems and processes.
Collapse
|
5
|
Ferrie JJ, Ieda N, Haney CM, Walters CR, Sungwienwong I, Yoon J, Petersson EJ. Multicolor protein FRET with tryptophan, selective coumarin-cysteine labeling, and genetic acridonylalanine encoding. Chem Commun (Camb) 2018; 53:11072-11075. [PMID: 28948265 DOI: 10.1039/c7cc05492k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Site-specific fluorescence probes can be used to measure distances within proteins when used as part of a Förster resonance energy transfer (FRET) pair. Here we report the synthesis of a coumarin maleimide (Mcm-Mal) that is fluorogenic upon reaction with cysteine. We demonstrate that cysteine, acridonylalanine (Acd) double mutant proteins can be produced by unnatural amino acid mutagenesis and reacted with Mcm-Mal to generate Mcm/Acd labeled proteins for FRET studies. The Mcm/Acd FRET pair is minimally-perturbing, easy to install, and well-suited to studying protein distances in the 15-40 Å range. Furthermore, Mcm/Acd labeling can be combined with tryptophan fluorescence in three color FRET to monitor multiple interactions in one experiment.
Collapse
Affiliation(s)
- John J Ferrie
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Martin JP, Fetto NR, Tucker MJ. Comparison of biological chromophores: photophysical properties of cyanophenylalanine derivatives. Phys Chem Chem Phys 2018; 18:20750-7. [PMID: 27412819 DOI: 10.1039/c6cp04154j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Within this work, the family of cyanophenylalanine spectroscopic reporters is extended by showing the ortho and meta derivatives have intrinsic photophysical properties that are useful for studies of protein structure and dynamics. The molar absorptivities of 2-cyanophenylalanine and 3-cyanophenylalanine are shown to be comparable to that of 4-cyanophenylalanine with similar spectral features in their absorbance and emission profiles, demonstrating that these probes can be utilized interchangeably. The fluorescence quantum yields are also on the same scale as commonly used fluorophores in peptides and proteins, tyrosine and tryptophan. These new cyano-fluorophores can be paired with either 4-cyanophenylalanine or tryptophan to capture distances in peptide structure through Förster resonance energy transfer. Additionally, the spectroscopic properties of these chromophores can report the local solvent environment via changes in fluorescence emission intensity as a result of hydrogen bonding and/or hydration. A decrease in the quantum yield is also observed in basic environments due to photoinduced electron transfer from a deprotonated amine in the free PheCN species and at the N-terminus of a short peptide, providing an avenue to detect pH in biological systems. Our results show the potential of these probes, 2-cyanophenylalanine and 3-cyanophenylalanine, to be incorporated into a single peptide chain, either individually or in tandem with 4-cyanophenylalanine, tryptophan, or tyrosine, in order to obtain information about peptide structure and dynamics.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Natalie R Fetto
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| |
Collapse
|
7
|
Fetto NR, Cao W, Wallace IS, Tucker MJ. Selective Excitation of Cyanophenylalanine Fluorophores for Multi-Site Binding Studies. J Phys Chem B 2017; 121:9566-9571. [PMID: 28949137 DOI: 10.1021/acs.jpcb.7b08442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, it has been shown that nitrile-derivatized phenylalanines possess distinct fluorescent properties depending on the position of the cyano-group within the aromatic ring. These fluorophores have potential as probes for studying protein dynamics due to their sensitivity to local environment. Herein, we demonstrate that 2-cyanophenylalanine (Phe2CN) and Phe4CN can independently monitor multiple sites during the Ca2+ dependent binding of a skeletal muscle myosin light chain kinase (MLCK) peptide fragment to the protein calmodulin (CaM). These cyano-probes were incorporated at two different positions along the peptide chain and monitored simultaneously via selective excitation of the two chromophores. The peptide was labeled with Phe4CN at a residue known to bind to a hydrophobic binding pocket of CaM, while Phe2CN was designed to acquire dynamics external to the binding pocket. By selectively exciting each of the chromophores, it was determined that the fluorescence emission of Phe4CN located at position 581 of MLCK was quenched in the presence of CaM, while no significant change in Phe2CN emission was observed at exposed position 594. The CaM binding affinity (Kd) of the double labeled MLCK peptide was calculated to be approximately 64 nM, which is in agreement with previous measurements. These results indicate that multiple PheCN reporters within the same peptide can simultaneously detect variations in the local environment, and that these fluorophores could be utilized to investigate a wide variety of biological problems.
Collapse
Affiliation(s)
- Natalie R Fetto
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Wenqiang Cao
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Ian S Wallace
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States.,Department of Biochemistry and Molecular Biology, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada , 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
8
|
Abaskharon RM, Gai F. Meandering Down the Energy Landscape of Protein Folding: Are We There Yet? Biophys J 2017; 110:1924-32. [PMID: 27166801 DOI: 10.1016/j.bpj.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
As judged by a single publication metric, the activity in the protein folding field has been declining over the past 5 years, after enjoying a decade-long growth. Does this development indicate that the field is sunsetting or is this decline only temporary? Upon surveying a small territory of its landscape, we find that the protein folding field is still quite active and many important findings have emerged from recent experimental studies. However, it is also clear that only continued development of new techniques and methods, especially those enabling dissection of the fine details and features of the protein folding energy landscape, will fuel this old field to move forward.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania; The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
9
|
Watson MD, Peran I, Zou J, Bilsel O, Raleigh DP. Selenomethionine Quenching of Tryptophan Fluorescence Provides a Simple Probe of Protein Structure. Biochemistry 2017; 56:1085-1094. [DOI: 10.1021/acs.biochem.6b01000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew D. Watson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Ivan Peran
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Junjie Zou
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer
Center for Physical and
Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Osman Bilsel
- Department of Biochemistry and
Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Laufer
Center for Physical and
Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
10
|
Mori T, Saito S. Molecular Mechanism Behind the Fast Folding/Unfolding Transitions of Villin Headpiece Subdomain: Hierarchy and Heterogeneity. J Phys Chem B 2016; 120:11683-11691. [DOI: 10.1021/acs.jpcb.6b08066] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toshifumi Mori
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
11
|
Gosavi PM, Korendovych IV. Minimalist IR and fluorescence probes of protein function. Curr Opin Chem Biol 2016; 34:103-109. [PMID: 27599185 DOI: 10.1016/j.cbpa.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
Spectroscopic studies of small proteins and peptides, especially those requiring fine spatial and/or temporal resolution, demand synthetic probes that confer the minimal possible steric and functional change on the native properties. Here we review the recent progress in development of minimally disruptive probes for fluorescence and infrared spectroscopies, as well as the methods to efficiently incorporate them into proteins. Advances in spectroscopy on the one hand result in high specialization of synthetic probes for a particular purpose, but on the other hand allow for the same probes be used for different techniques to gather complementary biochemical information.
Collapse
Affiliation(s)
- Pallavi M Gosavi
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
12
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Peran I, Watson MD, Bilsel O, Raleigh DP. Selenomethionine, p-cyanophenylalanine pairs provide a convenient, sensitive, non-perturbing fluorescent probe of local helical structure. Chem Commun (Camb) 2016; 52:2055-8. [PMID: 26686928 DOI: 10.1039/c5cc08232c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of selenomethionine (MSe)-p-cyanophenylalanine (FCN) pairs to probe protein structure is demonstrated. MSe quenches FCN fluorescence via electron transfer. Both residues can be incorporated recombinantly or by peptide synthesis. Time-resolved and steady-state fluorescence measurements demonstrate that MSe-FCN pairs provide specific local probes of helical structure.
Collapse
Affiliation(s)
- Ivan Peran
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA.
| | - Matthew D Watson
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA.
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA. and Graduate Program in Biochemistry & Structural Biology, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| |
Collapse
|
14
|
Ding B, Hilaire MR, Gai F. Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function. J Phys Chem B 2016; 120:5103-13. [PMID: 27183318 DOI: 10.1021/acs.jpcb.6b03199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While folding or performing functions, a protein can sample a rich set of conformational space. However, experimentally capturing all of the important motions with sufficient detail to allow a mechanistic description of their dynamics is nontrivial since such conformational events often occur over a wide range of time and length scales. Therefore, many methods have been employed to assess protein conformational dynamics, and depending on the nature of the conformational transition in question, some may be more advantageous than others. Herein, we describe our recent efforts, and also those of others, wherever appropriate, to use infrared- and fluorescence-based techniques to interrogate protein folding and functional dynamics. Specifically, we focus on discussing how to use extrinsic spectroscopic probes to enhance the structural resolution of these techniques and how to exploit various cross-linking strategies to acquire dynamic and mechanistic information that was previously difficult to attain.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mary Rose Hilaire
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Hsu WL, Shih TC, Horng JC. Folding stability modulation of the villin headpiece helical subdomain by 4-fluorophenylalanine and 4-methylphenylalanine. Biopolymers 2016; 103:627-37. [PMID: 26017817 DOI: 10.1002/bip.22689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 05/25/2015] [Accepted: 05/25/2015] [Indexed: 11/10/2022]
Abstract
HP36, the helical subdomain of villin headpiece, contains a hydrophobic core composed of three phenylalanine residues (Phe47, Phe51, and Phe58). Hydrophobic effects and electrostatic interactions were shown to be the critical factors in stabilizing this core and the global structure. To assess the interactions among Phe47, Phe51, and Phe58 residues and investigate how they affect the folding stability, we implanted 4-fluorophenylalanine (Z) and 4-methylphenylalanine (X) into the hydrophobic core of HP36. We chemically synthesized HP36 and its seven variants including four single mutants whose Phe51 or Phe58 was replaced with Z or X, and three double mutants whose Phe51 and Phe58 were both substituted. Circular dichroism and nuclear magnetic resonance measurements show that the variants exhibit a native HP36 like fold, of which F51Z and three double mutants are more stable than the wild type. Molecular modeling provided detailed interaction energy within the phenylalanine residues, revealing that electrostatic interactions dominate the stability modulation upon the introduction of 4-fluorophenylalanine and 4-methylphenylalanine. Our results show that these two non-natural amino acids can successfully tune the interactions in a relatively compact hydrophobic core and the folding stability without inducing dramatic steric effects. Such an approach may be applied to other folded motifs or proteins.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| | - Ting-Chia Shih
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, 30013, R.O.C
| |
Collapse
|
16
|
Rost U, Steinem C, Diederichsen U. β-Glutamine-mediated self-association of transmembrane β-peptides within lipid bilayers. Chem Sci 2016; 7:5900-5907. [PMID: 30034732 PMCID: PMC6022121 DOI: 10.1039/c6sc01147k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
The rational design and synthesis of novel transmembrane β-peptides forming stable secondary structures in a membrane environment are described. Their state of aggregation within the membrane is controlled by hydrogen bonds.
Transmembrane β-peptide helices and their association in lipid membranes are still widely unexplored. We designed and synthesized transmembrane β-peptides harboring different numbers of d-β3-glutamine residues (hGln) by solid phase peptide synthesis. By means of circular dichroism spectroscopic measurements, the secondary structure of the β-peptides reconstituted into unilamellar vesicles was determined to be similar to a right-handed 314-helix. Fluorescence spectroscopy using d-β3-tryptophan residues strongly suggested a transmembrane orientation. Two or three hGln served as recognition units between the helices to allow helix–helix assembly driven by hydrogen bond formation. The association state of the transmembrane β-peptides as a function of the number of hGln residues was investigated by fluorescence resonance energy transfer (FRET). Therefore, two fluorescence probes (NBD, TAMRA) were covalently attached to the side chains of the transmembrane β-peptide helices. The results clearly demonstrate that only β-peptides with hGln as recognition units assemble into oligomers, presumably trimers. Temperature dependent FRET experiments further show that the strength of the helix–helix association is a function of the number of hGln residues in the helix.
Collapse
Affiliation(s)
- U Rost
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| | - C Steinem
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| | - U Diederichsen
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| |
Collapse
|
17
|
Wierzchowski J. Excited-state proton transfer and phototautomerism in nucleobase and nucleoside analogs: a mini-review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:626-44. [PMID: 25105453 DOI: 10.1080/15257770.2014.913065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermolecular excited-state proton transfer (ESPT) has been observed in several fluorescent nucleobase and/or nucleoside analogs. In the present work, some new examples of ESPT in this class of compounds are presented together with a brief recapitulation of the previously published data. The nucleobases, nucleosides, and their analogs contain many basic and acidic centers and therefore their ESPT behavior may be complex. To interpret the complex data, it is usually necessary to determine the microscopic pK* values for each (or most) of the possible ESPT centers. Typical approach to solve this problem is by analysis of the alkyl derivatives, in which the possibility of the ESPT is reduced. Of particular interest are examples of "phototautomerization via the cation," observed in several systems, which in the neutral media do not undergo ESPT. Protonation of the molecule in the ground state facilitates the two-step phototautomerism in several systems, including formycin A and 2-amino-8-azadenine. Fluorescence of the nucleobase and nucleoside analogs undergoing ESPT is usually solvent-, isotope-, and buffer-ion sensitive, and in some systems the ESPT can be promoted by environmental factors, e.g., the presence of buffer ions. This sensitivity to the microenvironment parameters makes the ESPT systems potentially useful for biological applications.
Collapse
Affiliation(s)
- Jacek Wierzchowski
- a Department of Biophysics , University of Varmia & Masuria in Olsztyn , Olsztyn , Poland
| |
Collapse
|
18
|
Bag SS, Jana S, Yashmeen A, De S. Triazolo-β-aza-ε-amino acid and its aromatic analogue as novel scaffolds for β-turn peptidomimetics. Chem Commun (Camb) 2015; 51:5242-5. [DOI: 10.1039/c4cc08414d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Triazolo-β-aza-ε-amino acid and its aromatic analogue (AlTAA/ArTAA) in the peptide backbone mark a novel class of conformationally constrained molecular scaffolds to induce β-turn conformations. This was demonstrated in a Leu-enkephalin analogue and in other designed peptides.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Subhashis Jana
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Afsana Yashmeen
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| | - Suranjan De
- Bioorganic Chemistry Laboratory
- Department of Chemistry
- Indian Institute of Technology Guwahati
- North Guwhati-781039
- India
| |
Collapse
|
19
|
Probing Microsecond Reactions with Microfluidic Mixers and TCSPC. SPRINGER SERIES IN CHEMICAL PHYSICS 2015. [DOI: 10.1007/978-3-319-14929-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Bag SS, Jana S, Yashmeen A, Senthilkumar K, Bag R. Triazolyl-donor-acceptor chromophore-decorated unnatural amino acids and peptides: FRET events in a β-turn conformation. Chem Commun (Camb) 2014; 50:433-5. [PMID: 24253679 DOI: 10.1039/c3cc47488g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The β-turn conformation and FRET process were established in the designed tripeptide containing fluorescent triazolyl donor and acceptor-decorated unnatural amino acids separated by a natural alanine.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Bio-organic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | | | |
Collapse
|
21
|
Meloni SL, Matsika S. Theoretical studies of the excited states of p-cyanophenylalanine and comparisons with the natural amino acids phenylalanine and tyrosine. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1497-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Zhang WH, Otting G, Jackson CJ. Protein engineering with unnatural amino acids. Curr Opin Struct Biol 2013; 23:581-7. [DOI: 10.1016/j.sbi.2013.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 12/20/2022]
|
23
|
Abstract
To expand the spectroscopic utility of the non-natural amino acid p-cyanophenylalanine (PheCN), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in PheCN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of PheCN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of PheCN strongly quenches its fluorescence, suggesting that PheCN could be used as a local pH sensor.
Collapse
|
24
|
Suresh M, Mandal AK, Suresh E, Das A. First demonstration of two-step FRET in a synthetic supramolecular assembly. Chem Sci 2013. [DOI: 10.1039/c3sc50282a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Serrano AL, Bilsel O, Gai F. Native state conformational heterogeneity of HP35 revealed by time-resolved FRET. J Phys Chem B 2012; 116:10631-8. [PMID: 22891809 DOI: 10.1021/jp211296e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The villin headpiece subdomain (HP35) has become one of the most widely used model systems in protein folding studies, due to its small size and ultrafast folding kinetics. Here, we use HP35 as a test bed to show that the fluorescence decay kinetics of an unnatural amino acid, p-cyanophenylalanine (Phe(CN)), which are modulated by a nearby quencher (e.g., tryptophan or 7-azatryptophan) through the mechanism of fluorescence resonance energy transfer (FRET), can be used to detect protein conformational heterogeneity. This method is based on the notion that protein conformations having different donor-acceptor distances and interconverting slowly compared to the fluorescence lifetime of the donor (Phe(CN)) would exhibit different donor fluorescence lifetimes. Our results provide strong evidence suggesting that the native free energy basin of HP35 is populated with conformations that differ mostly in the position and mean helicity of the C-terminal helix. This finding is consistent with several previous experimental and computational studies. Moreover, this result holds strong implications for computational investigation of the folding mechanism of HP35.
Collapse
Affiliation(s)
- Arnaldo L Serrano
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
26
|
Shao Q, Fan Y, Yang L, Qin Gao Y. From protein denaturant to protectant: Comparative molecular dynamics study of alcohol/protein interactions. J Chem Phys 2012; 136:115101. [DOI: 10.1063/1.3692801] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Serrano AL, Waegele MM, Gai F. Spectroscopic studies of protein folding: linear and nonlinear methods. Protein Sci 2012; 21:157-70. [PMID: 22109973 PMCID: PMC3324760 DOI: 10.1002/pro.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/15/2011] [Indexed: 01/08/2023]
Abstract
Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics.
Collapse
Affiliation(s)
- Arnaldo L Serrano
- Department of Chemistry, University of PennsylvaniaPhiladelphia, Pennsylvania 19104
| | - Matthias M Waegele
- Department of Chemistry, University of PennsylvaniaPhiladelphia, Pennsylvania 19104
| | - Feng Gai
- Department of Chemistry, University of PennsylvaniaPhiladelphia, Pennsylvania 19104
| |
Collapse
|
28
|
Waegele MM, Culik RM, Gai F. Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules. J Phys Chem Lett 2011; 2:2598-2609. [PMID: 22003429 PMCID: PMC3192500 DOI: 10.1021/jz201161b] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elucidating the underlying molecular mechanisms of protein folding and function is a very exciting and active research area, but poses significant challenges. This is due in part to the fact that existing experimental techniques are incapable of capturing snapshots along the 'reaction coordinate' in question with both sufficient spatial and temporal resolutions. In this regard, recent years have seen increased interests and efforts in development and employment of site-specific probes to enhance the structural sensitivity of spectroscopic techniques in conformational and dynamical studies of biological molecules. In particular, the spectroscopic and chemical properties of nitriles, thiocyanates, and azides render these groups attractive for the interrogation of complex biochemical constructs and processes. Here, we review their signatures in vibrational, fluorescence and NMR spectra and their utility in the context of elucidating chemical structure and dynamics of protein and DNA molecules.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
29
|
Hwang S, Shao Q, Williams H, Hilty C, Gao YQ. Methanol Strengthens Hydrogen Bonds and Weakens Hydrophobic Interactions in Proteins – A Combined Molecular Dynamics and NMR study. J Phys Chem B 2011; 115:6653-60. [DOI: 10.1021/jp111448a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soyoun Hwang
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Qiang Shao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| | - Howard Williams
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian Hilty
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Yengo CM, Berger CL. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 2010; 10:731-7. [PMID: 20971683 DOI: 10.1016/j.coph.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/14/2023]
Abstract
Fluorescence spectroscopy/microscopy is a versatile method for examining protein dynamics in vitro and in vivo that can be combined with other techniques to simultaneously examine complementary pharmacological parameters. The following review will highlight the advantages and challenges of using fluorescence spectroscopic methods for examining protein dynamics with a special emphasis on fluorescence resonance energy transfer and fluorescence anisotropy. Both of these methods are amenable to measurements on an ensemble of molecules as well as at the single molecule level, in live cells and in high throughput screening assays, providing a powerful set of tools to aid in the design and testing of new drugs under a variety of experimental conditions.
Collapse
Affiliation(s)
- Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
31
|
Taskent-Sezgin H, Marek P, Thomas R, Goldberg D, Chung J, Carrico I, Raleigh DP. Modulation of p-cyanophenylalanine fluorescence by amino acid side chains and rational design of fluorescence probes of alpha-helix formation. Biochemistry 2010; 49:6290-5. [PMID: 20565125 DOI: 10.1021/bi100932p] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Cyanophenylalanine is an extremely useful fluorescence probe of protein structure that can be recombinantly and chemically incorporated into proteins. The probe has been used to study protein folding, protein-membrane interactions, protein-peptide interactions, and amyloid formation; however, the factors that control its fluorescence are not fully understood. Hydrogen bonding to the cyano group is known to play a major role in modulating the fluorescence quantum yield, but the role of potential side-chain quenchers has not yet been elucidated. A systematic study of the effects of different side chains on p-cyanophenylalanine fluorescence is reported. Tyr is found to have the largest effect followed by deprotonated His, Met, Cys, protonated His, Asn, Arg, and protonated Lys. Deprotonated amino groups are much more effective fluorescence quenchers than protonated amino groups. Free neutral imidazole and hydroxide ion are also effective quenchers of p-cyanophenylalanine fluorescence with Stern-Volmer constants of 39.8 and 22.1 M(-1), respectively. The quenching of p-cyanophenylalanine fluorescence by specific side chains is exploited in developing specific, high-sensitivity, fluorescence probes of helix formation. The approach is demonstrated with Ala-based peptides that contain a p-cyanophenylalanine-His or a p-cyanophenylalanine-Tyr pair located at positions i and i + 4. The p-cyanophenylalanine-His pair is most useful when the His side chain is deprotonated and is, thus, complementary to the Trp-His pair which is most sensitive when the His side chain is protonated.
Collapse
Affiliation(s)
- Humeyra Taskent-Sezgin
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Marek P, Mukherjee S, Zanni MT, Raleigh DP. Residue-specific, real-time characterization of lag-phase species and fibril growth during amyloid formation: a combined fluorescence and IR study of p-cyanophenylalanine analogs of islet amyloid polypeptide. J Mol Biol 2010; 400:878-88. [PMID: 20630475 DOI: 10.1016/j.jmb.2010.05.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/05/2010] [Accepted: 05/16/2010] [Indexed: 01/09/2023]
Abstract
Amyloid formation normally exhibits a lag phase followed by a growth phase, which leads to amyloid fibrils. Characterization of the species populated during the lag phase is experimentally challenging, but is critical since the most toxic entities may be pre-fibrillar species. p-Cyanophenylalanine (F(C[triple bond]N)) fluorescence is used to probe the nature of lag-phase species populated during the formation of amyloid by human islet amyloid polypeptide. The polypeptide contains two phenylalanines at positions 15 and 23 and a single tyrosine located at the C-terminus. Each aromatic residue was separately replaced by F(C[triple bond]N). The substitutions do not perturb amyloid formation relative to wild-type islet amyloid polypeptide as detected using thioflavin T fluorescence and electron microscopy. F(C[triple bond]N) fluorescence is high when the cyano group is hydrogen bonded and low when it is not. It can also be quenched via Förster resonance energy transfer to tyrosine. Fluorescence intensity was monitored in real time and revealed that all three positions remained exposed to solvent during the lag phase but less exposed than unstructured model peptides. The time course of amyloid formation as monitored by thioflavin T fluorescence and F(C[triple bond]N) fluorescence is virtually identical. Fluorescence quenching experiments confirmed that each residue remains exposed during the lag phase. These results place significant constraints on the nature of intermediates that are populated during the lag phase and indicate that significant sequestering of the aromatic side chains does not occur until beta-structure sufficient to bind thioflavin T has developed. Seeding studies and analysis of maximum rates confirm that sequestering of the cyano groups occurs concomitantly with the development of thioflavin T binding capability. Overall, the process of amyloid formation and growth appears to be remarkably homogenous in terms of side-chain ordering. F(C[triple bond]N) also provides information about fibril structure. Fluorescence emission measurements, infrared measurements, and quenching studies indicate that the aromatic residues are differentially exposed in the fibril state with Phe15 being the most exposed. F(C[triple bond]N) is readily accommodated into proteins; thus, the approach should be broadly applicable.
Collapse
Affiliation(s)
- Peter Marek
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | | | |
Collapse
|