1
|
Chiang SY, Wey MT, Luo YS, Shih WC, Chimeddulam D, Hsu PC, Huang HF, Tsai TH, Wu KY. Simultaneous toxicokinetic studies of aristolochic acid I and II and aristolactam I and II using a newly-developed microdialysis liquid chromatography-tandem mass spectrometry. Food Chem Toxicol 2023; 177:113856. [PMID: 37257633 DOI: 10.1016/j.fct.2023.113856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Aristolochic acids (AAs) are naturally occurring genotoxic carcinogens linked to Balkan endemic nephropathy and aristolochic acid nephropathy. Aristolochic acid I and II (AA-I and AA-II) are the most abundant AAs, and AA-I has been reported to be more genotoxic and nephrotoxic than AA-II. This study aimed to explore metabolic differences underlying the differential toxicity. We developed a novel microdialysis sampling coupled with solid-phase extraction liquid chromatography-tandem mass spectrometry (MD-SPE-LC-MS/MS) to simultaneously study the toxicokinetics (TK) of AA-I and AA-II and their corresponding aristolactams (AL-I and AL-II) in the blood of Sprague Dawley rats co-treated with AA-1 and AA-II. Near real-time monitoring of these analytes in the blood of treated rats revealed that AA-I was absorbed, distributed, and eliminated more rapidly than AA-II. Moreover, the metabolism efficiency of AA-I to AL-I was higher compared to AA-II to AL-II. Only 0.58% of AA-I and 0.084% of AA-II was reduced to AL-I and AL-II, respectively. The findings are consistent with previous studies and support the contention that differences in the in vivo metabolism of AA-I and AA-II may be critical factors for their differential toxicities.
Collapse
Affiliation(s)
- Su-Yin Chiang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd, North Dist., Taichung, 404333, Taiwan
| | - Ming-Tsai Wey
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Yu-Syuan Luo
- Institute of Food and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 404333, Taiwan
| | - Wei-Chung Shih
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Dalaijamts Chimeddulam
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan
| | - Po-Chi Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Rd, North Dist., Taichung, 404333, Taiwan
| | - Hui-Fen Huang
- School of Post-baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2. Linong St., Taipei, 100147, Taiwan
| | - Kuen-Yuh Wu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan; Institute of Food and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 404333, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan.
| |
Collapse
|
2
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Bongaerts J, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. Sensitive targeted methods for brain metabolomic studies in microdialysis samples. J Pharm Biomed Anal 2018; 161:192-205. [DOI: 10.1016/j.jpba.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
4
|
An ultrasensitive nano UHPLC-ESI-MS/MS method for the quantification of three neuromedin-like peptides in microdialysates. Bioanalysis 2015; 7:605-19. [PMID: 25826142 DOI: 10.4155/bio.14.269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM An ultrasensitive nano UHPLC-ESI-MS/MS method is developed to simultaneously monitor three low-concentration neuromedin-like peptides in microdialysates. RESULTS Peptide preconcentration and sample desalting is performed online on a trap column. A shallow gradient slope at 300 nl/min on the analytical column maintained at 35°C, followed by two saw-tooth column wash cycles, results in the highest sensitivity and the lowest carryover. The validated method allows the accurate and precise quantification of 0.5 pM neurotensin and neuromedin N (2.5 amol on column), and of 3.0 pM neuromedin B (15.0 amol on column) in in vivo microdialysates without the use of internal standards. CONCLUSION The assay is an important tool for elucidating the role of these neuromedin-like peptides in the pathophysiology of neurological disorders.
Collapse
|
5
|
Murphy NP. Dynamic measurement of extracellular opioid activity: status quo, challenges, and significance in rewarded behaviors. ACS Chem Neurosci 2015; 6:94-107. [PMID: 25585132 DOI: 10.1021/cn500295q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Opioid peptides are the endogenous ligands of opioid receptors, which are also the molecular target of naturally occurring and synthetic opiates, such as morphine and heroin. Since their discovery in the 1970s, opioid peptides, which are found widely throughout the central nervous system and the periphery, have been intensely studied because of their involvement in pain and pleasure. Over the years, our understanding of opioid peptides has widened to cover a multitude of functions, including learning and memory, affective state, gastrointestinal transit, feeding, immune function, and metabolism. Unsurprisingly, aberrant opioid activity is implicated in numerous pathologies, including drug addiction, overeating, pain, depression, and obesity. To date, virtually all preclinical and clinical studies aimed at understanding the function of endogenous opioids have relied upon manipulating endogenous opioid fluxes using opioid receptor ligands or genetic manipulations of opioid receptors and endogenous opioids. Difficulties in directly monitoring endogenous opioid fluxes, particularly in the central nervous system, have presented a major obstacle to fully understanding endogenous opioid function. This review summarizes these challenges and offers suggestions for future goals while focusing on the neurobiology of reward, specifically drawing attention to studies that have succeeded in dynamically measuring opioid peptides.
Collapse
Affiliation(s)
- Niall P. Murphy
- Department of Psychiatry
and Biobehavioral Sciences, Univesity of California, Los Angeles, 2579 MacDonald
Research Laboratories, 675 Charles E. Young Drive
South Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:798-811. [PMID: 25448012 DOI: 10.1016/j.bbapap.2014.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
|
8
|
The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis 2011; 3:1271-85. [PMID: 21649502 DOI: 10.4155/bio.11.91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides seem to play an important role when the CNS is challenged. In order to obtain better insights into the central peptidergic effects, it is essential to monitor their concentration in the brain. Quantification of neuropeptides in dialysates is challenging due to their low extracellular concentrations (low pM range), their low microdialysis efficiencies, the need for acceptable temporal resolution, the small sample volumes, the complexity of the matrix and the tendency of peptides to stick to glass and polymeric materials. The quantification of neuropeptides in dialysates therefore necessitates the use of very sensitive nano-LC-MS/MS methods. A number of LC-MS/MS and microdialysis parameters need to be optimized to achieve maximal sensitivity. The optimized and validated methods can be used to investigate the in vivo neuropeptide release during pathological conditions, in this way initiating new and immense challenges for the development of new drugs.
Collapse
|
9
|
Hamsher AE, Xu H, Guy Y, Sandberg M, Weber SG. Minimizing tissue damage in electroosmotic sampling. Anal Chem 2010; 82:6370-6. [PMID: 20698578 DOI: 10.1021/ac101271r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electroosmotic sampling is a potentially powerful method for pulling extracellular fluid into a fused-silica capillary in contact with the surface of tissue. An electric field is created in tissue by passing current through an electrolyte-filled capillary and then through the tissue. The resulting field acts on the counterions to the surface charges in the extracellular space to create electroosmotic fluid flow within the extracellular space of a tissue. Part of the development of this approach is to define conditions under which electroosmotic sampling minimizes damage to the tissue, in this case organotypic hippocampal slice cultures (OHSCs). We have assessed tissue damage by measuring fluorescence resulting from exposing sampled tissue to propidium iodide solution 16-24 h after sampling. Sampling has been carried out with a variety of capillary diameters, capillary tip-tissue distances, and applied voltages. Tissue damage is negligible when the power (current x potential drop) created in the tissue is less than 120 microW. In practical terms, smaller capillary i.d.s, lower voltages, and greater tissue to capillary distances lead to lower power.
Collapse
Affiliation(s)
- Amy E Hamsher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|